Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory

A general optimization design method motivated by constructal theory is proposed for heat exchanger design in the present paper. The simplified version of this design approach is suggested and the optimization problem formulations are given. In this method, a global heat exchanger is divided into se...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of heat and mass transfer Ročník 77; s. 1144 - 1154
Hlavní autori: Yang, Jie, Oh, Sun-Ryung, Liu, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2014
Predmet:
ISSN:0017-9310, 1879-2189
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A general optimization design method motivated by constructal theory is proposed for heat exchanger design in the present paper. The simplified version of this design approach is suggested and the optimization problem formulations are given. In this method, a global heat exchanger is divided into several sub heat exchangers in series-and-parallel arrangement. The shell-and-tube heat exchanger is utilized for the method application, and the Tubular Exchanger Manufacturers Association (TEMA) standards are rigorously followed for all design parameters, e.g. tube diameter, arrangement, thickness and number. The fitness function is the total cost of the shell-and-tube heat exchangers, including the investment cost for initial manufacture and the operational cost involving the power consumption to overcome the frictional pressure loss. A genetic algorithm is applied to minimize the objective function by adjusting parameters. Three case studies are considered to demonstrate that the new design approach can significantly reduce the total cost compared to the methods of original design, traditional genetic algorithm design, and old constructal design.
AbstractList A general optimization design method motivated by constructal theory is proposed for heat exchanger design in the present paper. The simplified version of this design approach is suggested and the optimization problem formulations are given. In this method, a global heat exchanger is divided into several sub heat exchangers in series-and-parallel arrangement. The shell-and-tube heat exchanger is utilized for the method application, and the Tubular Exchanger Manufacturers Association (TEMA) standards are rigorously followed for all design parameters, e.g. tube diameter, arrangement, thickness and number. The fitness function is the total cost of the shell-and-tube heat exchangers, including the investment cost for initial manufacture and the operational cost involving the power consumption to overcome the frictional pressure loss. A genetic algorithm is applied to minimize the objective function by adjusting parameters. Three case studies are considered to demonstrate that the new design approach can significantly reduce the total cost compared to the methods of original design, traditional genetic algorithm design, and old constructal design.
Author Liu, Wei
Yang, Jie
Oh, Sun-Ryung
Author_xml – sequence: 1
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
  organization: School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Sun-Ryung
  surname: Oh
  fullname: Oh, Sun-Ryung
  organization: Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL, USA
– sequence: 3
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: w_liu@hust.edu.cn
  organization: School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNqVkc1u3CAURlGVSJ0kfQeW2dgFTADvUkVNfxQpm3aNMFyPGdkwARx1-vRlOl01m2R1hTg6XL7vAp2FGACha0paSqj4uGv9bgJTFpNzSSbkEVLLCOUtES3h4h3aUCX7hlHVn6ENIVQ2fUfJe3SR8-54rNAGhcd98Yv_bYqPAccR5wnmuTHBNWUdAB-fwPDLTiZsIWW8Zh-22OAtBEhmxg6y3wZs9vsUjZ3wEot_NgUcHg7YxlB3W22pYJkgpsMVOh_NnOHDv3mJft5__nH3tXl4_PLt7tNDYzlRpeks51JyRUwHN7Kn3chu6rQAbBAOnDWcDXYQgxsBnFJWMguys5IK6EbJukt0ffLWtZ5WyEUvPtv6MxMgrllTIWUvFePdK1BGiOJCyYrenlCbYs4JRr1PfjHpoCnRx1b0Tr9sRR9b0UToGnhV3P-nsL78Db_ifn6L6PtJBDXGZ19vs_UQLDifwBbton-97A8LRsAd
CitedBy_id crossref_primary_10_1088_1757_899X_1173_1_012005
crossref_primary_10_3390_en14175545
crossref_primary_10_1007_s11831_019_09318_y
crossref_primary_10_1016_j_applthermaleng_2015_07_063
crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_032
crossref_primary_10_3233_IDT_170295
crossref_primary_10_1007_s11431_016_0135_x
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_003
crossref_primary_10_1016_j_applthermaleng_2016_06_133
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_105
crossref_primary_10_1016_j_applthermaleng_2018_12_158
crossref_primary_10_1016_j_applthermaleng_2017_06_137
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_064
crossref_primary_10_1016_j_matpr_2021_01_775
crossref_primary_10_3389_fenrg_2024_1379747
crossref_primary_10_1016_j_ijheatmasstransfer_2016_03_117
crossref_primary_10_1016_j_applthermaleng_2018_09_045
crossref_primary_10_1016_j_tsep_2018_01_008
crossref_primary_10_1007_s11708_022_0839_3
crossref_primary_10_1088_1755_1315_36_1_012056
crossref_primary_10_3390_e20090685
crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_055
crossref_primary_10_1016_j_asoc_2014_10_018
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120140
crossref_primary_10_1007_s11431_015_5833_0
crossref_primary_10_1140_epjp_i2016_16274_4
crossref_primary_10_1016_j_energy_2017_04_059
crossref_primary_10_1016_j_enconman_2016_03_079
crossref_primary_10_1016_j_applthermaleng_2019_04_048
crossref_primary_10_1016_j_energy_2017_09_115
crossref_primary_10_3390_w17172609
crossref_primary_10_1007_s10973_025_14630_w
crossref_primary_10_1016_j_ijthermalsci_2021_106848
crossref_primary_10_1016_j_tsep_2023_102085
crossref_primary_10_1007_s11831_020_09476_4
crossref_primary_10_1016_j_tsep_2022_101384
crossref_primary_10_1007_s00521_022_06899_x
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_094
crossref_primary_10_1016_j_energy_2019_116846
crossref_primary_10_1016_j_ijthermalsci_2015_12_002
crossref_primary_10_1016_j_applthermaleng_2015_10_055
crossref_primary_10_2514_1_J058315
crossref_primary_10_1016_j_ijheatmasstransfer_2015_10_015
crossref_primary_10_1016_j_applthermaleng_2017_01_071
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121257
crossref_primary_10_1016_j_icheatmasstransfer_2017_07_008
crossref_primary_10_3390_math9101120
Cites_doi 10.1016/j.cherd.2007.11.005
10.1016/j.enconman.2004.06.012
10.1016/j.applthermaleng.2012.12.002
10.1016/j.enconman.2012.11.017
10.1016/j.energy.2010.11.041
10.1016/j.applthermaleng.2013.03.058
10.1016/j.ijheatmasstransfer.2010.04.038
10.1016/j.applthermaleng.2007.11.009
10.1007/s11431-011-4701-9
10.1016/j.applthermaleng.2004.04.005
10.1205/cherd05029
10.1016/j.enconman.2012.01.008
10.1016/j.applthermaleng.2008.05.018
10.1016/j.enconman.2011.07.003
10.1016/j.plrev.2008.12.002
10.1021/ie020964u
10.1016/j.cep.2005.07.004
10.1016/j.applthermaleng.2012.03.022
10.1016/j.enconman.2013.05.011
10.1016/j.applthermaleng.2007.08.010
10.1016/j.ijheatmasstransfer.2012.12.062
10.1002/er.2960
10.1016/j.applthermaleng.2010.03.001
10.1002/er.1820
10.1016/j.apenergy.2009.01.013
10.1016/j.applthermaleng.2007.01.007
10.1016/j.enconman.2005.08.001
10.1021/ie800728n
10.1002/er.1398
10.1115/1.2204075
10.1016/j.ijheatmasstransfer.2008.11.015
10.1016/S0263-8762(07)73182-9
10.1016/S1359-4311(03)00136-4
10.1205/026387600527185
10.1016/j.ijheatmasstransfer.2004.05.004
10.1016/j.plrev.2011.05.010
10.1016/j.ijheatmasstransfer.2005.12.015
10.1016/j.enconman.2009.11.022
10.1016/j.ijheatmasstransfer.2012.12.047
10.1016/j.applthermaleng.2010.04.018
10.1063/1.2221896
10.1063/1.4798429
10.1016/j.applthermaleng.2011.12.043
10.1016/j.enconman.2013.11.008
10.1016/j.applthermaleng.2009.03.011
10.1002/er.1272
10.1016/j.ces.2007.03.039
10.1016/j.apm.2012.03.043
10.1021/ie970010h
10.1016/j.applthermaleng.2007.06.040
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2014.06.046
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 1154
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2014_06_046
S0017931014005183
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c408t-3c4477480a3e57913f25579cee2b6dedca42bcb6bdfeed88c72ce73c716e3f723
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340302400105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Sun Nov 09 14:05:38 EST 2025
Sun Sep 28 03:26:55 EDT 2025
Sat Nov 29 03:37:47 EST 2025
Tue Nov 18 21:26:17 EST 2025
Fri Feb 23 02:23:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Shell-and-tube heat exchangers
Constructal optimization design
Mixed discrete nonlinear programming problem
Genetic algorithm
Series-and-parallel arrangement
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-3c4477480a3e57913f25579cee2b6dedca42bcb6bdfeed88c72ce73c716e3f723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1620084687
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1677978243
proquest_miscellaneous_1620084687
crossref_primary_10_1016_j_ijheatmasstransfer_2014_06_046
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2014_06_046
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2014_06_046
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of heat and mass transfer
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen (b0125) 2013; 60
Hadidi, Hadidi, Nazari (b0085) 2013; 67
Hilbert, Janiga, Baron, Thévenin (b0175) 2006; 49
Ponce-Ortega, Serna-González, Jiménez-Gutiérrez (b0050) 2009; 29
Picón-Núñez, Polley, Martínez-Rodríguez (b0015) 2013; 61
Shah, Sekulic (b0325) 2003
Bejan, Lorente (b0265) 2006; 100
Bejan, Lorente, Miguel, Reis (b0285) 2009
Babu, Munawar (b0030) 2007; 62
Rocha, Lorente, Bejan (b0300) 2013
Azad, Amidpour (b0095) 2011; 36
Guo, Xu (b0120) 2012; 36
Wildi-Tremblay, Gosselin (b0130) 2007; 31
Agarwal, Gupta (b0145) 2008; 86
Sahin, Kilic, Kilic (b0080) 2011; 52
Guo, Xu, Cheng (b0115) 2009; 86
Caputo, Pelagagge, Salini (b0075) 2008; 28
Sanaye, Hajabdollahi (b0150) 2010; 30
Gomez, Pibouleau, Azzaro-Pantel, Domenech, Latge, Haubensack (b0165) 2010; 51
Ponce-Ortega, Serna-Gonzalez, Salcedo-Estrada, Jimenez-Gutierrez (b0205) 2006; 84
Bejan, Lorente (b0305) 2013; 113
Tennekes (b0245) 1996
Kern (b0330) 1950
Eryener (b0065) 2006; 47
Bejan (b0235) 2000
Bejan (b0230) 1997
Bejan, Lorente (b0275) 2008
Muralikrishna, Shenoy (b0010) 2000; 78
Rao, Patel (b0160) 2013; 37
Reis (b0270) 2006; 59
TEMA, Standards of The Tubular Exchanger Manufacturers Association, ninth ed., Tubular Exchanger Manufacturers Association, New York, 2007.
Fesanghary, Damangir, Soleimani (b0035) 2009; 29
Sinnot, Coulson, Richardson (b0350) 2005; vol. 6
Rao (b0215) 1996
Smith (b0220) 2005
Guo, Cheng, Xu (b0110) 2009; 29
Bejan, Marden (b0280) 2009; 6
Bejan, Lorente, Kang (b0310) 2013; 37
Soltan, Avval, Damangir (b0060) 2004; 24
Allen, Gosselin (b0135) 2008; 32
Ghazi, Ahmadi, Sotoodeh, Taherkhani (b0055) 2012; 58
Selbas, Kizilkan, Reppich (b0070) 2006; 45
Li, Jiang, Huang, Jia, Tong (b0140) 2010; 53
Ravagnani, Caballero (b0195) 2007; 85
Vargas, Ordonez, Bejan (b0255) 2004; 47
Taal, Bulatov, Klemes, Stehlik (b0345) 2003; 23
Ravagnani, Silva, Biscaia, Caballero (b0045) 2009; 48
Bejan (b0250) 1997; 44
Mizutani, Pessoa, Queiroz (b0190) 2003; 42
B.I. Master, K.S. Chunangad, V. Pushpanathan, Fouling mitigation using helixchanger heat exchangers, in: Proceedings of the ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, Santa Fe, USA, 2003, pp. 317–322.
Mariani, Duck, Guerra, Coelho, Rao (b0040) 2012; 42
Özçelik (b0105) 2007; 27
Lu, Cai, Chai, Xie (b0210) 2005; 46
Peters, Timmerhaus (b0335) 1991
Towler, Sinnott (b0340) 2008
Belanger, Gosselin (b0170) 2012; 36
Chen (b0295) 2012; 55
Onishi, Ravagnani, Caballero (b0200) 2013; 74
V.A.P. Raja, T. Basak, S.K. Das, Heat transfer and fluid flow in a constructal heat exchanger, in: Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Hoboken, New Jersey, USA, 2005, pp. 147–153.
Costa, Queiroz (b0185) 2008; 28
Fettaka, Thibault, Gupta (b0155) 2013; 60
Hadidi, Nazari (b0090) 2013; 51
Patel, Rao (b0025) 2010; 30
Chaudhuri, Diwekar (b0020) 1997; 36
Bejan, Lorente (b0290) 2011; 8
Yang, Fan, Liu, Jacobi (b0100) 2014; 78
Holland (b0315) 1975
Gosselin, Tye-Gingras, Mathieu-Potvin (b0180) 2009; 52
Pennycuick (b0240) 1976
Agarwal (10.1016/j.ijheatmasstransfer.2014.06.046_b0145) 2008; 86
Guo (10.1016/j.ijheatmasstransfer.2014.06.046_b0120) 2012; 36
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0310) 2013; 37
10.1016/j.ijheatmasstransfer.2014.06.046_b0225
Vargas (10.1016/j.ijheatmasstransfer.2014.06.046_b0255) 2004; 47
Hadidi (10.1016/j.ijheatmasstransfer.2014.06.046_b0090) 2013; 51
Kern (10.1016/j.ijheatmasstransfer.2014.06.046_b0330) 1950
Caputo (10.1016/j.ijheatmasstransfer.2014.06.046_b0075) 2008; 28
Rao (10.1016/j.ijheatmasstransfer.2014.06.046_b0160) 2013; 37
Allen (10.1016/j.ijheatmasstransfer.2014.06.046_b0135) 2008; 32
Soltan (10.1016/j.ijheatmasstransfer.2014.06.046_b0060) 2004; 24
Yang (10.1016/j.ijheatmasstransfer.2014.06.046_b0100) 2014; 78
Guo (10.1016/j.ijheatmasstransfer.2014.06.046_b0110) 2009; 29
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0265) 2006; 100
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0305) 2013; 113
Guo (10.1016/j.ijheatmasstransfer.2014.06.046_b0115) 2009; 86
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0290) 2011; 8
Fesanghary (10.1016/j.ijheatmasstransfer.2014.06.046_b0035) 2009; 29
Mariani (10.1016/j.ijheatmasstransfer.2014.06.046_b0040) 2012; 42
Eryener (10.1016/j.ijheatmasstransfer.2014.06.046_b0065) 2006; 47
Muralikrishna (10.1016/j.ijheatmasstransfer.2014.06.046_b0010) 2000; 78
Onishi (10.1016/j.ijheatmasstransfer.2014.06.046_b0200) 2013; 74
Gosselin (10.1016/j.ijheatmasstransfer.2014.06.046_b0180) 2009; 52
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0280) 2009; 6
Tennekes (10.1016/j.ijheatmasstransfer.2014.06.046_b0245) 1996
Ravagnani (10.1016/j.ijheatmasstransfer.2014.06.046_b0045) 2009; 48
Hilbert (10.1016/j.ijheatmasstransfer.2014.06.046_b0175) 2006; 49
Holland (10.1016/j.ijheatmasstransfer.2014.06.046_b0315) 1975
Chen (10.1016/j.ijheatmasstransfer.2014.06.046_b0125) 2013; 60
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0235) 2000
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0275) 2008
Fettaka (10.1016/j.ijheatmasstransfer.2014.06.046_b0155) 2013; 60
Li (10.1016/j.ijheatmasstransfer.2014.06.046_b0140) 2010; 53
Sahin (10.1016/j.ijheatmasstransfer.2014.06.046_b0080) 2011; 52
Peters (10.1016/j.ijheatmasstransfer.2014.06.046_b0335) 1991
Picón-Núñez (10.1016/j.ijheatmasstransfer.2014.06.046_b0015) 2013; 61
10.1016/j.ijheatmasstransfer.2014.06.046_b0005
Belanger (10.1016/j.ijheatmasstransfer.2014.06.046_b0170) 2012; 36
Ghazi (10.1016/j.ijheatmasstransfer.2014.06.046_b0055) 2012; 58
Selbas (10.1016/j.ijheatmasstransfer.2014.06.046_b0070) 2006; 45
Chen (10.1016/j.ijheatmasstransfer.2014.06.046_b0295) 2012; 55
Rocha (10.1016/j.ijheatmasstransfer.2014.06.046_b0300) 2013
Reis (10.1016/j.ijheatmasstransfer.2014.06.046_b0270) 2006; 59
Azad (10.1016/j.ijheatmasstransfer.2014.06.046_b0095) 2011; 36
Ravagnani (10.1016/j.ijheatmasstransfer.2014.06.046_b0195) 2007; 85
Costa (10.1016/j.ijheatmasstransfer.2014.06.046_b0185) 2008; 28
Wildi-Tremblay (10.1016/j.ijheatmasstransfer.2014.06.046_b0130) 2007; 31
Shah (10.1016/j.ijheatmasstransfer.2014.06.046_b0325) 2003
Lu (10.1016/j.ijheatmasstransfer.2014.06.046_b0210) 2005; 46
Taal (10.1016/j.ijheatmasstransfer.2014.06.046_b0345) 2003; 23
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0250) 1997; 44
Sanaye (10.1016/j.ijheatmasstransfer.2014.06.046_b0150) 2010; 30
Mizutani (10.1016/j.ijheatmasstransfer.2014.06.046_b0190) 2003; 42
Ponce-Ortega (10.1016/j.ijheatmasstransfer.2014.06.046_b0205) 2006; 84
Sinnot (10.1016/j.ijheatmasstransfer.2014.06.046_b0350) 2005; vol. 6
Ponce-Ortega (10.1016/j.ijheatmasstransfer.2014.06.046_b0050) 2009; 29
Chaudhuri (10.1016/j.ijheatmasstransfer.2014.06.046_b0020) 1997; 36
Patel (10.1016/j.ijheatmasstransfer.2014.06.046_b0025) 2010; 30
Özçelik (10.1016/j.ijheatmasstransfer.2014.06.046_b0105) 2007; 27
Babu (10.1016/j.ijheatmasstransfer.2014.06.046_b0030) 2007; 62
Hadidi (10.1016/j.ijheatmasstransfer.2014.06.046_b0085) 2013; 67
Rao (10.1016/j.ijheatmasstransfer.2014.06.046_b0215) 1996
Gomez (10.1016/j.ijheatmasstransfer.2014.06.046_b0165) 2010; 51
Pennycuick (10.1016/j.ijheatmasstransfer.2014.06.046_b0240) 1976
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0285) 2009
10.1016/j.ijheatmasstransfer.2014.06.046_b0260
Towler (10.1016/j.ijheatmasstransfer.2014.06.046_b0340) 2008
Bejan (10.1016/j.ijheatmasstransfer.2014.06.046_b0230) 1997
Smith (10.1016/j.ijheatmasstransfer.2014.06.046_b0220) 2005
References_xml – volume: 67
  start-page: 66
  year: 2013
  end-page: 74
  ident: b0085
  article-title: A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view
  publication-title: Energy Convers. Manage.
– volume: 23
  start-page: 1819
  year: 2003
  end-page: 1835
  ident: b0345
  article-title: Cost estimation and energy price forecast for economic evaluation of retrofit projects
  publication-title: Appl. Therm. Eng.
– volume: 45
  start-page: 268
  year: 2006
  end-page: 275
  ident: b0070
  article-title: A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view
  publication-title: Chem. Eng. Process.
– volume: 51
  start-page: 1263
  year: 2013
  end-page: 1272
  ident: b0090
  article-title: Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm
  publication-title: Appl. Therm. Eng.
– volume: 86
  start-page: 123
  year: 2008
  end-page: 139
  ident: b0145
  article-title: Jumping gene adaptations of NSGA-II and their use in multi-objective optimal design of shell and tube heat exchangers
  publication-title: Chem. Eng. Res. Des.
– volume: 47
  start-page: 4177
  year: 2004
  end-page: 4193
  ident: b0255
  article-title: Constructal flow structure for a PEM fuel cell
  publication-title: Int. J. Heat Mass Transfer
– volume: 32
  start-page: 958
  year: 2008
  end-page: 969
  ident: b0135
  article-title: Optimal geometry and flow arrangement for minimizing the cost of shell-and-tube condensers
  publication-title: Int. J. Energy Res.
– reference: TEMA, Standards of The Tubular Exchanger Manufacturers Association, ninth ed., Tubular Exchanger Manufacturers Association, New York, 2007.
– volume: 62
  start-page: 3720
  year: 2007
  end-page: 3739
  ident: b0030
  article-title: Differential evolution strategies for optimal design of shell-and-tube heat exchangers
  publication-title: Chem. Eng. Sci.
– volume: 29
  start-page: 203
  year: 2009
  end-page: 209
  ident: b0050
  article-title: Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 46
  start-page: 999
  year: 2005
  end-page: 1014
  ident: b0210
  article-title: Global optimization for overall HVAC systems-Part I problem formulation and analysis
  publication-title: Energy Convers. Manage.
– year: 1975
  ident: b0315
  article-title: Adaptation in Natural and Artificial Systems
– volume: 51
  start-page: 859
  year: 2010
  end-page: 871
  ident: b0165
  article-title: Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology
  publication-title: Energy Convers. Manage.
– volume: 74
  start-page: 60
  year: 2013
  end-page: 69
  ident: b0200
  article-title: Mathematical programming model for heat exchanger design through optimization of partial objectives
  publication-title: Energy Convers. Manage.
– year: 2008
  ident: b0340
  article-title: Chemical Engineering Design: Principle, Practice and Economics of Plant and Process Design
– volume: 85
  start-page: 1423
  year: 2007
  end-page: 1435
  ident: b0195
  article-title: A MINLP model for the rigorous design of shell and tube heat exchangers using the TEMA standards
  publication-title: Trans. IChemE A Chem. Eng. Res. Des.
– year: 1950
  ident: b0330
  article-title: Process Heat Transfer
– volume: 78
  start-page: 468
  year: 2014
  end-page: 476
  ident: b0100
  article-title: Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory
  publication-title: Energy Convers. Manage.
– volume: 30
  start-page: 1937
  year: 2010
  end-page: 1945
  ident: b0150
  article-title: Multi-objective optimization of shell and tube heat exchangers
  publication-title: Appl. Therm. Eng.
– year: 2003
  ident: b0325
  article-title: Fundamentals of Heat Exchanger Design
– volume: 36
  start-page: 632
  year: 2012
  end-page: 642
  ident: b0170
  article-title: Multi-objective genetic algorithm optimization of thermoelectric heat exchanger for waste heat recovery
  publication-title: Int. J. Energy Res.
– volume: 31
  start-page: 867
  year: 2007
  end-page: 885
  ident: b0130
  article-title: Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance
  publication-title: Int. J. Energy Res.
– volume: 8
  start-page: 209
  year: 2011
  end-page: 240
  ident: b0290
  article-title: The constructal law and the evolution of design in nature
  publication-title: Phys. Life Rev.
– volume: 36
  start-page: 1087
  year: 2011
  end-page: 1096
  ident: b0095
  article-title: Economic optimization of shell and tube heat exchanger based on constructal theory
  publication-title: Energy
– year: 2005
  ident: b0220
  article-title: Chemical Process Design and Integration
– reference: V.A.P. Raja, T. Basak, S.K. Das, Heat transfer and fluid flow in a constructal heat exchanger, in: Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Hoboken, New Jersey, USA, 2005, pp. 147–153.
– year: 2009
  ident: b0285
  article-title: Constructal Human Dynamics, Security and Sustainability
– year: 1991
  ident: b0335
  article-title: Plant Design and Economics for Chemical Engineers
– year: 1996
  ident: b0245
  article-title: The Simple Science of Flight
– volume: 58
  start-page: 149
  year: 2012
  end-page: 156
  ident: b0055
  article-title: Modeling and thermo-economic optimization of heat recovery heat exchangers using a multimodal genetic algorithm
  publication-title: Energy Convers. Manage.
– volume: 100
  start-page: 041301
  year: 2006
  ident: b0265
  article-title: Constructal theory of generation of configuration in nature and engineering
  publication-title: J. Appl. Phys.
– volume: 52
  start-page: 3356
  year: 2011
  end-page: 3362
  ident: b0080
  article-title: Design and economic optimization of shell and tube heat exchangers using artificial bee colony (ABC) algorithm
  publication-title: Energy Convers. Manage.
– volume: 84
  start-page: 905
  year: 2006
  end-page: 910
  ident: b0205
  article-title: Minimum-investment design of multiple shell and tube heat exchangers using a MINLP formulation
  publication-title: Trans. IChemE A Chem. Eng. Res. Des.
– volume: 42
  start-page: 4009
  year: 2003
  end-page: 4018
  ident: b0190
  article-title: Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs. 1. Shell-and-tube heat-exchanger design
  publication-title: Ind. Eng. Chem. Res.
– volume: 24
  start-page: 2801
  year: 2004
  end-page: 2810
  ident: b0060
  article-title: Minimizing capital and operating costs of shell and tube heat condensers using optimum baffle spacing
  publication-title: Appl. Therm. Eng.
– volume: 29
  start-page: 1026
  year: 2009
  end-page: 1031
  ident: b0035
  article-title: Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm
  publication-title: Appl. Therm. Eng.
– year: 1997
  ident: b0230
  article-title: Advanced Engineering Thermodynamics
– volume: 48
  start-page: 2927
  year: 2009
  end-page: 2935
  ident: b0045
  article-title: Optimal design of shell-and-tube heat exchangers using particle swarm optimization
  publication-title: Ind. Eng. Chem. Res.
– year: 1996
  ident: b0215
  article-title: Engineering Optimization
– year: 1976
  ident: b0240
  article-title: Animal Flight
– volume: 78
  start-page: 161
  year: 2000
  end-page: 167
  ident: b0010
  article-title: Heat exchanger design targets for minimum area and cost
  publication-title: Trans. IChemE A Chem. Eng. Res. Des.
– volume: 49
  start-page: 2567
  year: 2006
  end-page: 2577
  ident: b0175
  article-title: Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms
  publication-title: Int. J. Heat Mass Transfer
– volume: 27
  start-page: 1849
  year: 2007
  end-page: 1856
  ident: b0105
  article-title: Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm
  publication-title: Appl. Therm. Eng.
– volume: 86
  start-page: 2079
  year: 2009
  end-page: 2087
  ident: b0115
  article-title: The application of field synergy number in shell-and-tube heat exchanger optimization design
  publication-title: Appl. Energy
– volume: 37
  start-page: 1509
  year: 2013
  end-page: 1518
  ident: b0310
  article-title: Constructal design of regenerators
  publication-title: Int. J. Energy Res.
– volume: 59
  start-page: 269
  year: 2006
  end-page: 282
  ident: b0270
  article-title: Constructal theory: from engineering to physics, and how flow systems develop shape and structure
  publication-title: Appl. Mech. Rev.
– year: 2013
  ident: b0300
  article-title: Constructal Law and the Unifying Principle of Design
– volume: 61
  start-page: 36
  year: 2013
  end-page: 43
  ident: b0015
  article-title: Graphical tool for the preliminary design of compact heat exchangers
  publication-title: Appl. Therm. Eng.
– year: 2000
  ident: b0235
  article-title: Shape and Structure, from Engineering to Nature
– volume: 36
  start-page: 3685
  year: 1997
  end-page: 3693
  ident: b0020
  article-title: An automated approach for the optimal design of heat exchangers
  publication-title: Ind. Eng. Chem. Res.
– volume: 30
  start-page: 1417
  year: 2010
  end-page: 1425
  ident: b0025
  article-title: Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique
  publication-title: Appl. Therm. Eng.
– volume: 44
  start-page: 813
  year: 1997
  end-page: 816
  ident: b0250
  article-title: Constructal-theory network of conducing paths for cooling a heat generation volume
  publication-title: Int. J. Heat Mass Transfer
– volume: 55
  start-page: 802
  year: 2012
  end-page: 820
  ident: b0295
  article-title: Progress in study on constructal theory and its applications
  publication-title: Sci. China Ser. E
– reference: B.I. Master, K.S. Chunangad, V. Pushpanathan, Fouling mitigation using helixchanger heat exchangers, in: Proceedings of the ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, Santa Fe, USA, 2003, pp. 317–322.
– volume: 37
  start-page: 1147
  year: 2013
  end-page: 1162
  ident: b0160
  article-title: Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm
  publication-title: Appl. Math. Model.
– volume: 53
  start-page: 4543
  year: 2010
  end-page: 4551
  ident: b0140
  article-title: Optimization of high-pressure shell-and-tube heat exchanger for syngas cooling in an IGCC
  publication-title: Int. J. Heat Mass Transfer
– volume: 52
  start-page: 2169
  year: 2009
  end-page: 2188
  ident: b0180
  article-title: Review of utilization of genetic algorithms in heat transfer problems
  publication-title: Int. J. Heat Mass Transfer
– year: 2008
  ident: b0275
  article-title: Design with Constructal Theory
– volume: 113
  start-page: 151301
  year: 2013
  ident: b0305
  article-title: Constructal law of design and evolution: physics, biology, technology, and society
  publication-title: J. Appl. Phys.
– volume: vol. 6
  year: 2005
  ident: b0350
  publication-title: Coulson and Richardson’s Chemical Engineering: Chemical Engineering Design
– volume: 29
  start-page: 2954
  year: 2009
  end-page: 2960
  ident: b0110
  article-title: Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm
  publication-title: Appl. Therm. Eng.
– volume: 60
  start-page: 156
  year: 2013
  end-page: 162
  ident: b0125
  article-title: Enstrasy dissipation-based thermal resistance method for heat exchanger performance design and optimization
  publication-title: Int. J. Heat Mass Transfer
– volume: 60
  start-page: 343
  year: 2013
  end-page: 354
  ident: b0155
  article-title: Design of shell-and-tube heat exchangers using multiobjective optimization
  publication-title: Int. J. Heat Mass Transfer
– volume: 47
  start-page: 1478
  year: 2006
  end-page: 1489
  ident: b0065
  article-title: Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers
  publication-title: Energy Convers. Manage.
– volume: 6
  start-page: 85
  year: 2009
  end-page: 102
  ident: b0280
  article-title: The constructal unification of biological and geophysical design
  publication-title: Phys. Life Rev.
– volume: 42
  start-page: 119
  year: 2012
  end-page: 128
  ident: b0040
  article-title: A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 28
  start-page: 1151
  year: 2008
  end-page: 1159
  ident: b0075
  article-title: Heat exchanger design based on economic optimization
  publication-title: Appl. Therm. Eng.
– volume: 28
  start-page: 1798
  year: 2008
  end-page: 1805
  ident: b0185
  article-title: Design optimization of shell-and-tube heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 227
  year: 2012
  end-page: 235
  ident: b0120
  article-title: The application of entransy dissipation theory in optimization design of heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 86
  start-page: 123
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0145
  article-title: Jumping gene adaptations of NSGA-II and their use in multi-objective optimal design of shell and tube heat exchangers
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2007.11.005
– volume: 46
  start-page: 999
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0210
  article-title: Global optimization for overall HVAC systems-Part I problem formulation and analysis
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2004.06.012
– volume: 51
  start-page: 1263
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0090
  article-title: Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.12.002
– volume: 67
  start-page: 66
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0085
  article-title: A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2012.11.017
– volume: 36
  start-page: 1087
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0095
  article-title: Economic optimization of shell and tube heat exchanger based on constructal theory
  publication-title: Energy
  doi: 10.1016/j.energy.2010.11.041
– volume: 61
  start-page: 36
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0015
  article-title: Graphical tool for the preliminary design of compact heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.03.058
– volume: 53
  start-page: 4543
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0140
  article-title: Optimization of high-pressure shell-and-tube heat exchanger for syngas cooling in an IGCC
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.04.038
– volume: 28
  start-page: 1798
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0185
  article-title: Design optimization of shell-and-tube heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.11.009
– volume: 55
  start-page: 802
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0295
  article-title: Progress in study on constructal theory and its applications
  publication-title: Sci. China Ser. E
  doi: 10.1007/s11431-011-4701-9
– volume: 24
  start-page: 2801
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0060
  article-title: Minimizing capital and operating costs of shell and tube heat condensers using optimum baffle spacing
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.04.005
– volume: 84
  start-page: 905
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0205
  article-title: Minimum-investment design of multiple shell and tube heat exchangers using a MINLP formulation
  publication-title: Trans. IChemE A Chem. Eng. Res. Des.
  doi: 10.1205/cherd05029
– year: 1991
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0335
– volume: 58
  start-page: 149
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0055
  article-title: Modeling and thermo-economic optimization of heat recovery heat exchangers using a multimodal genetic algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2012.01.008
– volume: 29
  start-page: 1026
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0035
  article-title: Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.05.018
– volume: 52
  start-page: 3356
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0080
  article-title: Design and economic optimization of shell and tube heat exchangers using artificial bee colony (ABC) algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2011.07.003
– volume: 6
  start-page: 85
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0280
  article-title: The constructal unification of biological and geophysical design
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2008.12.002
– volume: 42
  start-page: 4009
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0190
  article-title: Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs. 1. Shell-and-tube heat-exchanger design
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020964u
– ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0260
– year: 1975
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0315
– ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0005
– volume: 45
  start-page: 268
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0070
  article-title: A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2005.07.004
– year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0245
– volume: vol. 6
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0350
– volume: 42
  start-page: 119
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0040
  article-title: A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.022
– volume: 74
  start-page: 60
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0200
  article-title: Mathematical programming model for heat exchanger design through optimization of partial objectives
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.05.011
– volume: 28
  start-page: 1151
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0075
  article-title: Heat exchanger design based on economic optimization
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.08.010
– volume: 60
  start-page: 156
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0125
  article-title: Enstrasy dissipation-based thermal resistance method for heat exchanger performance design and optimization
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.12.062
– year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0215
– year: 1976
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0240
– volume: 37
  start-page: 1509
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0310
  article-title: Constructal design of regenerators
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.2960
– volume: 30
  start-page: 1417
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0025
  article-title: Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.03.001
– volume: 36
  start-page: 632
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0170
  article-title: Multi-objective genetic algorithm optimization of thermoelectric heat exchanger for waste heat recovery
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1820
– volume: 86
  start-page: 2079
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0115
  article-title: The application of field synergy number in shell-and-tube heat exchanger optimization design
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.01.013
– volume: 27
  start-page: 1849
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0105
  article-title: Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.01.007
– year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0220
– volume: 47
  start-page: 1478
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0065
  article-title: Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2005.08.001
– volume: 48
  start-page: 2927
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0045
  article-title: Optimal design of shell-and-tube heat exchangers using particle swarm optimization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie800728n
– volume: 32
  start-page: 958
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0135
  article-title: Optimal geometry and flow arrangement for minimizing the cost of shell-and-tube condensers
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1398
– volume: 59
  start-page: 269
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0270
  article-title: Constructal theory: from engineering to physics, and how flow systems develop shape and structure
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.2204075
– year: 1950
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0330
– volume: 52
  start-page: 2169
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0180
  article-title: Review of utilization of genetic algorithms in heat transfer problems
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.11.015
– volume: 85
  start-page: 1423
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0195
  article-title: A MINLP model for the rigorous design of shell and tube heat exchangers using the TEMA standards
  publication-title: Trans. IChemE A Chem. Eng. Res. Des.
  doi: 10.1016/S0263-8762(07)73182-9
– volume: 23
  start-page: 1819
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0345
  article-title: Cost estimation and energy price forecast for economic evaluation of retrofit projects
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00136-4
– volume: 78
  start-page: 161
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0010
  article-title: Heat exchanger design targets for minimum area and cost
  publication-title: Trans. IChemE A Chem. Eng. Res. Des.
  doi: 10.1205/026387600527185
– volume: 47
  start-page: 4177
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0255
  article-title: Constructal flow structure for a PEM fuel cell
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.05.004
– volume: 8
  start-page: 209
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0290
  article-title: The constructal law and the evolution of design in nature
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2011.05.010
– volume: 49
  start-page: 2567
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0175
  article-title: Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.12.015
– volume: 51
  start-page: 859
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0165
  article-title: Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2009.11.022
– year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0235
– volume: 60
  start-page: 343
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0155
  article-title: Design of shell-and-tube heat exchangers using multiobjective optimization
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.12.047
– volume: 30
  start-page: 1937
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0150
  article-title: Multi-objective optimization of shell and tube heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.04.018
– volume: 100
  start-page: 041301
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0265
  article-title: Constructal theory of generation of configuration in nature and engineering
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2221896
– volume: 113
  start-page: 151301
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0305
  article-title: Constructal law of design and evolution: physics, biology, technology, and society
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4798429
– volume: 36
  start-page: 227
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0120
  article-title: The application of entransy dissipation theory in optimization design of heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.12.043
– year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0300
– volume: 44
  start-page: 813
  issue: 799–811
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0250
  article-title: Constructal-theory network of conducing paths for cooling a heat generation volume
  publication-title: Int. J. Heat Mass Transfer
– volume: 78
  start-page: 468
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0100
  article-title: Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.11.008
– volume: 29
  start-page: 2954
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0110
  article-title: Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.03.011
– volume: 31
  start-page: 867
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0130
  article-title: Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1272
– year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0325
– year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0230
– volume: 62
  start-page: 3720
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0030
  article-title: Differential evolution strategies for optimal design of shell-and-tube heat exchangers
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.03.039
– year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0340
– year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0285
– ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0225
– volume: 37
  start-page: 1147
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0160
  article-title: Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.03.043
– year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0275
– volume: 36
  start-page: 3685
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0020
  article-title: An automated approach for the optimal design of heat exchangers
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie970010h
– volume: 29
  start-page: 203
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2014.06.046_b0050
  article-title: Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.06.040
SSID ssj0017046
Score 2.3686492
Snippet A general optimization design method motivated by constructal theory is proposed for heat exchanger design in the present paper. The simplified version of this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1144
SubjectTerms Constructal optimization design
Construction
Design parameters
Genetic algorithm
Genetic algorithms
Heat exchangers
Mass transfer
Mixed discrete nonlinear programming problem
Optimization
Power consumption
Series-and-parallel arrangement
Shell-and-tube heat exchangers
Title Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.06.046
https://www.proquest.com/docview/1620084687
https://www.proquest.com/docview/1677978243
Volume 77
WOSCitedRecordID wos000340302400105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBZZu42-jP1k7X6gwR4GwcOxFEt6GqV0bGW0Y3SQPRlblqlD45Q5LumftP9yd5asuF1XGsZeTDCJIuW-nD6dv7sj5K3G9g1proMQL7wIdSDHJgpiIzMZ8Zhluk0U_iIOD-Vkor4OBr-6XJjzU1FVcrlUZ__V1HAPjI2ps2uY2w8KN-A1GB2uYHa43srwR-AEZi67EqlgjVLPIK3yYNFkBpnhYmiWLuG3HjZtsCDFVsoYnhrmraTD1xofzmwDNEtU9dwVnEWJepfV78nt5ehiryZF-50YoZ8BVceuFMCVV6rgHy5kfVB6kB2dWMVQFXy7aNzeiqqhsmk1gabsBytG3MvevAOGTVExp2R1Dtj1cbEeFM5nvLcbY7Wgaz29DTpM35dTXANOv5s96vV4W5SVX1Nk-8rm5yWJndptmvw5YoIjJigA5PEdshmJsQIHurn7eX9y4B9ZidBmhXUrvE_ercSEN8_yb5zoCjtoKc_xQ_LAnVXorsXYIzIw1WNyr9UM6_oJqfpIo_OCXkYaxbnQFdJoizSaUoc0apFGO6RRjzSaXdAe0qhF2lPy_eP-8d6nwLXvCDQP5SJgmnM4XMgwZWYs1IgVcHwVClhZlMW5yXXKo0xncZYXQNSk1CLSRjANJ3jDChGxZ2SjmlfmOaEK-BUcDAwcnxU4l1yZTAE3DQupI5GydJt86H7ARLva9thi5TS5rVm3ifIjnNk6L2t8dq-zWeJ4q-WjCYB1jVHedOZOwMXjc7u0MvOmTkYxipR4LMVN7xFCAdvnbOcfVvKCbK3-tS_JBtjZvCJ39fmirH--doj_DfxC6MA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+shell-and-tube+heat+exchangers+using+a+general+design+approach+motivated+by+constructal+theory&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yang%2C+Jie&rft.au=Oh%2C+Sun-Ryung&rft.au=Liu%2C+Wei&rft.date=2014-10-01&rft.issn=0017-9310&rft.volume=77&rft.spage=1144&rft.epage=1154&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2014.06.046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2014_06_046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon