Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review

Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 13; S. 5326 - 5350
Hauptverfasser: Amani, Meisam, Ghorbanian, Arsalan, Ahmadi, Seyed Ali, Kakooei, Mohammad, Moghimi, Armin, Mirmazloumi, S. Mohammad, Moghaddam, Sayyed Hamed Alizadeh, Mahdavi, Sahel, Ghahremanloo, Masoud, Parsian, Saeid, Wu, Qiusheng, Brisco, Brian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE), to effectively address the challenges of big data analysis. In particular, this platform facilitates processing big geo data over large areas and monitoring the environment for long periods of time. Although this platform was launched in 2010 and has proved its high potential for different applications, it has not been fully investigated and utilized for RS applications until recent years. Therefore, this study aims to comprehensively explore different aspects of the GEE platform, including its datasets, functions, advantages/limitations, and various applications. For this purpose, 450 journal articles published in 150 journals between January 2010 and May 2020 were studied. It was observed that Landsat and Sentinel datasets were extensively utilized by GEE users. Moreover, supervised machine learning algorithms, such as Random Forest, were more widely applied to image classification tasks. GEE has also been employed in a broad range of applications, such as Land Cover/land Use classification, hydrology, urban planning, natural disaster, climate analyses, and image processing. It was generally observed that the number of GEE publications have significantly increased during the past few years, and it is expected that GEE will be utilized by more users from different fields to resolve their big data processing challenges.
AbstractList Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE), to effectively address the challenges of big data analysis. In particular, this platform facilitates processing big geo data over large areas and monitoring the environment for long periods of time. Although this platform was launched in 2010 and has proved its high potential for different applications, it has not been fully investigated and utilized for RS applications until recent years. Therefore, this study aims to comprehensively explore different aspects of the GEE platform, including its datasets, functions, advantages/limitations, and various applications. For this purpose, 450 journal articles published in 150 journals between January 2010 and May 2020 were studied. It was observed that Landsat and Sentinel datasets were extensively utilized by GEE users. Moreover, supervised machine learning algorithms, such as Random Forest, were more widely applied to image classification tasks. GEE has also been employed in a broad range of applications, such as Land Cover/land Use classification, hydrology, urban planning, natural disaster, climate analyses, and image processing. It was generally observed that the number of GEE publications have significantly increased during the past few years, and it is expected that GEE will be utilized by more users from different fields to resolve their big data processing challenges.
Author Brisco, Brian
Amani, Meisam
Kakooei, Mohammad
Mirmazloumi, S. Mohammad
Wu, Qiusheng
Ahmadi, Seyed Ali
Moghimi, Armin
Ghorbanian, Arsalan
Mahdavi, Sahel
Parsian, Saeid
Ghahremanloo, Masoud
Moghaddam, Sayyed Hamed Alizadeh
Author_xml – sequence: 1
  givenname: Meisam
  orcidid: 0000-0002-9495-4010
  surname: Amani
  fullname: Amani, Meisam
  email: meisam.amani@woodplc.com
  organization: Wood Environment & Infrastructure Solutions, Ottawa, ON, Canada
– sequence: 2
  givenname: Arsalan
  orcidid: 0000-0001-8406-683X
  surname: Ghorbanian
  fullname: Ghorbanian, Arsalan
  email: a.ghorbanian@email.kntu.ac.ir
  organization: Faculty of Geodesy and Geomatics Engineering, Department of Remote Sensing and Photogrammetry, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Seyed Ali
  orcidid: 0000-0003-3920-2390
  surname: Ahmadi
  fullname: Ahmadi, Seyed Ali
  email: cpt.ahmadisnipiol@yahoo.com
  organization: Faculty of Geodesy and Geomatics Engineering, Department of Remote Sensing and Photogrammetry, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 4
  givenname: Mohammad
  orcidid: 0000-0002-2318-8216
  surname: Kakooei
  fullname: Kakooei, Mohammad
  email: kakooei.mohammad@stu.nit.ac.ir
  organization: Department of Electronic Engineering, Babol Noshirvani University of Technology, Babol, Iran
– sequence: 5
  givenname: Armin
  orcidid: 0000-0002-0455-4882
  surname: Moghimi
  fullname: Moghimi, Armin
  email: moghimi.armin@gmail.com
  organization: Faculty of Geodesy and Geomatics Engineering, Department of Remote Sensing and Photogrammetry, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 6
  givenname: S. Mohammad
  orcidid: 0000-0001-5310-5859
  surname: Mirmazloumi
  fullname: Mirmazloumi, S. Mohammad
  email: sm.mirmazloumi@cttc.es
  organization: Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain
– sequence: 7
  givenname: Sayyed Hamed Alizadeh
  orcidid: 0000-0003-2992-4277
  surname: Moghaddam
  fullname: Moghaddam, Sayyed Hamed Alizadeh
  email: h.alizadeh@email.kntu.ac.ir
  organization: Faculty of Geodesy and Geomatics Engineering, Department of Remote Sensing and Photogrammetry, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 8
  givenname: Sahel
  orcidid: 0000-0002-1670-151X
  surname: Mahdavi
  fullname: Mahdavi, Sahel
  email: sahel.mahdavi@woodplc.com
  organization: Wood Environment & Infrastructure Solutions, Ottawa, ON, Canada
– sequence: 9
  givenname: Masoud
  orcidid: 0000-0001-9971-3892
  surname: Ghahremanloo
  fullname: Ghahremanloo, Masoud
  email: mghahremanloo@uh.edu
  organization: Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
– sequence: 10
  givenname: Saeid
  surname: Parsian
  fullname: Parsian, Saeid
  email: saeid90parsian@gmail.com
  organization: Department of Surveying Engineering, Tafresh University, Tafresh, Iran
– sequence: 11
  givenname: Qiusheng
  orcidid: 0000-0001-5437-4073
  surname: Wu
  fullname: Wu, Qiusheng
  email: qwu18@utk.edu
  organization: Department of Geography, University of Tennessee, Knoxville, TN, USA
– sequence: 12
  givenname: Brian
  orcidid: 0000-0001-8439-362X
  surname: Brisco
  fullname: Brisco, Brian
  email: brian.brisco@canada.ca
  organization: Canada Center for Mapping and Earth Observation, Ottawa, ON, Canada
BookMark eNp9kU9v1DAQxa2qSN0WPkEvljhn679JzG1ZllJUCdQtZ8trT1Kvkjg43qJ-e7ybwoEDF1sev9_TzLxLdD6EARC6pmRJKVE3X7ePq4ftkhFGlpwwSiQ7QwtGJS2o5PIcLajiqqCCiAt0OU17QkpWKb5A_W0IbQd4Y2J6wpuh9QPgdRcODq9DPx6SH1r8vTOpCbHH-cAP0IcEeAvDdPz76Fv8ySSDV-PYeWuSD8P0Aa9OeISno-wZMvXs4ddb9KYx3QTvXu8r9OPz5nH9pbj_dnu3Xt0XVpA6FdyoUkpXUmmVA25qxw0YyPOoquSUGOmcZKphpQXFFOyolLusbmpb0YoDv0J3s68LZq_H6HsTX3QwXp8KIbY6z-ttB9oSZy0XTW1YLYQD1RjOm2ZnK2Z3-Z293s9eYww_DzAlvQ-HOOT2NRNClLRkimWVmlU2hmmK0Gjr02kZKRrfaUr0MSk9J6WPSenXpDLL_2H_dPx_6nqmPAD8JRStBaU1_w1FHKIs
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1038_s41598_024_68991_7
crossref_primary_10_1016_j_ijdrr_2024_104974
crossref_primary_10_1051_bioconf_20248907003
crossref_primary_10_3390_ijerph191912583
crossref_primary_10_1016_j_asr_2022_06_008
crossref_primary_10_1007_s12524_025_02180_5
crossref_primary_10_3390_w15061053
crossref_primary_10_1109_JSTARS_2020_3036802
crossref_primary_10_3390_land13091387
crossref_primary_10_1016_j_apr_2024_102226
crossref_primary_10_1080_10549811_2024_2448027
crossref_primary_10_3390_rs17111889
crossref_primary_10_1007_s12524_023_01683_3
crossref_primary_10_3390_geohazards6020024
crossref_primary_10_3390_ijgi13070239
crossref_primary_10_1007_s12518_023_00545_4
crossref_primary_10_1016_j_cjmeam_2022_100044
crossref_primary_10_1016_j_mex_2025_103516
crossref_primary_10_1007_s11707_024_1125_y
crossref_primary_10_1016_j_agwat_2024_109056
crossref_primary_10_1016_j_asr_2025_05_055
crossref_primary_10_1029_2022WR034094
crossref_primary_10_3390_ijerph192013555
crossref_primary_10_1007_s11869_025_01808_2
crossref_primary_10_1016_j_habitatint_2024_103095
crossref_primary_10_3390_hydrology12040080
crossref_primary_10_3390_rs15194785
crossref_primary_10_1111_cobi_14344
crossref_primary_10_1016_j_tfp_2024_100729
crossref_primary_10_3390_cli12120197
crossref_primary_10_3390_rs14153683
crossref_primary_10_1016_j_ecolind_2022_109813
crossref_primary_10_1016_j_isprsjprs_2022_01_014
crossref_primary_10_1080_02626667_2024_2351067
crossref_primary_10_1080_15481603_2024_2302221
crossref_primary_10_1007_s11869_023_01488_w
crossref_primary_10_1109_TGRS_2022_3227565
crossref_primary_10_3390_rs15194657
crossref_primary_10_3390_rs13122299
crossref_primary_10_3390_rs15102534
crossref_primary_10_1371_journal_pwat_0000269
crossref_primary_10_3390_app122312147
crossref_primary_10_1007_s12145_023_00968_y
crossref_primary_10_3390_rs12213561
crossref_primary_10_3390_rs15102539
crossref_primary_10_1007_s41748_025_00713_z
crossref_primary_10_3897_BDJ_12_e122325
crossref_primary_10_1038_s41597_023_02318_5
crossref_primary_10_1080_10106049_2022_2047230
crossref_primary_10_1080_19475705_2024_2377672
crossref_primary_10_1016_j_heliyon_2025_e43454
crossref_primary_10_7717_peerj_17872
crossref_primary_10_1109_JSTARS_2023_3294107
crossref_primary_10_3390_rs13204025
crossref_primary_10_1109_JSTARS_2021_3114116
crossref_primary_10_1002_ldr_4249
crossref_primary_10_3390_rs16152773
crossref_primary_10_1080_15481603_2023_2243671
crossref_primary_10_1016_j_watres_2025_123176
crossref_primary_10_1080_20964471_2025_2454044
crossref_primary_10_3390_rs14153783
crossref_primary_10_1002_ieam_4833
crossref_primary_10_1016_j_ecolind_2023_110168
crossref_primary_10_3390_data10010008
crossref_primary_10_1080_19475705_2023_2279496
crossref_primary_10_1038_s41559_024_02372_1
crossref_primary_10_1109_TGRS_2024_3406897
crossref_primary_10_1016_j_envsoft_2025_106405
crossref_primary_10_1155_2022_5162864
crossref_primary_10_3390_land11081187
crossref_primary_10_3390_rs14164023
crossref_primary_10_1007_s10661_024_13294_7
crossref_primary_10_1051_e3sconf_202459003010
crossref_primary_10_1007_s13580_025_00689_9
crossref_primary_10_1016_j_envint_2024_108818
crossref_primary_10_1016_j_jhydrol_2025_134255
crossref_primary_10_3390_rs15133257
crossref_primary_10_1029_2021EF002289
crossref_primary_10_31413_nat_v12i4_18169
crossref_primary_10_3390_pollutants3020019
crossref_primary_10_1007_s10489_024_06003_x
crossref_primary_10_3390_rs14092055
crossref_primary_10_3390_su16135700
crossref_primary_10_1016_j_jenvman_2024_121851
crossref_primary_10_1007_s11042_024_20199_7
crossref_primary_10_1007_s12524_024_01889_z
crossref_primary_10_26833_ijeg_1650786
crossref_primary_10_3390_rs14195052
crossref_primary_10_3390_rs15123131
crossref_primary_10_3390_s22103931
crossref_primary_10_3390_s23084101
crossref_primary_10_3390_rs14122758
crossref_primary_10_3390_rs16214088
crossref_primary_10_1007_s10661_025_14332_8
crossref_primary_10_1080_10106049_2022_2102222
crossref_primary_10_15446_esrj_v27n4_110128
crossref_primary_10_3390_rs13204169
crossref_primary_10_3390_rs16244731
crossref_primary_10_1080_10106049_2024_2392848
crossref_primary_10_3390_su17010051
crossref_primary_10_1016_j_rsase_2023_101112
crossref_primary_10_3390_rs15204980
crossref_primary_10_1016_j_gespch_2025_100006
crossref_primary_10_1007_s40333_022_0075_z
crossref_primary_10_1016_j_ecolind_2025_113935
crossref_primary_10_3390_rs13020220
crossref_primary_10_1016_j_cosrev_2023_100571
crossref_primary_10_3389_fmars_2023_1207524
crossref_primary_10_1016_j_compag_2025_110613
crossref_primary_10_3390_rs15235593
crossref_primary_10_1016_j_ecolind_2023_111193
crossref_primary_10_1038_s41467_025_63437_8
crossref_primary_10_1007_s11053_025_10526_6
crossref_primary_10_1109_JSTARS_2023_3302031
crossref_primary_10_3390_rs14092038
crossref_primary_10_3390_rs14225647
crossref_primary_10_1109_TGRS_2025_3559145
crossref_primary_10_3390_app13064007
crossref_primary_10_3390_rs15041017
crossref_primary_10_3390_f15122192
crossref_primary_10_1007_s41870_023_01200_2
crossref_primary_10_1016_j_seta_2025_104528
crossref_primary_10_1029_2023WR034967
crossref_primary_10_3390_app13053117
crossref_primary_10_1002_gdj3_144
crossref_primary_10_47134_ijsl_v5i1_326
crossref_primary_10_1016_j_ecoinf_2022_101851
crossref_primary_10_1016_j_tfp_2024_100654
crossref_primary_10_1016_j_compag_2023_108065
crossref_primary_10_1080_01431161_2025_2496529
crossref_primary_10_1038_s41598_025_04765_z
crossref_primary_10_1016_j_heliyon_2024_e34466
crossref_primary_10_1134_S0001433821120045
crossref_primary_10_1038_s41597_024_03587_4
crossref_primary_10_3390_rs15204960
crossref_primary_10_3390_rs16152695
crossref_primary_10_1016_j_jer_2024_08_006
crossref_primary_10_1007_s12665_024_12045_8
crossref_primary_10_1016_j_envsoft_2024_106022
crossref_primary_10_1016_j_eswa_2021_115955
crossref_primary_10_1080_01431161_2023_2216849
crossref_primary_10_1007_s44163_024_00198_1
crossref_primary_10_3389_fenvs_2022_867434
crossref_primary_10_3390_agriculture13020388
crossref_primary_10_1016_j_foreco_2024_121729
crossref_primary_10_3389_frsen_2025_1625373
crossref_primary_10_1007_s10462_024_10938_5
crossref_primary_10_1016_j_landusepol_2024_107246
crossref_primary_10_1109_JSTARS_2023_3328309
crossref_primary_10_1007_s41748_025_00625_y
crossref_primary_10_1080_10106049_2022_2060330
crossref_primary_10_1051_e3sconf_202459109011
crossref_primary_10_3390_rs14205279
crossref_primary_10_3390_rs13183778
crossref_primary_10_1016_j_isprsjprs_2024_11_005
crossref_primary_10_3390_hydrology12030064
crossref_primary_10_3390_plants12223913
crossref_primary_10_1109_TGRS_2024_3466909
crossref_primary_10_3390_app122211508
crossref_primary_10_3390_su16103992
crossref_primary_10_1109_JSTARS_2021_3051422
crossref_primary_10_3390_ijerph20042844
crossref_primary_10_1016_j_ijdrr_2023_104056
crossref_primary_10_1007_s44378_025_00078_9
crossref_primary_10_3390_rs15215151
crossref_primary_10_3390_rs16071184
crossref_primary_10_3390_rs16132420
crossref_primary_10_3390_rs14246376
crossref_primary_10_1016_j_jag_2024_104293
crossref_primary_10_1016_j_jhydrol_2024_131771
crossref_primary_10_3390_rs15051368
crossref_primary_10_1007_s10661_022_09878_w
crossref_primary_10_1016_j_scitotenv_2023_164474
crossref_primary_10_1080_17538947_2025_2558920
crossref_primary_10_1007_s11676_024_01700_2
crossref_primary_10_1007_s12524_024_01946_7
crossref_primary_10_1371_journal_pone_0312585
crossref_primary_10_1080_17538947_2024_2398063
crossref_primary_10_1186_s40537_023_00770_z
crossref_primary_10_3390_rs14143253
crossref_primary_10_1016_j_ecolind_2025_113858
crossref_primary_10_1007_s12145_022_00918_0
crossref_primary_10_1080_19479832_2025_2473715
crossref_primary_10_1002_arp_1929
crossref_primary_10_1016_j_still_2022_105325
crossref_primary_10_1371_journal_pone_0311384
crossref_primary_10_3390_heritage6120402
crossref_primary_10_3390_rs14194822
crossref_primary_10_3390_rs15030675
crossref_primary_10_1080_10095020_2022_2162980
crossref_primary_10_3390_rs13061098
crossref_primary_10_1016_j_srs_2025_100244
crossref_primary_10_1007_s12145_023_01035_2
crossref_primary_10_2478_amns_2024_3323
crossref_primary_10_1109_JSTARS_2020_3029434
crossref_primary_10_3390_rs15215160
crossref_primary_10_3390_rs15112835
crossref_primary_10_1016_j_scs_2024_105655
crossref_primary_10_1007_s00704_024_05340_8
crossref_primary_10_1007_s12145_024_01413_4
crossref_primary_10_3390_rs17061008
crossref_primary_10_1007_s10980_022_01549_y
crossref_primary_10_1016_j_ecoinf_2024_102591
crossref_primary_10_1016_j_jag_2021_102490
crossref_primary_10_1038_s41597_022_01474_4
crossref_primary_10_7717_peerj_18441
crossref_primary_10_1088_1755_1315_893_1_012057
crossref_primary_10_1016_j_cities_2024_105022
crossref_primary_10_3390_rs14164097
crossref_primary_10_3390_rs13214469
crossref_primary_10_1016_j_catena_2024_108123
crossref_primary_10_1002_itl2_574
crossref_primary_10_3390_rs13061084
crossref_primary_10_1109_MGRS_2021_3097280
crossref_primary_10_1016_j_rsase_2022_100907
crossref_primary_10_3390_f14071418
crossref_primary_10_1080_01431161_2024_2413026
crossref_primary_10_1051_bioconf_202515602010
crossref_primary_10_5194_essd_13_4799_2021
crossref_primary_10_1007_s42979_024_03500_1
crossref_primary_10_1109_TGRS_2025_3605164
crossref_primary_10_3390_rs16111997
crossref_primary_10_1016_j_isprsjprs_2024_06_007
crossref_primary_10_1016_j_envsoft_2021_105273
crossref_primary_10_1109_ACCESS_2024_3468384
crossref_primary_10_3390_s24051651
crossref_primary_10_1109_ACCESS_2023_3293828
crossref_primary_10_1016_j_scitotenv_2022_156126
crossref_primary_10_3390_rs15030690
crossref_primary_10_1016_j_foreco_2025_123040
crossref_primary_10_3390_rs14112628
crossref_primary_10_1109_ACCESS_2024_3519612
crossref_primary_10_1080_2150704X_2022_2027543
crossref_primary_10_3390_w17172573
crossref_primary_10_1111_geb_13635
crossref_primary_10_3390_rs16101675
crossref_primary_10_3390_su17146652
crossref_primary_10_3390_rs16101670
crossref_primary_10_1007_s12517_024_11857_z
crossref_primary_10_1016_j_jenvman_2025_124329
crossref_primary_10_1007_s00500_023_08715_7
crossref_primary_10_1088_1755_1315_1240_1_012017
crossref_primary_10_7780_kjrs_2025_41_3_3
crossref_primary_10_1155_2021_1140611
crossref_primary_10_61186_jgst_14_3_69
crossref_primary_10_1080_10095020_2025_2542534
crossref_primary_10_3390_rs15112761
crossref_primary_10_1016_j_rsase_2025_101472
crossref_primary_10_3390_su17167513
crossref_primary_10_1007_s00477_024_02660_z
crossref_primary_10_1016_j_still_2023_105912
crossref_primary_10_1016_j_heliyon_2023_e17903
crossref_primary_10_1016_j_geosus_2024_09_008
crossref_primary_10_3390_w17162416
crossref_primary_10_3846_gac_2023_16805
crossref_primary_10_3390_rs14051113
crossref_primary_10_3390_rs16224161
crossref_primary_10_1080_17538947_2024_2448216
crossref_primary_10_1016_j_geomat_2024_100008
crossref_primary_10_1016_j_ecolind_2024_113035
crossref_primary_10_15406_ijh_2022_06_00327
crossref_primary_10_3390_app142412000
crossref_primary_10_1080_01431161_2023_2234091
crossref_primary_10_3390_pollutants2020012
crossref_primary_10_3390_rs15051307
crossref_primary_10_3390_rs15215122
crossref_primary_10_1111_exsy_70126
crossref_primary_10_1016_j_ophoto_2023_100050
crossref_primary_10_1515_geo_2025_0769
crossref_primary_10_3390_f13091489
crossref_primary_10_3390_rs14194906
crossref_primary_10_3390_f13050814
crossref_primary_10_1080_17538947_2025_2498602
crossref_primary_10_1080_10095020_2022_2066574
crossref_primary_10_3390_rs17101763
crossref_primary_10_1109_JSTARS_2025_3528429
crossref_primary_10_1007_s12145_022_00885_6
crossref_primary_10_1016_j_resconrec_2024_107751
crossref_primary_10_1016_j_cageo_2022_105034
crossref_primary_10_3390_f14081669
crossref_primary_10_3390_geohazards5030039
crossref_primary_10_1016_j_agrformet_2023_109795
crossref_primary_10_3390_agronomy12071518
crossref_primary_10_1109_JSTARS_2024_3454453
crossref_primary_10_3390_rs13193842
crossref_primary_10_1016_j_ejrh_2024_102082
crossref_primary_10_3390_land12051063
crossref_primary_10_3390_rs14112654
crossref_primary_10_3390_rs13030422
crossref_primary_10_2166_hydro_2023_137
crossref_primary_10_3390_atmos16010054
crossref_primary_10_3390_land11112039
crossref_primary_10_1080_10106049_2025_2451174
crossref_primary_10_3390_su16156556
crossref_primary_10_1080_17538947_2024_2365386
crossref_primary_10_3390_rs15143495
crossref_primary_10_3390_w14213401
crossref_primary_10_1007_s11629_024_8673_1
crossref_primary_10_3390_geomatics3010012
crossref_primary_10_1109_JSTARS_2025_3585990
crossref_primary_10_1109_JSTARS_2024_3411994
crossref_primary_10_1016_j_rsase_2025_101584
crossref_primary_10_1007_s13157_022_01651_6
crossref_primary_10_1016_j_rsase_2025_101581
crossref_primary_10_3390_w14152324
crossref_primary_10_3390_su14052557
crossref_primary_10_3390_rs17071139
crossref_primary_10_3390_su16188118
crossref_primary_10_1080_10106049_2025_2451162
crossref_primary_10_1016_j_scs_2023_104458
crossref_primary_10_3390_su162411130
crossref_primary_10_1016_j_pce_2025_103893
crossref_primary_10_3390_agriengineering6020098
crossref_primary_10_1016_j_envdev_2024_100991
crossref_primary_10_3390_rs13132428
crossref_primary_10_1002_ldr_4824
crossref_primary_10_1080_23311932_2024_2448597
crossref_primary_10_3390_photonics12030278
crossref_primary_10_1016_j_jaridenv_2024_105153
crossref_primary_10_3390_rs14133041
crossref_primary_10_3390_rs16122210
crossref_primary_10_3390_su142214868
crossref_primary_10_1080_01431161_2021_1995075
crossref_primary_10_3390_rs15143504
crossref_primary_10_1016_j_ecoinf_2023_102129
crossref_primary_10_3390_hydrology9080135
crossref_primary_10_1109_JSTARS_2021_3120009
crossref_primary_10_3390_rs16132389
crossref_primary_10_7780_kjrs_2024_40_5_1_3
crossref_primary_10_1109_JSTARS_2021_3129183
crossref_primary_10_1038_s41598_025_07443_2
crossref_primary_10_3390_w15152743
crossref_primary_10_3390_atmos15030318
crossref_primary_10_1016_j_rsase_2025_101674
crossref_primary_10_1080_15715124_2025_2509184
crossref_primary_10_61164_7dt9d641
crossref_primary_10_1088_1755_1315_1266_1_012001
crossref_primary_10_1016_j_clet_2025_101025
crossref_primary_10_1111_1752_1688_13160
crossref_primary_10_1016_j_jag_2023_103637
crossref_primary_10_3390_agriculture12091435
crossref_primary_10_1080_17538947_2024_2330684
crossref_primary_10_3390_rs16030583
crossref_primary_10_1007_s10457_023_00850_2
crossref_primary_10_1016_j_jhydrol_2025_132855
crossref_primary_10_3390_su14052738
crossref_primary_10_3390_electronics11010137
crossref_primary_10_1109_JSTARS_2023_3290677
crossref_primary_10_1109_JSTARS_2021_3110460
crossref_primary_10_3390_su15032535
crossref_primary_10_1080_22797254_2021_1948356
crossref_primary_10_1002_esp_5651
crossref_primary_10_1109_TGRS_2025_3568930
crossref_primary_10_1017_jog_2023_18
crossref_primary_10_3390_rs13224544
crossref_primary_10_1007_s42979_025_04061_7
crossref_primary_10_1016_j_jhydrol_2024_132203
crossref_primary_10_1007_s11629_025_9645_9
crossref_primary_10_1016_j_jag_2023_103540
crossref_primary_10_3390_rs12223801
crossref_primary_10_1016_j_ecolind_2023_109868
crossref_primary_10_1016_j_tfp_2025_100898
crossref_primary_10_1038_s41467_025_63156_0
crossref_primary_10_1016_j_rse_2024_114572
crossref_primary_10_1109_JPROC_2021_3094335
crossref_primary_10_1117_1_JRS_18_014513
crossref_primary_10_1007_s41748_025_00796_8
crossref_primary_10_3390_f16050825
crossref_primary_10_1016_j_eswa_2025_128248
crossref_primary_10_3390_rs17081381
crossref_primary_10_1016_j_still_2024_106270
crossref_primary_10_1109_JSTARS_2023_3288218
crossref_primary_10_3390_ijgi13040117
crossref_primary_10_3389_fvets_2023_1069979
crossref_primary_10_3390_rs13224550
crossref_primary_10_1016_j_ecoinf_2023_102111
crossref_primary_10_1016_j_jhydrol_2024_132452
crossref_primary_10_1016_j_jenvman_2022_116568
crossref_primary_10_1007_s41324_021_00401_w
crossref_primary_10_1016_j_rse_2024_114107
crossref_primary_10_1007_s11356_022_23344_7
crossref_primary_10_3390_rs14010230
crossref_primary_10_3390_rs14102345
crossref_primary_10_1088_1755_1315_1254_1_012112
crossref_primary_10_3390_land11101692
crossref_primary_10_3390_app131910692
crossref_primary_10_1016_j_ejrh_2025_102583
crossref_primary_10_1016_j_techsoc_2023_102427
crossref_primary_10_1080_10095020_2025_2537352
crossref_primary_10_3390_f15030399
crossref_primary_10_1016_j_hal_2022_102189
crossref_primary_10_3390_ijgi11080456
crossref_primary_10_3390_conservation3030030
crossref_primary_10_3390_rs17142505
crossref_primary_10_1016_j_eiar_2023_107396
crossref_primary_10_3390_agriengineering3010008
crossref_primary_10_1016_j_earscirev_2022_104230
crossref_primary_10_1007_s11869_022_01179_y
crossref_primary_10_3390_rs15143675
crossref_primary_10_3390_plants14030373
crossref_primary_10_1016_j_ecoinf_2024_102502
crossref_primary_10_5194_bg_21_2717_2024
crossref_primary_10_1016_j_ecoinf_2024_102987
crossref_primary_10_1109_JSTARS_2022_3204544
crossref_primary_10_3390_rs16162960
crossref_primary_10_1109_JSTARS_2023_3267118
crossref_primary_10_1080_10095020_2023_2167615
crossref_primary_10_1016_j_ufug_2023_128095
crossref_primary_10_3390_agronomy14010075
crossref_primary_10_3390_rs15164112
crossref_primary_10_1016_j_ecoinf_2023_102333
crossref_primary_10_3390_land13071072
crossref_primary_10_1016_j_jhydrol_2025_132771
crossref_primary_10_3390_rs15092261
crossref_primary_10_1016_j_ecolind_2023_110668
crossref_primary_10_1007_s10661_025_13863_4
crossref_primary_10_3390_rs16020341
crossref_primary_10_1016_j_catena_2021_105842
crossref_primary_10_1109_JSTARS_2023_3312508
crossref_primary_10_1109_JSTARS_2023_3310363
crossref_primary_10_1016_j_rse_2022_112958
crossref_primary_10_3390_rs14215521
crossref_primary_10_14358_PERS_24_00013R2
crossref_primary_10_3390_rs13132565
crossref_primary_10_3390_rs15174140
crossref_primary_10_1016_j_geomat_2025_100052
crossref_primary_10_1109_TGRS_2024_3392605
crossref_primary_10_1109_TGRS_2023_3318227
crossref_primary_10_1016_j_uclim_2023_101736
crossref_primary_10_3390_f14040752
crossref_primary_10_3390_rs12193232
crossref_primary_10_3390_rs17081460
crossref_primary_10_1038_s41597_024_04237_5
crossref_primary_10_3390_rs16122167
crossref_primary_10_3390_rs17081443
crossref_primary_10_3390_su152115444
crossref_primary_10_1016_j_asr_2023_07_064
crossref_primary_10_1186_s13677_024_00654_4
crossref_primary_10_1109_JSTARS_2024_3463432
crossref_primary_10_3390_rs14102475
crossref_primary_10_1016_j_asr_2021_08_041
crossref_primary_10_1016_j_jenvman_2025_124996
crossref_primary_10_1016_j_ejrh_2025_102552
crossref_primary_10_3390_rs13224594
crossref_primary_10_1016_j_scs_2022_104060
crossref_primary_10_1186_s42269_023_01127_5
crossref_primary_10_1007_s11082_023_06138_0
crossref_primary_10_1016_j_ecoinf_2023_102433
crossref_primary_10_1016_j_ecoinf_2024_102608
crossref_primary_10_1007_s41064_024_00277_z
crossref_primary_10_1109_JSTARS_2021_3110763
crossref_primary_10_3390_rs14051065
crossref_primary_10_1088_1755_1315_1531_1_012016
crossref_primary_10_1016_j_catena_2021_105500
crossref_primary_10_1080_10095020_2022_2094288
crossref_primary_10_1007_s10661_023_12001_2
crossref_primary_10_1016_j_scitotenv_2023_161757
crossref_primary_10_3390_rs17091551
crossref_primary_10_1109_MGRS_2022_3204590
crossref_primary_10_1007_s10661_024_13313_7
crossref_primary_10_3390_rs17122031
crossref_primary_10_3390_rs13091743
crossref_primary_10_3390_rs13050876
crossref_primary_10_3390_app13116359
crossref_primary_10_1007_s13762_025_06462_w
crossref_primary_10_3390_app122311922
crossref_primary_10_1016_j_rsase_2023_100987
crossref_primary_10_1080_01431161_2025_2457128
crossref_primary_10_1016_j_compeleceng_2022_108536
crossref_primary_10_3390_w14020244
crossref_primary_10_1080_10549811_2025_2516072
crossref_primary_10_3390_rs16234454
crossref_primary_10_5194_essd_14_79_2022
crossref_primary_10_3390_rs15235551
crossref_primary_10_1007_s11356_023_26878_6
crossref_primary_10_1080_10095020_2024_2307931
crossref_primary_10_1109_TGRS_2025_3596333
crossref_primary_10_3390_app13127237
crossref_primary_10_3390_environments10100170
crossref_primary_10_3390_su141710645
crossref_primary_10_3390_w13243627
crossref_primary_10_1109_TGRS_2024_3489224
crossref_primary_10_3390_rs13071326
crossref_primary_10_3390_f14030652
crossref_primary_10_3390_f15112005
crossref_primary_10_3390_rs15071783
crossref_primary_10_3390_land13010080
crossref_primary_10_1016_j_ecoinf_2025_103089
crossref_primary_10_1007_s10661_024_13369_5
crossref_primary_10_1080_10106049_2021_1917005
crossref_primary_10_3390_rs16183429
crossref_primary_10_1088_2631_8695_ad5c2c
crossref_primary_10_1109_JSTARS_2021_3116258
crossref_primary_10_3390_rs13234756
crossref_primary_10_1016_j_catena_2022_106023
crossref_primary_10_35414_akufemubid_1579340
crossref_primary_10_1007_s12517_024_11948_x
crossref_primary_10_1109_TVT_2021_3128925
crossref_primary_10_1016_j_asr_2024_09_039
crossref_primary_10_3390_rs16060973
crossref_primary_10_1007_s11356_022_20771_4
crossref_primary_10_1109_JSTARS_2024_3473937
crossref_primary_10_1016_j_marenvres_2022_105701
crossref_primary_10_3390_rs15010102
crossref_primary_10_3390_urbansci8030147
crossref_primary_10_1016_j_envsoft_2024_106227
crossref_primary_10_1007_s43621_025_01709_5
crossref_primary_10_3390_rs13234745
crossref_primary_10_3390_rs15061604
crossref_primary_10_1016_j_catena_2024_107821
crossref_primary_10_1007_s12145_025_01892_z
crossref_primary_10_1002_ldr_70134
crossref_primary_10_1080_24749508_2025_2524207
crossref_primary_10_1016_j_rse_2023_113947
crossref_primary_10_1007_s12524_022_01633_5
crossref_primary_10_3390_land13111837
crossref_primary_10_3390_rs14153778
crossref_primary_10_3390_rs15010178
crossref_primary_10_3390_w16030436
crossref_primary_10_1109_TGRS_2024_3466389
crossref_primary_10_3390_w15122212
crossref_primary_10_1016_j_scitotenv_2023_162774
crossref_primary_10_1007_s00607_025_01536_6
crossref_primary_10_1109_TGRS_2021_3063151
crossref_primary_10_1007_s10661_024_13315_5
crossref_primary_10_1016_j_ecolind_2025_114078
crossref_primary_10_3390_rs16183371
crossref_primary_10_3390_rs16213953
crossref_primary_10_1109_JSTARS_2024_3428627
crossref_primary_10_1016_j_asr_2025_03_002
crossref_primary_10_1016_j_scitotenv_2021_152315
crossref_primary_10_1117_1_JRS_17_036509
crossref_primary_10_1016_j_scitotenv_2021_150139
crossref_primary_10_1186_s13021_024_00281_1
crossref_primary_10_1007_s41324_022_00430_z
crossref_primary_10_1016_j_heliyon_2023_e19654
crossref_primary_10_1016_j_ecoinf_2025_103133
crossref_primary_10_1016_j_isprsjprs_2024_02_003
crossref_primary_10_1080_22797254_2023_2259244
crossref_primary_10_3390_rs15010041
crossref_primary_10_1109_JSTARS_2023_3247455
crossref_primary_10_1080_17538947_2024_2409351
crossref_primary_10_3390_fire6110411
crossref_primary_10_1109_JSTARS_2025_3568771
crossref_primary_10_3390_land14081578
crossref_primary_10_3390_rs17050912
crossref_primary_10_3390_f13101549
crossref_primary_10_3390_land12040849
crossref_primary_10_1016_j_gloplacha_2025_104873
crossref_primary_10_3390_app13010390
crossref_primary_10_1117_1_JRS_17_014506
crossref_primary_10_1007_s13762_025_06724_7
crossref_primary_10_1016_j_ancene_2022_100346
crossref_primary_10_3390_rs14102291
crossref_primary_10_3390_ijerph19106095
crossref_primary_10_1016_j_jhydrol_2022_128465
crossref_primary_10_1002_rse2_366
crossref_primary_10_1002_ece3_10388
crossref_primary_10_3390_rs15153841
crossref_primary_10_1016_j_jag_2024_103749
crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_3390_jimaging8120316
crossref_primary_10_3390_rs14235978
crossref_primary_10_1007_s40808_025_02456_2
crossref_primary_10_1007_s11869_025_01771_y
crossref_primary_10_3390_rs15041096
crossref_primary_10_1007_s00477_023_02648_1
crossref_primary_10_1007_s10708_025_11481_8
crossref_primary_10_1007_s00477_022_02362_4
crossref_primary_10_3390_rs16244791
crossref_primary_10_1016_j_aeolia_2024_100928
crossref_primary_10_1016_j_apgeog_2022_102868
crossref_primary_10_3390_ijgi13080276
crossref_primary_10_1016_j_jag_2024_103996
crossref_primary_10_3390_rs15153732
crossref_primary_10_1007_s10489_024_05469_z
crossref_primary_10_1016_j_ecoinf_2025_103152
crossref_primary_10_1016_j_envsoft_2025_106600
crossref_primary_10_1007_s12524_023_01764_3
crossref_primary_10_1007_s40808_025_02444_6
crossref_primary_10_1109_ACCESS_2024_3420757
crossref_primary_10_1016_j_jhydrol_2023_129869
crossref_primary_10_2166_wst_2024_215
crossref_primary_10_1109_JSTARS_2023_3335907
Cites_doi 10.3390/rs9121208
10.1016/j.rse.2018.11.030
10.3390/rs11070831
10.1109/CVPR.2017.520
10.3390/rs9070669
10.3390/rs11050489
10.1029/2018GL080158
10.1016/j.scitotenv.2019.135894
10.1016/j.jenvman.2019.109320
10.1016/j.scitotenv.2019.06.341
10.5623/cig2017-401
10.5194/isprs-annals-IV-4-W2-61-2017
10.1007/s12517-017-3072-3
10.1080/15481603.2017.1419602
10.3390/rs10081167
10.1016/S1674-5264(09)60175-7
10.1016/j.compag.2016.08.008
10.3390/rs10060859
10.3390/rs9070735
10.1007/s41064-019-00074-z
10.1016/j.rse.2018.05.012
10.1016/j.rse.2018.11.012
10.1371/journal.pone.0211510
10.3390/rs12010002
10.5194/isprs-archives-XLII-3-W8-497-2019
10.1016/j.isprsjprs.2020.07.013
10.1080/22797254.2018.1455540
10.1109/Agro-Geoinformatics.2015.7248087
10.1016/j.cageo.2017.07.005
10.1175/BAMS-D-15-00324.1
10.1127/1432-8364/2011/0080
10.3390/s19092118
10.1016/j.jasrep.2017.08.013
10.3390/rs11070842
10.1016/j.ecolind.2019.105763
10.5721/EuJRS20164915
10.1080/03610927408827101
10.1007/s10661-019-7355-x
10.3390/rs11050591
10.3390/rs11232881
10.1109/TNN.2005.845141
10.3390/rs11131581
10.1080/01431161.2017.1420933
10.3390/rs11010043
10.1016/j.uclim.2018.05.004
10.1007/s12145-020-00449-6
10.1002/eap.1848
10.3390/rs11151808
10.1016/j.agsy.2018.07.002
10.1109/JSTARS.2019.2901404
10.1016/j.isprsjprs.2020.01.001
10.1007/s11869-020-00796-9
10.5194/isprs-archives-XLII-3-W6-573-2019
10.1111/2041-210X.13194
10.1002/eap.1557
10.1016/j.scitotenv.2019.06.514
10.1016/S2095-3119(15)61149-2
10.1109/JSTARS.2017.2705718
10.1016/j.isprsjprs.2019.06.014
10.1016/j.rse.2014.01.011
10.1016/0004-3702(89)90046-5
10.1016/j.crte.2018.11.005
10.1016/j.isprsjprs.2020.04.001
10.3390/rs10101569
10.1016/j.scitotenv.2019.134608
10.1016/j.jag.2018.09.011
10.1016/j.rse.2019.04.016
10.1007/s10980-018-0704-2
10.3390/hydrology6020053
10.3390/rs11070820
10.1007/s00445-017-1172-2
10.1371/journal.pone.0197758
10.3390/rs10091455
10.1080/01431161.2019.1601286
10.1002/ecs2.2430
10.1016/j.rse.2019.04.015
10.3390/rs11243023
10.1016/j.coastaleng.2019.04.004
10.1016/j.envsoft.2018.11.004
10.1016/j.landurbplan.2015.11.011
10.3390/f8050166
10.5194/bg-11-2027-2014
10.1080/01431161.2019.1633702
10.1016/j.scib.2019.03.002
10.1016/j.rse.2019.111374
10.1109/IGARSS.2018.8519098
10.3390/rs12040602
10.1016/j.rse.2019.111317
10.1117/1.JRS.11.015005
10.1109/TGRS.2013.2272545
10.5194/soil-4-83-2018
10.2112/SI85-290.1
10.1016/j.isprsjprs.2019.11.021
10.1080/10106049.2017.1408700
10.3390/rs10111823
10.3390/rs11242977
10.1109/LGRS.2018.2865816
10.1016/j.rse.2017.06.031
10.1080/01431161.2019.1610983
10.1080/01431161.2018.1508924
10.1093/wber/lhx029
10.1016/j.cities.2019.01.009
10.3390/rs10071079
10.1016/j.rse.2019.111285
10.1016/j.rse.2010.07.008
10.1038/s41467-018-05991-y
10.1016/j.rse.2020.111672
10.1016/j.isprsjprs.2020.02.011
10.1016/j.jas.2019.105013
10.1007/s12665-018-7516-1
10.5194/isprs-archives-XLII-3-W8-491-2019
10.3390/rs11141666
10.1002/esp.4317
10.1016/j.rse.2015.04.021
10.1016/j.isprsjprs.2020.01.010
10.1126/science.1244693
10.1007/s12571-016-0627-1
10.1007/s12665-019-8751-9
10.1007/s11356-019-04708-y
10.1016/j.uclim.2018.11.001
10.1016/j.scitotenv.2018.10.359
10.1080/15481603.2015.1055540
10.3390/su11195517
10.5194/isprs-archives-XLII-3-W10-5-2020
10.1007/s11629-017-4518-5
10.3390/environments4020032
10.3390/rs9121315
10.1109/JSTARS.2019.2904035
10.1016/j.rse.2018.12.026
10.1002/2017GL074071
10.1016/j.rse.2017.05.026
10.1201/9780203739273-1
10.5194/isprs-archives-XLII-3-289-2018
10.1080/15481603.2019.1695407
10.3390/f10090729
10.1016/j.cageo.2019.104366
10.3390/rs11151755
10.3390/rs11242905
10.1371/journal.pone.0184926
10.1016/j.serj.2016.10.001
10.3390/rs11101155
10.1016/j.rse.2009.08.017
10.1016/j.cageo.2015.06.023
10.1016/j.rse.2019.111301
10.3390/rs11232785
10.1016/j.rse.2020.111665
10.3390/rs11161899
10.1117/1.JRS.12.026003
10.1016/j.rse.2018.02.060
10.1038/nature20584
10.3390/rs8080634
10.1080/20964471.2019.1690404
10.1016/j.rse.2019.111260
10.1080/2150704X.2019.1633487
10.3390/rs11141736
10.1016/j.gecco.2017.e00366
10.1080/2150704X.2018.1500723
10.1016/j.isprsjprs.2018.07.017
10.3390/rs10071057
10.1111/gcb.14919
10.3390/rs10091488
10.3390/rs11172044
10.1111/2041-210X.13043
10.3390/w11040780
10.3390/s19143209
10.3390/rs10101509
10.1007/s10661-017-6415-3
10.1016/j.rse.2019.111210
10.1016/j.future.2014.10.029
10.1016/j.ijdrr.2019.101292
10.1016/j.rse.2019.111412
10.1016/j.rse.2018.11.011
10.1109/JPROC.2016.2598228
10.3390/rs11192191
10.1080/17538947.2018.1494761
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2020.3021052
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 5350
ExternalDocumentID oai_doaj_org_article_c0dcc34f8a2844de9fa33ffbc72cb4de
10_1109_JSTARS_2020_3021052
9184118
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-3a9655d615c9de3a8d3aeae215976310a5dd529f26ce929eb155b615f8c7173e3
IEDL.DBID DOA
ISICitedReferencesCount 672
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571725700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:53:11 EDT 2025
Fri Jul 25 19:15:13 EDT 2025
Tue Nov 18 21:50:13 EST 2025
Sat Nov 29 04:51:06 EST 2025
Wed Aug 27 02:50:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-3a9655d615c9de3a8d3aeae215976310a5dd529f26ce929eb155b615f8c7173e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8406-683X
0000-0002-1670-151X
0000-0001-5437-4073
0000-0003-3920-2390
0000-0002-2318-8216
0000-0002-0455-4882
0000-0002-9495-4010
0000-0003-2992-4277
0000-0001-5310-5859
0000-0001-9971-3892
0000-0001-8439-362X
OpenAccessLink https://doaj.org/article/c0dcc34f8a2844de9fa33ffbc72cb4de
PQID 2444616292
PQPubID 75722
PageCount 25
ParticipantIDs proquest_journals_2444616292
crossref_citationtrail_10_1109_JSTARS_2020_3021052
ieee_primary_9184118
doaj_primary_oai_doaj_org_article_c0dcc34f8a2844de9fa33ffbc72cb4de
crossref_primary_10_1109_JSTARS_2020_3021052
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
tóth (ref156) 2018; 190
ref58
ref53
ref52
ref168
ref55
ref169
ref54
ref170
ref177
ref178
ref175
ref176
ref50
wilder (ref5) 2012
ref173
ref174
ref171
ref172
(ref41) 0
ref46
ref48
ref179
ref44
ref49
ref180
ref8
ref181
ref7
ref9
ref4
ref3
ref6
ref100
ref101
ref182
ref183
ref35
(ref43) 0
ref34
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
ref155
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref25
ref20
ref159
ref22
ref157
ref21
ref158
ref28
ref27
ref29
dan pelleg (ref26) 2000
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref128
ref15
ref129
ref14
ref126
ref97
ref127
ref96
ref124
ref99
ref11
ref125
ref98
ref10
ref17
ref16
(ref51) 0
ref19
ref133
ref93
ref134
ref92
ref131
ref95
ref132
ref94
ref130
ref91
ref90
pérez-romero (ref66) 2019; 11
ref89
ref139
ref137
ref86
ref138
ref85
ref135
ref88
ref136
ref87
ref144
ref82
ref145
ref81
ref142
ref84
ref143
ref83
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
gong (ref18) 2018; 236
ref74
ref105
ref77
ref102
ray (ref40) 2019; xlii 3 w6
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
(ref47) 0
ref73
ref72
ref110
çolak (ref45) 2019; xlii 3 w8
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
(ref42) 0
References_xml – ident: ref36
  doi: 10.3390/rs9121208
– ident: ref123
  doi: 10.1016/j.rse.2018.11.030
– ident: ref76
  doi: 10.3390/rs11070831
– ident: ref28
  doi: 10.1109/CVPR.2017.520
– ident: ref127
  doi: 10.3390/rs9070669
– ident: ref133
  doi: 10.3390/rs11050489
– ident: ref90
  doi: 10.1029/2018GL080158
– ident: ref134
  doi: 10.1016/j.scitotenv.2019.135894
– ident: ref174
  doi: 10.1016/j.jenvman.2019.109320
– ident: ref94
  doi: 10.1016/j.scitotenv.2019.06.341
– ident: ref109
  doi: 10.5623/cig2017-401
– ident: ref35
  doi: 10.5194/isprs-annals-IV-4-W2-61-2017
– ident: ref24
  doi: 10.1007/s12517-017-3072-3
– ident: ref117
  doi: 10.1080/15481603.2017.1419602
– ident: ref21
  doi: 10.3390/rs10081167
– ident: ref163
  doi: 10.1016/S1674-5264(09)60175-7
– ident: ref87
  doi: 10.1016/j.compag.2016.08.008
– ident: ref20
  doi: 10.3390/rs10060859
– year: 2012
  ident: ref5
  publication-title: Cloud Architecture Patterns Using Microsoft Azure
– ident: ref170
  doi: 10.3390/rs9070735
– ident: ref176
  doi: 10.1007/s41064-019-00074-z
– ident: ref101
  doi: 10.1016/j.rse.2018.05.012
– ident: ref151
  doi: 10.1016/j.rse.2018.11.012
– ident: ref56
  doi: 10.1371/journal.pone.0211510
– ident: ref48
  doi: 10.3390/rs12010002
– ident: ref44
  doi: 10.5194/isprs-archives-XLII-3-W8-497-2019
– start-page: 727
  year: 2000
  ident: ref26
  article-title: X-means: Extending k-means with efficient estimation of the number of clusters
  publication-title: Proc 17th Int Conf Mach Learning
– ident: ref126
  doi: 10.1016/j.isprsjprs.2020.07.013
– ident: ref78
  doi: 10.1080/22797254.2018.1455540
– ident: ref38
  doi: 10.1109/Agro-Geoinformatics.2015.7248087
– ident: ref172
  doi: 10.1016/j.cageo.2017.07.005
– ident: ref144
  doi: 10.1175/BAMS-D-15-00324.1
– ident: ref52
  doi: 10.1127/1432-8364/2011/0080
– ident: ref138
  doi: 10.3390/s19092118
– ident: ref171
  doi: 10.1016/j.jasrep.2017.08.013
– ident: ref1
  doi: 10.3390/rs11070842
– ident: ref181
  doi: 10.1016/j.ecolind.2019.105763
– ident: ref159
  doi: 10.5721/EuJRS20164915
– ident: ref25
  doi: 10.1080/03610927408827101
– ident: ref93
  doi: 10.1007/s10661-019-7355-x
– ident: ref10
  doi: 10.3390/rs11050591
– ident: ref49
  doi: 10.3390/rs11232881
– ident: ref22
  doi: 10.1109/TNN.2005.845141
– ident: ref131
  doi: 10.3390/rs11131581
– ident: ref75
  doi: 10.1080/01431161.2017.1420933
– ident: ref29
  doi: 10.3390/rs11010043
– ident: ref113
  doi: 10.1016/j.uclim.2018.05.004
– ident: ref136
  doi: 10.1007/s12145-020-00449-6
– ident: ref130
  doi: 10.1002/eap.1848
– ident: ref122
  doi: 10.3390/rs11151808
– ident: ref81
  doi: 10.1016/j.agsy.2018.07.002
– ident: ref57
  doi: 10.1109/JSTARS.2019.2901404
– ident: ref88
  doi: 10.1016/j.isprsjprs.2020.01.001
– ident: ref143
  doi: 10.1007/s11869-020-00796-9
– volume: xlii 3 w6
  start-page: 573
  year: 2019
  ident: ref40
  article-title: Exploring machine learning classification algorithms for crop classification using Sentinel 2 data
  publication-title: ISPRS Int Arch Photogrammetry Remote Sens Spatial Inf Sci
  doi: 10.5194/isprs-archives-XLII-3-W6-573-2019
– ident: ref173
  doi: 10.1111/2041-210X.13194
– ident: ref167
  doi: 10.1002/eap.1557
– ident: ref166
  doi: 10.1016/j.scitotenv.2019.06.514
– ident: ref72
  doi: 10.1016/S2095-3119(15)61149-2
– ident: ref98
  doi: 10.1109/JSTARS.2017.2705718
– ident: ref150
  doi: 10.1016/j.isprsjprs.2019.06.014
– ident: ref30
  doi: 10.1016/j.rse.2014.01.011
– ident: ref27
  doi: 10.1016/0004-3702(89)90046-5
– ident: ref158
  doi: 10.1016/j.crte.2018.11.005
– ident: ref2
  doi: 10.1016/j.isprsjprs.2020.04.001
– ident: ref115
  doi: 10.3390/rs10101569
– ident: ref146
  doi: 10.1016/j.scitotenv.2019.134608
– ident: ref92
  doi: 10.1016/j.jag.2018.09.011
– ident: ref83
  doi: 10.1016/j.rse.2019.04.016
– ident: ref61
  doi: 10.1007/s10980-018-0704-2
– ident: ref91
  doi: 10.3390/hydrology6020053
– ident: ref77
  doi: 10.3390/rs11070820
– ident: ref99
  doi: 10.1007/s00445-017-1172-2
– ident: ref162
  doi: 10.1371/journal.pone.0197758
– ident: ref15
  doi: 10.3390/rs10091455
– ident: ref79
  doi: 10.1080/01431161.2019.1601286
– ident: ref70
  doi: 10.1002/ecs2.2430
– ident: ref125
  doi: 10.1016/j.rse.2019.04.015
– ident: ref14
  doi: 10.3390/rs11243023
– year: 0
  ident: ref47
– ident: ref96
  doi: 10.1016/j.coastaleng.2019.04.004
– ident: ref13
  doi: 10.1016/j.envsoft.2018.11.004
– ident: ref106
  doi: 10.1016/j.landurbplan.2015.11.011
– ident: ref34
  doi: 10.3390/f8050166
– ident: ref54
  doi: 10.5194/bg-11-2027-2014
– ident: ref58
  doi: 10.1080/01431161.2019.1633702
– ident: ref180
  doi: 10.1016/j.scib.2019.03.002
– ident: ref108
  doi: 10.1016/j.rse.2019.111374
– ident: ref154
  doi: 10.1109/IGARSS.2018.8519098
– ident: ref179
  doi: 10.3390/rs12040602
– ident: ref59
  doi: 10.1016/j.rse.2019.111317
– ident: ref149
  doi: 10.1117/1.JRS.11.015005
– volume: 236
  year: 2018
  ident: ref18
  article-title: Annual maps of global artificial impervious area (GAIA) between 1985 and
  publication-title: Remote Sens Environ
– ident: ref31
  doi: 10.1109/TGRS.2013.2272545
– ident: ref157
  doi: 10.5194/soil-4-83-2018
– ident: ref124
  doi: 10.2112/SI85-290.1
– ident: ref111
  doi: 10.1016/j.isprsjprs.2019.11.021
– ident: ref120
  doi: 10.1080/10106049.2017.1408700
– ident: ref86
  doi: 10.3390/rs10111823
– ident: ref148
  doi: 10.3390/rs11242977
– ident: ref19
  doi: 10.1109/LGRS.2018.2865816
– ident: ref6
  doi: 10.1016/j.rse.2017.06.031
– ident: ref107
  doi: 10.1080/01431161.2019.1610983
– year: 0
  ident: ref43
  article-title: GEE Python API Docs
– ident: ref63
  doi: 10.1080/01431161.2018.1508924
– ident: ref74
  doi: 10.1093/wber/lhx029
– ident: ref140
  doi: 10.1016/j.cities.2019.01.009
– ident: ref12
  doi: 10.3390/rs10071079
– ident: ref121
  doi: 10.1016/j.rse.2019.111285
– ident: ref32
  doi: 10.1016/j.rse.2010.07.008
– ident: ref116
  doi: 10.1038/s41467-018-05991-y
– ident: ref67
  doi: 10.1016/j.rse.2020.111672
– ident: ref177
  doi: 10.1016/j.isprsjprs.2020.02.011
– ident: ref169
  doi: 10.1016/j.jas.2019.105013
– ident: ref135
  doi: 10.1007/s12665-018-7516-1
– volume: xlii 3 w8
  start-page: 491
  year: 2019
  ident: ref45
  article-title: The use of multi-temporal Sentinel satellites in the analysis of land cover/land use changes caused by the nuclear power plant construction
  publication-title: ISPRS Int Arch Photogrammetry Remote Sens Spatial Inf Sci
  doi: 10.5194/isprs-archives-XLII-3-W8-491-2019
– ident: ref82
  doi: 10.3390/rs11141666
– ident: ref165
  doi: 10.1002/esp.4317
– ident: ref84
  doi: 10.1016/j.rse.2015.04.021
– ident: ref153
  doi: 10.1016/j.isprsjprs.2020.01.010
– ident: ref8
  doi: 10.1126/science.1244693
– ident: ref73
  doi: 10.1007/s12571-016-0627-1
– ident: ref129
  doi: 10.1007/s12665-019-8751-9
– ident: ref141
  doi: 10.1007/s11356-019-04708-y
– ident: ref112
  doi: 10.1016/j.uclim.2018.11.001
– ident: ref65
  doi: 10.1016/j.scitotenv.2018.10.359
– ident: ref53
  doi: 10.1080/15481603.2015.1055540
– ident: ref110
  doi: 10.3390/su11195517
– year: 0
  ident: ref51
  article-title: Sentinel-1 algorithms
– ident: ref11
  doi: 10.5194/isprs-archives-XLII-3-W10-5-2020
– ident: ref100
  doi: 10.1007/s11629-017-4518-5
– ident: ref145
  doi: 10.3390/environments4020032
– ident: ref7
  doi: 10.3390/rs9121315
– ident: ref132
  doi: 10.1109/JSTARS.2019.2904035
– ident: ref80
  doi: 10.1016/j.rse.2018.12.026
– ident: ref85
  doi: 10.1002/2017GL074071
– ident: ref128
  doi: 10.1016/j.rse.2017.05.026
– ident: ref155
  doi: 10.1201/9780203739273-1
– ident: ref46
  doi: 10.5194/isprs-archives-XLII-3-289-2018
– ident: ref142
  doi: 10.1080/15481603.2019.1695407
– ident: ref114
  doi: 10.3390/f10090729
– ident: ref164
  doi: 10.1016/j.cageo.2019.104366
– ident: ref152
  doi: 10.3390/rs11151755
– year: 0
  ident: ref41
  article-title: Python vs. Javascript APIs
– ident: ref161
  doi: 10.3390/rs11242905
– ident: ref118
  doi: 10.1371/journal.pone.0184926
– ident: ref139
  doi: 10.1016/j.serj.2016.10.001
– ident: ref95
  doi: 10.3390/rs11101155
– ident: ref33
  doi: 10.1016/j.rse.2009.08.017
– ident: ref50
  doi: 10.1016/j.cageo.2015.06.023
– ident: ref69
  doi: 10.1016/j.rse.2019.111301
– ident: ref103
  doi: 10.3390/rs11232785
– ident: ref97
  doi: 10.1016/j.rse.2020.111665
– ident: ref68
  doi: 10.3390/rs11161899
– ident: ref105
  doi: 10.1117/1.JRS.12.026003
– ident: ref102
  doi: 10.1016/j.rse.2018.02.060
– ident: ref178
  doi: 10.1038/nature20584
– ident: ref183
  doi: 10.3390/rs8080634
– ident: ref16
  doi: 10.1080/20964471.2019.1690404
– ident: ref168
  doi: 10.1016/j.rse.2019.111260
– ident: ref147
  doi: 10.1080/2150704X.2019.1633487
– volume: 11
  year: 2019
  ident: ref66
  article-title: Improvement of remote sensing-based assessment of defoliation of Pinus spp. caused by Thaumetopoea Pityocampa Denis and Schiffermüller and related environmental drivers in Southeastern Spain
  publication-title: Remote Sens
  doi: 10.3390/rs11141736
– ident: ref55
  doi: 10.1016/j.gecco.2017.e00366
– ident: ref23
  doi: 10.1080/2150704X.2018.1500723
– ident: ref182
  doi: 10.1016/j.isprsjprs.2018.07.017
– ident: ref71
  doi: 10.3390/rs10071057
– ident: ref64
  doi: 10.1111/gcb.14919
– ident: ref17
  doi: 10.3390/rs10091488
– ident: ref60
  doi: 10.3390/rs11172044
– ident: ref119
  doi: 10.1111/2041-210X.13043
– ident: ref39
  doi: 10.3390/w11040780
– ident: ref160
  doi: 10.3390/s19143209
– ident: ref9
  doi: 10.3390/rs10101509
– volume: 190
  year: 2018
  ident: ref156
  article-title: Monitoring soil for sustainable development and land degradation neutrality
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-017-6415-3
– ident: ref89
  doi: 10.1016/j.rse.2019.111210
– ident: ref4
  doi: 10.1016/j.future.2014.10.029
– ident: ref137
  doi: 10.1016/j.ijdrr.2019.101292
– ident: ref175
  doi: 10.1016/j.rse.2019.111412
– ident: ref62
  doi: 10.1016/j.rse.2018.11.011
– ident: ref3
  doi: 10.1109/JPROC.2016.2598228
– year: 0
  ident: ref42
  article-title: GEE developers forum
– ident: ref104
  doi: 10.3390/rs11192191
– ident: ref37
  doi: 10.1080/17538947.2018.1494761
SSID ssj0062793
Score 2.68234
Snippet Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5326
SubjectTerms Algorithms
Artificial satellites
Big Data
Classification
Cloud computing
Data
Data analysis
Data processing
Datasets
Earth
Engines
Environmental monitoring
Google
Google Earth Engine (GEE)
Hydrology
Image classification
Image processing
Land cover
Land use
Land use classification
Land use management
Landsat
Landsat satellites
Learning algorithms
Machine learning
Natural disasters
Remote sensing
remote sensing (RS)
Satellite observation
Urban planning
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEG-AaOILqGg4QNMHH1nZa7fdlrcDAR8MIaCGt6bbToHkvDXHnon_PdOPu2g0Jr40-9Fumv1NO7_ptDOEvOPMoqGhoXICi8YrWSkrWdWpmnvJOhVSOp-vn9qLC3Vzoy_XyMHqLAwApM1n8D5eJl--790iLpUdajRHkBCvk_W2bfNZreWsK1mbAuwiH9FVDBlTIgyNa32IIj65ukZbkKGJGm0cwX7TQilYf8mu8seUnPTM2db_9fA52Sx8kk6yALwgazB7SZ6ep3y9P7fJt_O-v50CPUUJuaM5-CA9mfYLT3M-B9Rc9HJqh8hdKRb0ChA8oNdxYzu-O76_pR_sYOnkF0_3EZ2k5nO4y_vfaXYxvCJfzk4_n3ysSoaFyjW1GiputRTCI6tx2gO3ynMLFpAGIEtB4meF94LpwKQD5FE4rwvRYe2gXPTeA39NNmb9DHYIlUGi9dZqBEA00InOjQMPSOei79TbekTY8o8bV8KPxywYU5PMkFqbDJOJMJkC04gcrBp9z9E3_l39OEK5qhpDZ6cHiJEpI9G42jvHm6AsaubGgw6W8xA61zLX4f2IbEdcVx8pkI7I_lIwTBnmDwa5USPHkmm2-_dWe-RZ7GBes9knG8N8AW_IE_djuH-Yv00S_AjVZuxk
  priority: 102
  providerName: IEEE
Title Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
URI https://ieeexplore.ieee.org/document/9184118
https://www.proquest.com/docview/2444616292
https://doaj.org/article/c0dcc34f8a2844de9fa33ffbc72cb4de
Volume 13
WOSCitedRecordID wos000571725700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCl5EneL8IgePFrukyRJvU6ceZIz5gbeQ5kOFucmsgv-9L0k3JoJevBTaJm363ut7v1-TvofQISUaiIZ0mWGwKazgmdCcZKXIqeWkFD6W87m_bvd64uFB9udKfYU1YSk9cBLcscmtMbTwQoMjLayTXlPqfWnaxJSwH7wvoJ4pmUo-mBMwuzrHUCuXx2DkncENsEECJDWwHEa-xaGYrr-ur_LDKcdIc7GGVmuIiDtpaOtowY020PJlLMH72UAvl-Px49DhLoz9Cad8gvhsOH63OJVogGCE-0NdBTiKYYMHDvTh8E1Yqw7nTp8f8bmuNO7MTV6f4E7sPnFPaUk7TrMGm-juont7dpXVRRMyU-SiyqiWnDELQMVI66gWlmqnHUR2AB6A5TSzlhHpCTcOoBG4asZKaO2FCRPyjm6hxdF45LYR5p4DIWtLwHiscCUrTctTDwgtTIdanTcRmYpQmTqjeChsMVSRWeRSJbmrIHdVy72JjmadXlNCjd-bnwbdzJqGbNjxANiIqm1E_WUjTdQImp1dRAKtBWLVRHtTTav6zX1TAHcK3uJEkp3_uPUuWgmPkz7a7KHFavLu9tGS-aie3yYH0WgP4k-HX4Rl8ME
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAoJLebSoSwv4wLGhWTv2xr1t34hlVbUF9WY59rittN2gbRaJf8_Yya5AICQuVh52ZOUbe77x2DMA7wW3ZGhozJykovClykqreFaVufCKV2VI6Xy-jgbjcXl1pc9WYGd5FgYR0-Yz_BAvky_f124el8p2NZkjRIgfwENZFLzfntZazLuKD1KIXWIkOotBY7oYQ_1c75KQD88vyBrkZKRGK0fy3_RQCtff5Vf5Y1JOmub42f_18TmsdYySDVsReAErOH0Jj09Sxt4f63B3UtfXE2RHJCM3rA0_yA4m9dyzNqMD6S52NrFNZK-MCnaOBB-yi7i1nd7t316zQ9tYNvzF173Hhqn5DG_aHfCsdTJswJfjo8uD06zLsZC5Ii-bTFitpPTEa5z2KGzphUWLRASIpxD1s9J7yXXgyiExKZrZpayodihd9N-jeAWr03qKm8BUUGS_DTQBIAusZOX6QQQidNF76m3eA77448Z1AchjHoyJSYZIrk0Lk4kwmQ6mHuwsG31r42_8u_p-hHJZNQbPTg8II9ONReNy75woQmlJNxcedbBChFC5AXcV3fdgPeK6_EgHaQ-2F4JhuoF-b4gdFaqvuOav_97qHTw5vfw8MqOP409b8DR2tl3B2YbVZjbHN_DIfW9u72dvkzT_BEUx76s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Google+Earth+Engine+Cloud+Computing+Platform+for+Remote+Sensing+Big+Data+Applications%3A+A+Comprehensive+Review&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Amani%2C+Meisam&rft.au=Ghorbanian%2C+Arsalan&rft.au=Ahmadi%2C+Seyed+Ali&rft.au=Kakooei%2C+Mohammad&rft.date=2020&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=13&rft.spage=5326&rft.epage=5350&rft_id=info:doi/10.1109%2FJSTARS.2020.3021052&rft.externalDocID=9184118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon