Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory

A general optimization design method motivated by constructal theory is proposed for heat exchanger design in the present paper. The simplified version of this design approach is suggested and the optimization problem formulations are given. In this method, a global heat exchanger is divided into se...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of heat and mass transfer Ročník 77; s. 1144 - 1154
Hlavní autori: Yang, Jie, Oh, Sun-Ryung, Liu, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2014
Predmet:
ISSN:0017-9310, 1879-2189
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A general optimization design method motivated by constructal theory is proposed for heat exchanger design in the present paper. The simplified version of this design approach is suggested and the optimization problem formulations are given. In this method, a global heat exchanger is divided into several sub heat exchangers in series-and-parallel arrangement. The shell-and-tube heat exchanger is utilized for the method application, and the Tubular Exchanger Manufacturers Association (TEMA) standards are rigorously followed for all design parameters, e.g. tube diameter, arrangement, thickness and number. The fitness function is the total cost of the shell-and-tube heat exchangers, including the investment cost for initial manufacture and the operational cost involving the power consumption to overcome the frictional pressure loss. A genetic algorithm is applied to minimize the objective function by adjusting parameters. Three case studies are considered to demonstrate that the new design approach can significantly reduce the total cost compared to the methods of original design, traditional genetic algorithm design, and old constructal design.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2014.06.046