Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 13; S. 5326 - 5350 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE), to effectively address the challenges of big data analysis. In particular, this platform facilitates processing big geo data over large areas and monitoring the environment for long periods of time. Although this platform was launched in 2010 and has proved its high potential for different applications, it has not been fully investigated and utilized for RS applications until recent years. Therefore, this study aims to comprehensively explore different aspects of the GEE platform, including its datasets, functions, advantages/limitations, and various applications. For this purpose, 450 journal articles published in 150 journals between January 2010 and May 2020 were studied. It was observed that Landsat and Sentinel datasets were extensively utilized by GEE users. Moreover, supervised machine learning algorithms, such as Random Forest, were more widely applied to image classification tasks. GEE has also been employed in a broad range of applications, such as Land Cover/land Use classification, hydrology, urban planning, natural disaster, climate analyses, and image processing. It was generally observed that the number of GEE publications have significantly increased during the past few years, and it is expected that GEE will be utilized by more users from different fields to resolve their big data processing challenges. |
|---|---|
| AbstractList | Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE), to effectively address the challenges of big data analysis. In particular, this platform facilitates processing big geo data over large areas and monitoring the environment for long periods of time. Although this platform was launched in 2010 and has proved its high potential for different applications, it has not been fully investigated and utilized for RS applications until recent years. Therefore, this study aims to comprehensively explore different aspects of the GEE platform, including its datasets, functions, advantages/limitations, and various applications. For this purpose, 450 journal articles published in 150 journals between January 2010 and May 2020 were studied. It was observed that Landsat and Sentinel datasets were extensively utilized by GEE users. Moreover, supervised machine learning algorithms, such as Random Forest, were more widely applied to image classification tasks. GEE has also been employed in a broad range of applications, such as Land Cover/land Use classification, hydrology, urban planning, natural disaster, climate analyses, and image processing. It was generally observed that the number of GEE publications have significantly increased during the past few years, and it is expected that GEE will be utilized by more users from different fields to resolve their big data processing challenges. |
| Author | Brisco, Brian Amani, Meisam Kakooei, Mohammad Mirmazloumi, S. Mohammad Wu, Qiusheng Ahmadi, Seyed Ali Moghimi, Armin Ghorbanian, Arsalan Mahdavi, Sahel Parsian, Saeid Ghahremanloo, Masoud Moghaddam, Sayyed Hamed Alizadeh |
| Author_xml | – sequence: 1 givenname: Meisam orcidid: 0000-0002-9495-4010 surname: Amani fullname: Amani, Meisam email: meisam.amani@woodplc.com organization: Wood Environment & Infrastructure Solutions, Ottawa, ON, Canada – sequence: 2 givenname: Arsalan orcidid: 0000-0001-8406-683X surname: Ghorbanian fullname: Ghorbanian, Arsalan email: a.ghorbanian@email.kntu.ac.ir organization: Faculty of Geodesy and Geomatics Engineering, Department of Remote Sensing and Photogrammetry, K. N. Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Seyed Ali orcidid: 0000-0003-3920-2390 surname: Ahmadi fullname: Ahmadi, Seyed Ali email: cpt.ahmadisnipiol@yahoo.com organization: Faculty of Geodesy and Geomatics Engineering, Department of Remote Sensing and Photogrammetry, K. N. Toosi University of Technology, Tehran, Iran – sequence: 4 givenname: Mohammad orcidid: 0000-0002-2318-8216 surname: Kakooei fullname: Kakooei, Mohammad email: kakooei.mohammad@stu.nit.ac.ir organization: Department of Electronic Engineering, Babol Noshirvani University of Technology, Babol, Iran – sequence: 5 givenname: Armin orcidid: 0000-0002-0455-4882 surname: Moghimi fullname: Moghimi, Armin email: moghimi.armin@gmail.com organization: Faculty of Geodesy and Geomatics Engineering, Department of Remote Sensing and Photogrammetry, K. N. Toosi University of Technology, Tehran, Iran – sequence: 6 givenname: S. Mohammad orcidid: 0000-0001-5310-5859 surname: Mirmazloumi fullname: Mirmazloumi, S. Mohammad email: sm.mirmazloumi@cttc.es organization: Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain – sequence: 7 givenname: Sayyed Hamed Alizadeh orcidid: 0000-0003-2992-4277 surname: Moghaddam fullname: Moghaddam, Sayyed Hamed Alizadeh email: h.alizadeh@email.kntu.ac.ir organization: Faculty of Geodesy and Geomatics Engineering, Department of Remote Sensing and Photogrammetry, K. N. Toosi University of Technology, Tehran, Iran – sequence: 8 givenname: Sahel orcidid: 0000-0002-1670-151X surname: Mahdavi fullname: Mahdavi, Sahel email: sahel.mahdavi@woodplc.com organization: Wood Environment & Infrastructure Solutions, Ottawa, ON, Canada – sequence: 9 givenname: Masoud orcidid: 0000-0001-9971-3892 surname: Ghahremanloo fullname: Ghahremanloo, Masoud email: mghahremanloo@uh.edu organization: Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA – sequence: 10 givenname: Saeid surname: Parsian fullname: Parsian, Saeid email: saeid90parsian@gmail.com organization: Department of Surveying Engineering, Tafresh University, Tafresh, Iran – sequence: 11 givenname: Qiusheng orcidid: 0000-0001-5437-4073 surname: Wu fullname: Wu, Qiusheng email: qwu18@utk.edu organization: Department of Geography, University of Tennessee, Knoxville, TN, USA – sequence: 12 givenname: Brian orcidid: 0000-0001-8439-362X surname: Brisco fullname: Brisco, Brian email: brian.brisco@canada.ca organization: Canada Center for Mapping and Earth Observation, Ottawa, ON, Canada |
| BookMark | eNp9kU9v1DAQxa2qSN0WPkEvljhn679JzG1ZllJUCdQtZ8trT1Kvkjg43qJ-e7ybwoEDF1sev9_TzLxLdD6EARC6pmRJKVE3X7ePq4ftkhFGlpwwSiQ7QwtGJS2o5PIcLajiqqCCiAt0OU17QkpWKb5A_W0IbQd4Y2J6wpuh9QPgdRcODq9DPx6SH1r8vTOpCbHH-cAP0IcEeAvDdPz76Fv8ySSDV-PYeWuSD8P0Aa9OeISno-wZMvXs4ddb9KYx3QTvXu8r9OPz5nH9pbj_dnu3Xt0XVpA6FdyoUkpXUmmVA25qxw0YyPOoquSUGOmcZKphpQXFFOyolLusbmpb0YoDv0J3s68LZq_H6HsTX3QwXp8KIbY6z-ttB9oSZy0XTW1YLYQD1RjOm2ZnK2Z3-Z293s9eYww_DzAlvQ-HOOT2NRNClLRkimWVmlU2hmmK0Gjr02kZKRrfaUr0MSk9J6WPSenXpDLL_2H_dPx_6nqmPAD8JRStBaU1_w1FHKIs |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1038_s41598_024_68991_7 crossref_primary_10_1016_j_ijdrr_2024_104974 crossref_primary_10_1051_bioconf_20248907003 crossref_primary_10_3390_ijerph191912583 crossref_primary_10_1016_j_asr_2022_06_008 crossref_primary_10_1007_s12524_025_02180_5 crossref_primary_10_3390_w15061053 crossref_primary_10_1109_JSTARS_2020_3036802 crossref_primary_10_3390_land13091387 crossref_primary_10_1016_j_apr_2024_102226 crossref_primary_10_1080_10549811_2024_2448027 crossref_primary_10_3390_rs17111889 crossref_primary_10_1007_s12524_023_01683_3 crossref_primary_10_3390_geohazards6020024 crossref_primary_10_3390_ijgi13070239 crossref_primary_10_1007_s12518_023_00545_4 crossref_primary_10_1016_j_cjmeam_2022_100044 crossref_primary_10_1016_j_mex_2025_103516 crossref_primary_10_1007_s11707_024_1125_y crossref_primary_10_1016_j_agwat_2024_109056 crossref_primary_10_1016_j_asr_2025_05_055 crossref_primary_10_1029_2022WR034094 crossref_primary_10_3390_ijerph192013555 crossref_primary_10_1007_s11869_025_01808_2 crossref_primary_10_1016_j_habitatint_2024_103095 crossref_primary_10_3390_hydrology12040080 crossref_primary_10_3390_rs15194785 crossref_primary_10_1111_cobi_14344 crossref_primary_10_1016_j_tfp_2024_100729 crossref_primary_10_3390_cli12120197 crossref_primary_10_3390_rs14153683 crossref_primary_10_1016_j_ecolind_2022_109813 crossref_primary_10_1016_j_isprsjprs_2022_01_014 crossref_primary_10_1080_02626667_2024_2351067 crossref_primary_10_1080_15481603_2024_2302221 crossref_primary_10_1007_s11869_023_01488_w crossref_primary_10_1109_TGRS_2022_3227565 crossref_primary_10_3390_rs15194657 crossref_primary_10_3390_rs13122299 crossref_primary_10_3390_rs15102534 crossref_primary_10_1371_journal_pwat_0000269 crossref_primary_10_3390_app122312147 crossref_primary_10_1007_s12145_023_00968_y crossref_primary_10_3390_rs12213561 crossref_primary_10_3390_rs15102539 crossref_primary_10_1007_s41748_025_00713_z crossref_primary_10_3897_BDJ_12_e122325 crossref_primary_10_1038_s41597_023_02318_5 crossref_primary_10_1080_10106049_2022_2047230 crossref_primary_10_1080_19475705_2024_2377672 crossref_primary_10_1016_j_heliyon_2025_e43454 crossref_primary_10_7717_peerj_17872 crossref_primary_10_1109_JSTARS_2023_3294107 crossref_primary_10_3390_rs13204025 crossref_primary_10_1109_JSTARS_2021_3114116 crossref_primary_10_1002_ldr_4249 crossref_primary_10_3390_rs16152773 crossref_primary_10_1080_15481603_2023_2243671 crossref_primary_10_1016_j_watres_2025_123176 crossref_primary_10_1080_20964471_2025_2454044 crossref_primary_10_3390_rs14153783 crossref_primary_10_1002_ieam_4833 crossref_primary_10_1016_j_ecolind_2023_110168 crossref_primary_10_3390_data10010008 crossref_primary_10_1080_19475705_2023_2279496 crossref_primary_10_1038_s41559_024_02372_1 crossref_primary_10_1109_TGRS_2024_3406897 crossref_primary_10_1016_j_envsoft_2025_106405 crossref_primary_10_1155_2022_5162864 crossref_primary_10_3390_land11081187 crossref_primary_10_3390_rs14164023 crossref_primary_10_1007_s10661_024_13294_7 crossref_primary_10_1051_e3sconf_202459003010 crossref_primary_10_1007_s13580_025_00689_9 crossref_primary_10_1016_j_envint_2024_108818 crossref_primary_10_1016_j_jhydrol_2025_134255 crossref_primary_10_3390_rs15133257 crossref_primary_10_1029_2021EF002289 crossref_primary_10_31413_nat_v12i4_18169 crossref_primary_10_3390_pollutants3020019 crossref_primary_10_1007_s10489_024_06003_x crossref_primary_10_3390_rs14092055 crossref_primary_10_3390_su16135700 crossref_primary_10_1016_j_jenvman_2024_121851 crossref_primary_10_1007_s11042_024_20199_7 crossref_primary_10_1007_s12524_024_01889_z crossref_primary_10_26833_ijeg_1650786 crossref_primary_10_3390_rs14195052 crossref_primary_10_3390_rs15123131 crossref_primary_10_3390_s22103931 crossref_primary_10_3390_s23084101 crossref_primary_10_3390_rs14122758 crossref_primary_10_3390_rs16214088 crossref_primary_10_1007_s10661_025_14332_8 crossref_primary_10_1080_10106049_2022_2102222 crossref_primary_10_15446_esrj_v27n4_110128 crossref_primary_10_3390_rs13204169 crossref_primary_10_3390_rs16244731 crossref_primary_10_1080_10106049_2024_2392848 crossref_primary_10_3390_su17010051 crossref_primary_10_1016_j_rsase_2023_101112 crossref_primary_10_3390_rs15204980 crossref_primary_10_1016_j_gespch_2025_100006 crossref_primary_10_1007_s40333_022_0075_z crossref_primary_10_1016_j_ecolind_2025_113935 crossref_primary_10_3390_rs13020220 crossref_primary_10_1016_j_cosrev_2023_100571 crossref_primary_10_3389_fmars_2023_1207524 crossref_primary_10_1016_j_compag_2025_110613 crossref_primary_10_3390_rs15235593 crossref_primary_10_1016_j_ecolind_2023_111193 crossref_primary_10_1038_s41467_025_63437_8 crossref_primary_10_1007_s11053_025_10526_6 crossref_primary_10_1109_JSTARS_2023_3302031 crossref_primary_10_3390_rs14092038 crossref_primary_10_3390_rs14225647 crossref_primary_10_1109_TGRS_2025_3559145 crossref_primary_10_3390_app13064007 crossref_primary_10_3390_rs15041017 crossref_primary_10_3390_f15122192 crossref_primary_10_1007_s41870_023_01200_2 crossref_primary_10_1016_j_seta_2025_104528 crossref_primary_10_1029_2023WR034967 crossref_primary_10_3390_app13053117 crossref_primary_10_1002_gdj3_144 crossref_primary_10_47134_ijsl_v5i1_326 crossref_primary_10_1016_j_ecoinf_2022_101851 crossref_primary_10_1016_j_tfp_2024_100654 crossref_primary_10_1016_j_compag_2023_108065 crossref_primary_10_1080_01431161_2025_2496529 crossref_primary_10_1038_s41598_025_04765_z crossref_primary_10_1016_j_heliyon_2024_e34466 crossref_primary_10_1134_S0001433821120045 crossref_primary_10_1038_s41597_024_03587_4 crossref_primary_10_3390_rs15204960 crossref_primary_10_3390_rs16152695 crossref_primary_10_1016_j_jer_2024_08_006 crossref_primary_10_1007_s12665_024_12045_8 crossref_primary_10_1016_j_envsoft_2024_106022 crossref_primary_10_1016_j_eswa_2021_115955 crossref_primary_10_1080_01431161_2023_2216849 crossref_primary_10_1007_s44163_024_00198_1 crossref_primary_10_3389_fenvs_2022_867434 crossref_primary_10_3390_agriculture13020388 crossref_primary_10_1016_j_foreco_2024_121729 crossref_primary_10_3389_frsen_2025_1625373 crossref_primary_10_1007_s10462_024_10938_5 crossref_primary_10_1016_j_landusepol_2024_107246 crossref_primary_10_1109_JSTARS_2023_3328309 crossref_primary_10_1007_s41748_025_00625_y crossref_primary_10_1080_10106049_2022_2060330 crossref_primary_10_1051_e3sconf_202459109011 crossref_primary_10_3390_rs14205279 crossref_primary_10_3390_rs13183778 crossref_primary_10_1016_j_isprsjprs_2024_11_005 crossref_primary_10_3390_hydrology12030064 crossref_primary_10_3390_plants12223913 crossref_primary_10_1109_TGRS_2024_3466909 crossref_primary_10_3390_app122211508 crossref_primary_10_3390_su16103992 crossref_primary_10_1109_JSTARS_2021_3051422 crossref_primary_10_3390_ijerph20042844 crossref_primary_10_1016_j_ijdrr_2023_104056 crossref_primary_10_1007_s44378_025_00078_9 crossref_primary_10_3390_rs15215151 crossref_primary_10_3390_rs16071184 crossref_primary_10_3390_rs16132420 crossref_primary_10_3390_rs14246376 crossref_primary_10_1016_j_jag_2024_104293 crossref_primary_10_1016_j_jhydrol_2024_131771 crossref_primary_10_3390_rs15051368 crossref_primary_10_1007_s10661_022_09878_w crossref_primary_10_1016_j_scitotenv_2023_164474 crossref_primary_10_1080_17538947_2025_2558920 crossref_primary_10_1007_s11676_024_01700_2 crossref_primary_10_1007_s12524_024_01946_7 crossref_primary_10_1371_journal_pone_0312585 crossref_primary_10_1080_17538947_2024_2398063 crossref_primary_10_1186_s40537_023_00770_z crossref_primary_10_3390_rs14143253 crossref_primary_10_1016_j_ecolind_2025_113858 crossref_primary_10_1007_s12145_022_00918_0 crossref_primary_10_1080_19479832_2025_2473715 crossref_primary_10_1002_arp_1929 crossref_primary_10_1016_j_still_2022_105325 crossref_primary_10_1371_journal_pone_0311384 crossref_primary_10_3390_heritage6120402 crossref_primary_10_3390_rs14194822 crossref_primary_10_3390_rs15030675 crossref_primary_10_1080_10095020_2022_2162980 crossref_primary_10_3390_rs13061098 crossref_primary_10_1016_j_srs_2025_100244 crossref_primary_10_1007_s12145_023_01035_2 crossref_primary_10_2478_amns_2024_3323 crossref_primary_10_1109_JSTARS_2020_3029434 crossref_primary_10_3390_rs15215160 crossref_primary_10_3390_rs15112835 crossref_primary_10_1016_j_scs_2024_105655 crossref_primary_10_1007_s00704_024_05340_8 crossref_primary_10_1007_s12145_024_01413_4 crossref_primary_10_3390_rs17061008 crossref_primary_10_1007_s10980_022_01549_y crossref_primary_10_1016_j_ecoinf_2024_102591 crossref_primary_10_1016_j_jag_2021_102490 crossref_primary_10_1038_s41597_022_01474_4 crossref_primary_10_7717_peerj_18441 crossref_primary_10_1088_1755_1315_893_1_012057 crossref_primary_10_1016_j_cities_2024_105022 crossref_primary_10_3390_rs14164097 crossref_primary_10_3390_rs13214469 crossref_primary_10_1016_j_catena_2024_108123 crossref_primary_10_1002_itl2_574 crossref_primary_10_3390_rs13061084 crossref_primary_10_1109_MGRS_2021_3097280 crossref_primary_10_1016_j_rsase_2022_100907 crossref_primary_10_3390_f14071418 crossref_primary_10_1080_01431161_2024_2413026 crossref_primary_10_1051_bioconf_202515602010 crossref_primary_10_5194_essd_13_4799_2021 crossref_primary_10_1007_s42979_024_03500_1 crossref_primary_10_1109_TGRS_2025_3605164 crossref_primary_10_3390_rs16111997 crossref_primary_10_1016_j_isprsjprs_2024_06_007 crossref_primary_10_1016_j_envsoft_2021_105273 crossref_primary_10_1109_ACCESS_2024_3468384 crossref_primary_10_3390_s24051651 crossref_primary_10_1109_ACCESS_2023_3293828 crossref_primary_10_1016_j_scitotenv_2022_156126 crossref_primary_10_3390_rs15030690 crossref_primary_10_1016_j_foreco_2025_123040 crossref_primary_10_3390_rs14112628 crossref_primary_10_1109_ACCESS_2024_3519612 crossref_primary_10_1080_2150704X_2022_2027543 crossref_primary_10_3390_w17172573 crossref_primary_10_1111_geb_13635 crossref_primary_10_3390_rs16101675 crossref_primary_10_3390_su17146652 crossref_primary_10_3390_rs16101670 crossref_primary_10_1007_s12517_024_11857_z crossref_primary_10_1016_j_jenvman_2025_124329 crossref_primary_10_1007_s00500_023_08715_7 crossref_primary_10_1088_1755_1315_1240_1_012017 crossref_primary_10_7780_kjrs_2025_41_3_3 crossref_primary_10_1155_2021_1140611 crossref_primary_10_61186_jgst_14_3_69 crossref_primary_10_1080_10095020_2025_2542534 crossref_primary_10_3390_rs15112761 crossref_primary_10_1016_j_rsase_2025_101472 crossref_primary_10_3390_su17167513 crossref_primary_10_1007_s00477_024_02660_z crossref_primary_10_1016_j_still_2023_105912 crossref_primary_10_1016_j_heliyon_2023_e17903 crossref_primary_10_1016_j_geosus_2024_09_008 crossref_primary_10_3390_w17162416 crossref_primary_10_3846_gac_2023_16805 crossref_primary_10_3390_rs14051113 crossref_primary_10_3390_rs16224161 crossref_primary_10_1080_17538947_2024_2448216 crossref_primary_10_1016_j_geomat_2024_100008 crossref_primary_10_1016_j_ecolind_2024_113035 crossref_primary_10_15406_ijh_2022_06_00327 crossref_primary_10_3390_app142412000 crossref_primary_10_1080_01431161_2023_2234091 crossref_primary_10_3390_pollutants2020012 crossref_primary_10_3390_rs15051307 crossref_primary_10_3390_rs15215122 crossref_primary_10_1111_exsy_70126 crossref_primary_10_1016_j_ophoto_2023_100050 crossref_primary_10_1515_geo_2025_0769 crossref_primary_10_3390_f13091489 crossref_primary_10_3390_rs14194906 crossref_primary_10_3390_f13050814 crossref_primary_10_1080_17538947_2025_2498602 crossref_primary_10_1080_10095020_2022_2066574 crossref_primary_10_3390_rs17101763 crossref_primary_10_1109_JSTARS_2025_3528429 crossref_primary_10_1007_s12145_022_00885_6 crossref_primary_10_1016_j_resconrec_2024_107751 crossref_primary_10_1016_j_cageo_2022_105034 crossref_primary_10_3390_f14081669 crossref_primary_10_3390_geohazards5030039 crossref_primary_10_1016_j_agrformet_2023_109795 crossref_primary_10_3390_agronomy12071518 crossref_primary_10_1109_JSTARS_2024_3454453 crossref_primary_10_3390_rs13193842 crossref_primary_10_1016_j_ejrh_2024_102082 crossref_primary_10_3390_land12051063 crossref_primary_10_3390_rs14112654 crossref_primary_10_3390_rs13030422 crossref_primary_10_2166_hydro_2023_137 crossref_primary_10_3390_atmos16010054 crossref_primary_10_3390_land11112039 crossref_primary_10_1080_10106049_2025_2451174 crossref_primary_10_3390_su16156556 crossref_primary_10_1080_17538947_2024_2365386 crossref_primary_10_3390_rs15143495 crossref_primary_10_3390_w14213401 crossref_primary_10_1007_s11629_024_8673_1 crossref_primary_10_3390_geomatics3010012 crossref_primary_10_1109_JSTARS_2025_3585990 crossref_primary_10_1109_JSTARS_2024_3411994 crossref_primary_10_1016_j_rsase_2025_101584 crossref_primary_10_1007_s13157_022_01651_6 crossref_primary_10_1016_j_rsase_2025_101581 crossref_primary_10_3390_w14152324 crossref_primary_10_3390_su14052557 crossref_primary_10_3390_rs17071139 crossref_primary_10_3390_su16188118 crossref_primary_10_1080_10106049_2025_2451162 crossref_primary_10_1016_j_scs_2023_104458 crossref_primary_10_3390_su162411130 crossref_primary_10_1016_j_pce_2025_103893 crossref_primary_10_3390_agriengineering6020098 crossref_primary_10_1016_j_envdev_2024_100991 crossref_primary_10_3390_rs13132428 crossref_primary_10_1002_ldr_4824 crossref_primary_10_1080_23311932_2024_2448597 crossref_primary_10_3390_photonics12030278 crossref_primary_10_1016_j_jaridenv_2024_105153 crossref_primary_10_3390_rs14133041 crossref_primary_10_3390_rs16122210 crossref_primary_10_3390_su142214868 crossref_primary_10_1080_01431161_2021_1995075 crossref_primary_10_3390_rs15143504 crossref_primary_10_1016_j_ecoinf_2023_102129 crossref_primary_10_3390_hydrology9080135 crossref_primary_10_1109_JSTARS_2021_3120009 crossref_primary_10_3390_rs16132389 crossref_primary_10_7780_kjrs_2024_40_5_1_3 crossref_primary_10_1109_JSTARS_2021_3129183 crossref_primary_10_1038_s41598_025_07443_2 crossref_primary_10_3390_w15152743 crossref_primary_10_3390_atmos15030318 crossref_primary_10_1016_j_rsase_2025_101674 crossref_primary_10_1080_15715124_2025_2509184 crossref_primary_10_61164_7dt9d641 crossref_primary_10_1088_1755_1315_1266_1_012001 crossref_primary_10_1016_j_clet_2025_101025 crossref_primary_10_1111_1752_1688_13160 crossref_primary_10_1016_j_jag_2023_103637 crossref_primary_10_3390_agriculture12091435 crossref_primary_10_1080_17538947_2024_2330684 crossref_primary_10_3390_rs16030583 crossref_primary_10_1007_s10457_023_00850_2 crossref_primary_10_1016_j_jhydrol_2025_132855 crossref_primary_10_3390_su14052738 crossref_primary_10_3390_electronics11010137 crossref_primary_10_1109_JSTARS_2023_3290677 crossref_primary_10_1109_JSTARS_2021_3110460 crossref_primary_10_3390_su15032535 crossref_primary_10_1080_22797254_2021_1948356 crossref_primary_10_1002_esp_5651 crossref_primary_10_1109_TGRS_2025_3568930 crossref_primary_10_1017_jog_2023_18 crossref_primary_10_3390_rs13224544 crossref_primary_10_1007_s42979_025_04061_7 crossref_primary_10_1016_j_jhydrol_2024_132203 crossref_primary_10_1007_s11629_025_9645_9 crossref_primary_10_1016_j_jag_2023_103540 crossref_primary_10_3390_rs12223801 crossref_primary_10_1016_j_ecolind_2023_109868 crossref_primary_10_1016_j_tfp_2025_100898 crossref_primary_10_1038_s41467_025_63156_0 crossref_primary_10_1016_j_rse_2024_114572 crossref_primary_10_1109_JPROC_2021_3094335 crossref_primary_10_1117_1_JRS_18_014513 crossref_primary_10_1007_s41748_025_00796_8 crossref_primary_10_3390_f16050825 crossref_primary_10_1016_j_eswa_2025_128248 crossref_primary_10_3390_rs17081381 crossref_primary_10_1016_j_still_2024_106270 crossref_primary_10_1109_JSTARS_2023_3288218 crossref_primary_10_3390_ijgi13040117 crossref_primary_10_3389_fvets_2023_1069979 crossref_primary_10_3390_rs13224550 crossref_primary_10_1016_j_ecoinf_2023_102111 crossref_primary_10_1016_j_jhydrol_2024_132452 crossref_primary_10_1016_j_jenvman_2022_116568 crossref_primary_10_1007_s41324_021_00401_w crossref_primary_10_1016_j_rse_2024_114107 crossref_primary_10_1007_s11356_022_23344_7 crossref_primary_10_3390_rs14010230 crossref_primary_10_3390_rs14102345 crossref_primary_10_1088_1755_1315_1254_1_012112 crossref_primary_10_3390_land11101692 crossref_primary_10_3390_app131910692 crossref_primary_10_1016_j_ejrh_2025_102583 crossref_primary_10_1016_j_techsoc_2023_102427 crossref_primary_10_1080_10095020_2025_2537352 crossref_primary_10_3390_f15030399 crossref_primary_10_1016_j_hal_2022_102189 crossref_primary_10_3390_ijgi11080456 crossref_primary_10_3390_conservation3030030 crossref_primary_10_3390_rs17142505 crossref_primary_10_1016_j_eiar_2023_107396 crossref_primary_10_3390_agriengineering3010008 crossref_primary_10_1016_j_earscirev_2022_104230 crossref_primary_10_1007_s11869_022_01179_y crossref_primary_10_3390_rs15143675 crossref_primary_10_3390_plants14030373 crossref_primary_10_1016_j_ecoinf_2024_102502 crossref_primary_10_5194_bg_21_2717_2024 crossref_primary_10_1016_j_ecoinf_2024_102987 crossref_primary_10_1109_JSTARS_2022_3204544 crossref_primary_10_3390_rs16162960 crossref_primary_10_1109_JSTARS_2023_3267118 crossref_primary_10_1080_10095020_2023_2167615 crossref_primary_10_1016_j_ufug_2023_128095 crossref_primary_10_3390_agronomy14010075 crossref_primary_10_3390_rs15164112 crossref_primary_10_1016_j_ecoinf_2023_102333 crossref_primary_10_3390_land13071072 crossref_primary_10_1016_j_jhydrol_2025_132771 crossref_primary_10_3390_rs15092261 crossref_primary_10_1016_j_ecolind_2023_110668 crossref_primary_10_1007_s10661_025_13863_4 crossref_primary_10_3390_rs16020341 crossref_primary_10_1016_j_catena_2021_105842 crossref_primary_10_1109_JSTARS_2023_3312508 crossref_primary_10_1109_JSTARS_2023_3310363 crossref_primary_10_1016_j_rse_2022_112958 crossref_primary_10_3390_rs14215521 crossref_primary_10_14358_PERS_24_00013R2 crossref_primary_10_3390_rs13132565 crossref_primary_10_3390_rs15174140 crossref_primary_10_1016_j_geomat_2025_100052 crossref_primary_10_1109_TGRS_2024_3392605 crossref_primary_10_1109_TGRS_2023_3318227 crossref_primary_10_1016_j_uclim_2023_101736 crossref_primary_10_3390_f14040752 crossref_primary_10_3390_rs12193232 crossref_primary_10_3390_rs17081460 crossref_primary_10_1038_s41597_024_04237_5 crossref_primary_10_3390_rs16122167 crossref_primary_10_3390_rs17081443 crossref_primary_10_3390_su152115444 crossref_primary_10_1016_j_asr_2023_07_064 crossref_primary_10_1186_s13677_024_00654_4 crossref_primary_10_1109_JSTARS_2024_3463432 crossref_primary_10_3390_rs14102475 crossref_primary_10_1016_j_asr_2021_08_041 crossref_primary_10_1016_j_jenvman_2025_124996 crossref_primary_10_1016_j_ejrh_2025_102552 crossref_primary_10_3390_rs13224594 crossref_primary_10_1016_j_scs_2022_104060 crossref_primary_10_1186_s42269_023_01127_5 crossref_primary_10_1007_s11082_023_06138_0 crossref_primary_10_1016_j_ecoinf_2023_102433 crossref_primary_10_1016_j_ecoinf_2024_102608 crossref_primary_10_1007_s41064_024_00277_z crossref_primary_10_1109_JSTARS_2021_3110763 crossref_primary_10_3390_rs14051065 crossref_primary_10_1088_1755_1315_1531_1_012016 crossref_primary_10_1016_j_catena_2021_105500 crossref_primary_10_1080_10095020_2022_2094288 crossref_primary_10_1007_s10661_023_12001_2 crossref_primary_10_1016_j_scitotenv_2023_161757 crossref_primary_10_3390_rs17091551 crossref_primary_10_1109_MGRS_2022_3204590 crossref_primary_10_1007_s10661_024_13313_7 crossref_primary_10_3390_rs17122031 crossref_primary_10_3390_rs13091743 crossref_primary_10_3390_rs13050876 crossref_primary_10_3390_app13116359 crossref_primary_10_1007_s13762_025_06462_w crossref_primary_10_3390_app122311922 crossref_primary_10_1016_j_rsase_2023_100987 crossref_primary_10_1080_01431161_2025_2457128 crossref_primary_10_1016_j_compeleceng_2022_108536 crossref_primary_10_3390_w14020244 crossref_primary_10_1080_10549811_2025_2516072 crossref_primary_10_3390_rs16234454 crossref_primary_10_5194_essd_14_79_2022 crossref_primary_10_3390_rs15235551 crossref_primary_10_1007_s11356_023_26878_6 crossref_primary_10_1080_10095020_2024_2307931 crossref_primary_10_1109_TGRS_2025_3596333 crossref_primary_10_3390_app13127237 crossref_primary_10_3390_environments10100170 crossref_primary_10_3390_su141710645 crossref_primary_10_3390_w13243627 crossref_primary_10_1109_TGRS_2024_3489224 crossref_primary_10_3390_rs13071326 crossref_primary_10_3390_f14030652 crossref_primary_10_3390_f15112005 crossref_primary_10_3390_rs15071783 crossref_primary_10_3390_land13010080 crossref_primary_10_1016_j_ecoinf_2025_103089 crossref_primary_10_1007_s10661_024_13369_5 crossref_primary_10_1080_10106049_2021_1917005 crossref_primary_10_3390_rs16183429 crossref_primary_10_1088_2631_8695_ad5c2c crossref_primary_10_1109_JSTARS_2021_3116258 crossref_primary_10_3390_rs13234756 crossref_primary_10_1016_j_catena_2022_106023 crossref_primary_10_35414_akufemubid_1579340 crossref_primary_10_1007_s12517_024_11948_x crossref_primary_10_1109_TVT_2021_3128925 crossref_primary_10_1016_j_asr_2024_09_039 crossref_primary_10_3390_rs16060973 crossref_primary_10_1007_s11356_022_20771_4 crossref_primary_10_1109_JSTARS_2024_3473937 crossref_primary_10_1016_j_marenvres_2022_105701 crossref_primary_10_3390_rs15010102 crossref_primary_10_3390_urbansci8030147 crossref_primary_10_1016_j_envsoft_2024_106227 crossref_primary_10_1007_s43621_025_01709_5 crossref_primary_10_3390_rs13234745 crossref_primary_10_3390_rs15061604 crossref_primary_10_1016_j_catena_2024_107821 crossref_primary_10_1007_s12145_025_01892_z crossref_primary_10_1002_ldr_70134 crossref_primary_10_1080_24749508_2025_2524207 crossref_primary_10_1016_j_rse_2023_113947 crossref_primary_10_1007_s12524_022_01633_5 crossref_primary_10_3390_land13111837 crossref_primary_10_3390_rs14153778 crossref_primary_10_3390_rs15010178 crossref_primary_10_3390_w16030436 crossref_primary_10_1109_TGRS_2024_3466389 crossref_primary_10_3390_w15122212 crossref_primary_10_1016_j_scitotenv_2023_162774 crossref_primary_10_1007_s00607_025_01536_6 crossref_primary_10_1109_TGRS_2021_3063151 crossref_primary_10_1007_s10661_024_13315_5 crossref_primary_10_1016_j_ecolind_2025_114078 crossref_primary_10_3390_rs16183371 crossref_primary_10_3390_rs16213953 crossref_primary_10_1109_JSTARS_2024_3428627 crossref_primary_10_1016_j_asr_2025_03_002 crossref_primary_10_1016_j_scitotenv_2021_152315 crossref_primary_10_1117_1_JRS_17_036509 crossref_primary_10_1016_j_scitotenv_2021_150139 crossref_primary_10_1186_s13021_024_00281_1 crossref_primary_10_1007_s41324_022_00430_z crossref_primary_10_1016_j_heliyon_2023_e19654 crossref_primary_10_1016_j_ecoinf_2025_103133 crossref_primary_10_1016_j_isprsjprs_2024_02_003 crossref_primary_10_1080_22797254_2023_2259244 crossref_primary_10_3390_rs15010041 crossref_primary_10_1109_JSTARS_2023_3247455 crossref_primary_10_1080_17538947_2024_2409351 crossref_primary_10_3390_fire6110411 crossref_primary_10_1109_JSTARS_2025_3568771 crossref_primary_10_3390_land14081578 crossref_primary_10_3390_rs17050912 crossref_primary_10_3390_f13101549 crossref_primary_10_3390_land12040849 crossref_primary_10_1016_j_gloplacha_2025_104873 crossref_primary_10_3390_app13010390 crossref_primary_10_1117_1_JRS_17_014506 crossref_primary_10_1007_s13762_025_06724_7 crossref_primary_10_1016_j_ancene_2022_100346 crossref_primary_10_3390_rs14102291 crossref_primary_10_3390_ijerph19106095 crossref_primary_10_1016_j_jhydrol_2022_128465 crossref_primary_10_1002_rse2_366 crossref_primary_10_1002_ece3_10388 crossref_primary_10_3390_rs15153841 crossref_primary_10_1016_j_jag_2024_103749 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_3390_jimaging8120316 crossref_primary_10_3390_rs14235978 crossref_primary_10_1007_s40808_025_02456_2 crossref_primary_10_1007_s11869_025_01771_y crossref_primary_10_3390_rs15041096 crossref_primary_10_1007_s00477_023_02648_1 crossref_primary_10_1007_s10708_025_11481_8 crossref_primary_10_1007_s00477_022_02362_4 crossref_primary_10_3390_rs16244791 crossref_primary_10_1016_j_aeolia_2024_100928 crossref_primary_10_1016_j_apgeog_2022_102868 crossref_primary_10_3390_ijgi13080276 crossref_primary_10_1016_j_jag_2024_103996 crossref_primary_10_3390_rs15153732 crossref_primary_10_1007_s10489_024_05469_z crossref_primary_10_1016_j_ecoinf_2025_103152 crossref_primary_10_1016_j_envsoft_2025_106600 crossref_primary_10_1007_s12524_023_01764_3 crossref_primary_10_1007_s40808_025_02444_6 crossref_primary_10_1109_ACCESS_2024_3420757 crossref_primary_10_1016_j_jhydrol_2023_129869 crossref_primary_10_2166_wst_2024_215 crossref_primary_10_1109_JSTARS_2023_3335907 |
| Cites_doi | 10.3390/rs9121208 10.1016/j.rse.2018.11.030 10.3390/rs11070831 10.1109/CVPR.2017.520 10.3390/rs9070669 10.3390/rs11050489 10.1029/2018GL080158 10.1016/j.scitotenv.2019.135894 10.1016/j.jenvman.2019.109320 10.1016/j.scitotenv.2019.06.341 10.5623/cig2017-401 10.5194/isprs-annals-IV-4-W2-61-2017 10.1007/s12517-017-3072-3 10.1080/15481603.2017.1419602 10.3390/rs10081167 10.1016/S1674-5264(09)60175-7 10.1016/j.compag.2016.08.008 10.3390/rs10060859 10.3390/rs9070735 10.1007/s41064-019-00074-z 10.1016/j.rse.2018.05.012 10.1016/j.rse.2018.11.012 10.1371/journal.pone.0211510 10.3390/rs12010002 10.5194/isprs-archives-XLII-3-W8-497-2019 10.1016/j.isprsjprs.2020.07.013 10.1080/22797254.2018.1455540 10.1109/Agro-Geoinformatics.2015.7248087 10.1016/j.cageo.2017.07.005 10.1175/BAMS-D-15-00324.1 10.1127/1432-8364/2011/0080 10.3390/s19092118 10.1016/j.jasrep.2017.08.013 10.3390/rs11070842 10.1016/j.ecolind.2019.105763 10.5721/EuJRS20164915 10.1080/03610927408827101 10.1007/s10661-019-7355-x 10.3390/rs11050591 10.3390/rs11232881 10.1109/TNN.2005.845141 10.3390/rs11131581 10.1080/01431161.2017.1420933 10.3390/rs11010043 10.1016/j.uclim.2018.05.004 10.1007/s12145-020-00449-6 10.1002/eap.1848 10.3390/rs11151808 10.1016/j.agsy.2018.07.002 10.1109/JSTARS.2019.2901404 10.1016/j.isprsjprs.2020.01.001 10.1007/s11869-020-00796-9 10.5194/isprs-archives-XLII-3-W6-573-2019 10.1111/2041-210X.13194 10.1002/eap.1557 10.1016/j.scitotenv.2019.06.514 10.1016/S2095-3119(15)61149-2 10.1109/JSTARS.2017.2705718 10.1016/j.isprsjprs.2019.06.014 10.1016/j.rse.2014.01.011 10.1016/0004-3702(89)90046-5 10.1016/j.crte.2018.11.005 10.1016/j.isprsjprs.2020.04.001 10.3390/rs10101569 10.1016/j.scitotenv.2019.134608 10.1016/j.jag.2018.09.011 10.1016/j.rse.2019.04.016 10.1007/s10980-018-0704-2 10.3390/hydrology6020053 10.3390/rs11070820 10.1007/s00445-017-1172-2 10.1371/journal.pone.0197758 10.3390/rs10091455 10.1080/01431161.2019.1601286 10.1002/ecs2.2430 10.1016/j.rse.2019.04.015 10.3390/rs11243023 10.1016/j.coastaleng.2019.04.004 10.1016/j.envsoft.2018.11.004 10.1016/j.landurbplan.2015.11.011 10.3390/f8050166 10.5194/bg-11-2027-2014 10.1080/01431161.2019.1633702 10.1016/j.scib.2019.03.002 10.1016/j.rse.2019.111374 10.1109/IGARSS.2018.8519098 10.3390/rs12040602 10.1016/j.rse.2019.111317 10.1117/1.JRS.11.015005 10.1109/TGRS.2013.2272545 10.5194/soil-4-83-2018 10.2112/SI85-290.1 10.1016/j.isprsjprs.2019.11.021 10.1080/10106049.2017.1408700 10.3390/rs10111823 10.3390/rs11242977 10.1109/LGRS.2018.2865816 10.1016/j.rse.2017.06.031 10.1080/01431161.2019.1610983 10.1080/01431161.2018.1508924 10.1093/wber/lhx029 10.1016/j.cities.2019.01.009 10.3390/rs10071079 10.1016/j.rse.2019.111285 10.1016/j.rse.2010.07.008 10.1038/s41467-018-05991-y 10.1016/j.rse.2020.111672 10.1016/j.isprsjprs.2020.02.011 10.1016/j.jas.2019.105013 10.1007/s12665-018-7516-1 10.5194/isprs-archives-XLII-3-W8-491-2019 10.3390/rs11141666 10.1002/esp.4317 10.1016/j.rse.2015.04.021 10.1016/j.isprsjprs.2020.01.010 10.1126/science.1244693 10.1007/s12571-016-0627-1 10.1007/s12665-019-8751-9 10.1007/s11356-019-04708-y 10.1016/j.uclim.2018.11.001 10.1016/j.scitotenv.2018.10.359 10.1080/15481603.2015.1055540 10.3390/su11195517 10.5194/isprs-archives-XLII-3-W10-5-2020 10.1007/s11629-017-4518-5 10.3390/environments4020032 10.3390/rs9121315 10.1109/JSTARS.2019.2904035 10.1016/j.rse.2018.12.026 10.1002/2017GL074071 10.1016/j.rse.2017.05.026 10.1201/9780203739273-1 10.5194/isprs-archives-XLII-3-289-2018 10.1080/15481603.2019.1695407 10.3390/f10090729 10.1016/j.cageo.2019.104366 10.3390/rs11151755 10.3390/rs11242905 10.1371/journal.pone.0184926 10.1016/j.serj.2016.10.001 10.3390/rs11101155 10.1016/j.rse.2009.08.017 10.1016/j.cageo.2015.06.023 10.1016/j.rse.2019.111301 10.3390/rs11232785 10.1016/j.rse.2020.111665 10.3390/rs11161899 10.1117/1.JRS.12.026003 10.1016/j.rse.2018.02.060 10.1038/nature20584 10.3390/rs8080634 10.1080/20964471.2019.1690404 10.1016/j.rse.2019.111260 10.1080/2150704X.2019.1633487 10.3390/rs11141736 10.1016/j.gecco.2017.e00366 10.1080/2150704X.2018.1500723 10.1016/j.isprsjprs.2018.07.017 10.3390/rs10071057 10.1111/gcb.14919 10.3390/rs10091488 10.3390/rs11172044 10.1111/2041-210X.13043 10.3390/w11040780 10.3390/s19143209 10.3390/rs10101509 10.1007/s10661-017-6415-3 10.1016/j.rse.2019.111210 10.1016/j.future.2014.10.029 10.1016/j.ijdrr.2019.101292 10.1016/j.rse.2019.111412 10.1016/j.rse.2018.11.011 10.1109/JPROC.2016.2598228 10.3390/rs11192191 10.1080/17538947.2018.1494761 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2020.3021052 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 5350 |
| ExternalDocumentID | oai_doaj_org_article_c0dcc34f8a2844de9fa33ffbc72cb4de 10_1109_JSTARS_2020_3021052 9184118 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c408t-3a9655d615c9de3a8d3aeae215976310a5dd529f26ce929eb155b615f8c7173e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 672 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571725700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:53:11 EDT 2025 Fri Jul 25 19:15:13 EDT 2025 Tue Nov 18 21:50:13 EST 2025 Sat Nov 29 04:51:06 EST 2025 Wed Aug 27 02:50:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-3a9655d615c9de3a8d3aeae215976310a5dd529f26ce929eb155b615f8c7173e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8406-683X 0000-0002-1670-151X 0000-0001-5437-4073 0000-0003-3920-2390 0000-0002-2318-8216 0000-0002-0455-4882 0000-0002-9495-4010 0000-0003-2992-4277 0000-0001-5310-5859 0000-0001-9971-3892 0000-0001-8439-362X |
| OpenAccessLink | https://doaj.org/article/c0dcc34f8a2844de9fa33ffbc72cb4de |
| PQID | 2444616292 |
| PQPubID | 75722 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2444616292 crossref_citationtrail_10_1109_JSTARS_2020_3021052 ieee_primary_9184118 doaj_primary_oai_doaj_org_article_c0dcc34f8a2844de9fa33ffbc72cb4de crossref_primary_10_1109_JSTARS_2020_3021052 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref59 tóth (ref156) 2018; 190 ref58 ref53 ref52 ref168 ref55 ref169 ref54 ref170 ref177 ref178 ref175 ref176 ref50 wilder (ref5) 2012 ref173 ref174 ref171 ref172 (ref41) 0 ref46 ref48 ref179 ref44 ref49 ref180 ref8 ref181 ref7 ref9 ref4 ref3 ref6 ref100 ref101 ref182 ref183 ref35 (ref43) 0 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref155 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref25 ref20 ref159 ref22 ref157 ref21 ref158 ref28 ref27 ref29 dan pelleg (ref26) 2000 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref128 ref15 ref129 ref14 ref126 ref97 ref127 ref96 ref124 ref99 ref11 ref125 ref98 ref10 ref17 ref16 (ref51) 0 ref19 ref133 ref93 ref134 ref92 ref131 ref95 ref132 ref94 ref130 ref91 ref90 pérez-romero (ref66) 2019; 11 ref89 ref139 ref137 ref86 ref138 ref85 ref135 ref88 ref136 ref87 ref144 ref82 ref145 ref81 ref142 ref84 ref143 ref83 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 gong (ref18) 2018; 236 ref74 ref105 ref77 ref102 ray (ref40) 2019; xlii 3 w6 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 (ref47) 0 ref73 ref72 ref110 çolak (ref45) 2019; xlii 3 w8 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 (ref42) 0 |
| References_xml | – ident: ref36 doi: 10.3390/rs9121208 – ident: ref123 doi: 10.1016/j.rse.2018.11.030 – ident: ref76 doi: 10.3390/rs11070831 – ident: ref28 doi: 10.1109/CVPR.2017.520 – ident: ref127 doi: 10.3390/rs9070669 – ident: ref133 doi: 10.3390/rs11050489 – ident: ref90 doi: 10.1029/2018GL080158 – ident: ref134 doi: 10.1016/j.scitotenv.2019.135894 – ident: ref174 doi: 10.1016/j.jenvman.2019.109320 – ident: ref94 doi: 10.1016/j.scitotenv.2019.06.341 – ident: ref109 doi: 10.5623/cig2017-401 – ident: ref35 doi: 10.5194/isprs-annals-IV-4-W2-61-2017 – ident: ref24 doi: 10.1007/s12517-017-3072-3 – ident: ref117 doi: 10.1080/15481603.2017.1419602 – ident: ref21 doi: 10.3390/rs10081167 – ident: ref163 doi: 10.1016/S1674-5264(09)60175-7 – ident: ref87 doi: 10.1016/j.compag.2016.08.008 – ident: ref20 doi: 10.3390/rs10060859 – year: 2012 ident: ref5 publication-title: Cloud Architecture Patterns Using Microsoft Azure – ident: ref170 doi: 10.3390/rs9070735 – ident: ref176 doi: 10.1007/s41064-019-00074-z – ident: ref101 doi: 10.1016/j.rse.2018.05.012 – ident: ref151 doi: 10.1016/j.rse.2018.11.012 – ident: ref56 doi: 10.1371/journal.pone.0211510 – ident: ref48 doi: 10.3390/rs12010002 – ident: ref44 doi: 10.5194/isprs-archives-XLII-3-W8-497-2019 – start-page: 727 year: 2000 ident: ref26 article-title: X-means: Extending k-means with efficient estimation of the number of clusters publication-title: Proc 17th Int Conf Mach Learning – ident: ref126 doi: 10.1016/j.isprsjprs.2020.07.013 – ident: ref78 doi: 10.1080/22797254.2018.1455540 – ident: ref38 doi: 10.1109/Agro-Geoinformatics.2015.7248087 – ident: ref172 doi: 10.1016/j.cageo.2017.07.005 – ident: ref144 doi: 10.1175/BAMS-D-15-00324.1 – ident: ref52 doi: 10.1127/1432-8364/2011/0080 – ident: ref138 doi: 10.3390/s19092118 – ident: ref171 doi: 10.1016/j.jasrep.2017.08.013 – ident: ref1 doi: 10.3390/rs11070842 – ident: ref181 doi: 10.1016/j.ecolind.2019.105763 – ident: ref159 doi: 10.5721/EuJRS20164915 – ident: ref25 doi: 10.1080/03610927408827101 – ident: ref93 doi: 10.1007/s10661-019-7355-x – ident: ref10 doi: 10.3390/rs11050591 – ident: ref49 doi: 10.3390/rs11232881 – ident: ref22 doi: 10.1109/TNN.2005.845141 – ident: ref131 doi: 10.3390/rs11131581 – ident: ref75 doi: 10.1080/01431161.2017.1420933 – ident: ref29 doi: 10.3390/rs11010043 – ident: ref113 doi: 10.1016/j.uclim.2018.05.004 – ident: ref136 doi: 10.1007/s12145-020-00449-6 – ident: ref130 doi: 10.1002/eap.1848 – ident: ref122 doi: 10.3390/rs11151808 – ident: ref81 doi: 10.1016/j.agsy.2018.07.002 – ident: ref57 doi: 10.1109/JSTARS.2019.2901404 – ident: ref88 doi: 10.1016/j.isprsjprs.2020.01.001 – ident: ref143 doi: 10.1007/s11869-020-00796-9 – volume: xlii 3 w6 start-page: 573 year: 2019 ident: ref40 article-title: Exploring machine learning classification algorithms for crop classification using Sentinel 2 data publication-title: ISPRS Int Arch Photogrammetry Remote Sens Spatial Inf Sci doi: 10.5194/isprs-archives-XLII-3-W6-573-2019 – ident: ref173 doi: 10.1111/2041-210X.13194 – ident: ref167 doi: 10.1002/eap.1557 – ident: ref166 doi: 10.1016/j.scitotenv.2019.06.514 – ident: ref72 doi: 10.1016/S2095-3119(15)61149-2 – ident: ref98 doi: 10.1109/JSTARS.2017.2705718 – ident: ref150 doi: 10.1016/j.isprsjprs.2019.06.014 – ident: ref30 doi: 10.1016/j.rse.2014.01.011 – ident: ref27 doi: 10.1016/0004-3702(89)90046-5 – ident: ref158 doi: 10.1016/j.crte.2018.11.005 – ident: ref2 doi: 10.1016/j.isprsjprs.2020.04.001 – ident: ref115 doi: 10.3390/rs10101569 – ident: ref146 doi: 10.1016/j.scitotenv.2019.134608 – ident: ref92 doi: 10.1016/j.jag.2018.09.011 – ident: ref83 doi: 10.1016/j.rse.2019.04.016 – ident: ref61 doi: 10.1007/s10980-018-0704-2 – ident: ref91 doi: 10.3390/hydrology6020053 – ident: ref77 doi: 10.3390/rs11070820 – ident: ref99 doi: 10.1007/s00445-017-1172-2 – ident: ref162 doi: 10.1371/journal.pone.0197758 – ident: ref15 doi: 10.3390/rs10091455 – ident: ref79 doi: 10.1080/01431161.2019.1601286 – ident: ref70 doi: 10.1002/ecs2.2430 – ident: ref125 doi: 10.1016/j.rse.2019.04.015 – ident: ref14 doi: 10.3390/rs11243023 – year: 0 ident: ref47 – ident: ref96 doi: 10.1016/j.coastaleng.2019.04.004 – ident: ref13 doi: 10.1016/j.envsoft.2018.11.004 – ident: ref106 doi: 10.1016/j.landurbplan.2015.11.011 – ident: ref34 doi: 10.3390/f8050166 – ident: ref54 doi: 10.5194/bg-11-2027-2014 – ident: ref58 doi: 10.1080/01431161.2019.1633702 – ident: ref180 doi: 10.1016/j.scib.2019.03.002 – ident: ref108 doi: 10.1016/j.rse.2019.111374 – ident: ref154 doi: 10.1109/IGARSS.2018.8519098 – ident: ref179 doi: 10.3390/rs12040602 – ident: ref59 doi: 10.1016/j.rse.2019.111317 – ident: ref149 doi: 10.1117/1.JRS.11.015005 – volume: 236 year: 2018 ident: ref18 article-title: Annual maps of global artificial impervious area (GAIA) between 1985 and publication-title: Remote Sens Environ – ident: ref31 doi: 10.1109/TGRS.2013.2272545 – ident: ref157 doi: 10.5194/soil-4-83-2018 – ident: ref124 doi: 10.2112/SI85-290.1 – ident: ref111 doi: 10.1016/j.isprsjprs.2019.11.021 – ident: ref120 doi: 10.1080/10106049.2017.1408700 – ident: ref86 doi: 10.3390/rs10111823 – ident: ref148 doi: 10.3390/rs11242977 – ident: ref19 doi: 10.1109/LGRS.2018.2865816 – ident: ref6 doi: 10.1016/j.rse.2017.06.031 – ident: ref107 doi: 10.1080/01431161.2019.1610983 – year: 0 ident: ref43 article-title: GEE Python API Docs – ident: ref63 doi: 10.1080/01431161.2018.1508924 – ident: ref74 doi: 10.1093/wber/lhx029 – ident: ref140 doi: 10.1016/j.cities.2019.01.009 – ident: ref12 doi: 10.3390/rs10071079 – ident: ref121 doi: 10.1016/j.rse.2019.111285 – ident: ref32 doi: 10.1016/j.rse.2010.07.008 – ident: ref116 doi: 10.1038/s41467-018-05991-y – ident: ref67 doi: 10.1016/j.rse.2020.111672 – ident: ref177 doi: 10.1016/j.isprsjprs.2020.02.011 – ident: ref169 doi: 10.1016/j.jas.2019.105013 – ident: ref135 doi: 10.1007/s12665-018-7516-1 – volume: xlii 3 w8 start-page: 491 year: 2019 ident: ref45 article-title: The use of multi-temporal Sentinel satellites in the analysis of land cover/land use changes caused by the nuclear power plant construction publication-title: ISPRS Int Arch Photogrammetry Remote Sens Spatial Inf Sci doi: 10.5194/isprs-archives-XLII-3-W8-491-2019 – ident: ref82 doi: 10.3390/rs11141666 – ident: ref165 doi: 10.1002/esp.4317 – ident: ref84 doi: 10.1016/j.rse.2015.04.021 – ident: ref153 doi: 10.1016/j.isprsjprs.2020.01.010 – ident: ref8 doi: 10.1126/science.1244693 – ident: ref73 doi: 10.1007/s12571-016-0627-1 – ident: ref129 doi: 10.1007/s12665-019-8751-9 – ident: ref141 doi: 10.1007/s11356-019-04708-y – ident: ref112 doi: 10.1016/j.uclim.2018.11.001 – ident: ref65 doi: 10.1016/j.scitotenv.2018.10.359 – ident: ref53 doi: 10.1080/15481603.2015.1055540 – ident: ref110 doi: 10.3390/su11195517 – year: 0 ident: ref51 article-title: Sentinel-1 algorithms – ident: ref11 doi: 10.5194/isprs-archives-XLII-3-W10-5-2020 – ident: ref100 doi: 10.1007/s11629-017-4518-5 – ident: ref145 doi: 10.3390/environments4020032 – ident: ref7 doi: 10.3390/rs9121315 – ident: ref132 doi: 10.1109/JSTARS.2019.2904035 – ident: ref80 doi: 10.1016/j.rse.2018.12.026 – ident: ref85 doi: 10.1002/2017GL074071 – ident: ref128 doi: 10.1016/j.rse.2017.05.026 – ident: ref155 doi: 10.1201/9780203739273-1 – ident: ref46 doi: 10.5194/isprs-archives-XLII-3-289-2018 – ident: ref142 doi: 10.1080/15481603.2019.1695407 – ident: ref114 doi: 10.3390/f10090729 – ident: ref164 doi: 10.1016/j.cageo.2019.104366 – ident: ref152 doi: 10.3390/rs11151755 – year: 0 ident: ref41 article-title: Python vs. Javascript APIs – ident: ref161 doi: 10.3390/rs11242905 – ident: ref118 doi: 10.1371/journal.pone.0184926 – ident: ref139 doi: 10.1016/j.serj.2016.10.001 – ident: ref95 doi: 10.3390/rs11101155 – ident: ref33 doi: 10.1016/j.rse.2009.08.017 – ident: ref50 doi: 10.1016/j.cageo.2015.06.023 – ident: ref69 doi: 10.1016/j.rse.2019.111301 – ident: ref103 doi: 10.3390/rs11232785 – ident: ref97 doi: 10.1016/j.rse.2020.111665 – ident: ref68 doi: 10.3390/rs11161899 – ident: ref105 doi: 10.1117/1.JRS.12.026003 – ident: ref102 doi: 10.1016/j.rse.2018.02.060 – ident: ref178 doi: 10.1038/nature20584 – ident: ref183 doi: 10.3390/rs8080634 – ident: ref16 doi: 10.1080/20964471.2019.1690404 – ident: ref168 doi: 10.1016/j.rse.2019.111260 – ident: ref147 doi: 10.1080/2150704X.2019.1633487 – volume: 11 year: 2019 ident: ref66 article-title: Improvement of remote sensing-based assessment of defoliation of Pinus spp. caused by Thaumetopoea Pityocampa Denis and Schiffermüller and related environmental drivers in Southeastern Spain publication-title: Remote Sens doi: 10.3390/rs11141736 – ident: ref55 doi: 10.1016/j.gecco.2017.e00366 – ident: ref23 doi: 10.1080/2150704X.2018.1500723 – ident: ref182 doi: 10.1016/j.isprsjprs.2018.07.017 – ident: ref71 doi: 10.3390/rs10071057 – ident: ref64 doi: 10.1111/gcb.14919 – ident: ref17 doi: 10.3390/rs10091488 – ident: ref60 doi: 10.3390/rs11172044 – ident: ref119 doi: 10.1111/2041-210X.13043 – ident: ref39 doi: 10.3390/w11040780 – ident: ref160 doi: 10.3390/s19143209 – ident: ref9 doi: 10.3390/rs10101509 – volume: 190 year: 2018 ident: ref156 article-title: Monitoring soil for sustainable development and land degradation neutrality publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-017-6415-3 – ident: ref89 doi: 10.1016/j.rse.2019.111210 – ident: ref4 doi: 10.1016/j.future.2014.10.029 – ident: ref137 doi: 10.1016/j.ijdrr.2019.101292 – ident: ref175 doi: 10.1016/j.rse.2019.111412 – ident: ref62 doi: 10.1016/j.rse.2018.11.011 – ident: ref3 doi: 10.1109/JPROC.2016.2598228 – year: 0 ident: ref42 article-title: GEE developers forum – ident: ref104 doi: 10.3390/rs11192191 – ident: ref37 doi: 10.1080/17538947.2018.1494761 |
| SSID | ssj0062793 |
| Score | 2.68234 |
| Snippet | Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5326 |
| SubjectTerms | Algorithms Artificial satellites Big Data Classification Cloud computing Data Data analysis Data processing Datasets Earth Engines Environmental monitoring Google Earth Engine (GEE) Hydrology Image classification Image processing Land cover Land use Land use classification Land use management Landsat Landsat satellites Learning algorithms Machine learning Natural disasters Remote sensing remote sensing (RS) Satellite observation Urban planning |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEG-AaOILqGg4QNMHH1nZa7fdlrcDAR8MIaCGt6bbToHkvDXHnon_PdOPu2g0Jr40-9Fumv1NO7_ptDOEvOPMoqGhoXICi8YrWSkrWdWpmnvJOhVSOp-vn9qLC3Vzoy_XyMHqLAwApM1n8D5eJl--790iLpUdajRHkBCvk_W2bfNZreWsK1mbAuwiH9FVDBlTIgyNa32IIj65ukZbkKGJGm0cwX7TQilYf8mu8seUnPTM2db_9fA52Sx8kk6yALwgazB7SZ6ep3y9P7fJt_O-v50CPUUJuaM5-CA9mfYLT3M-B9Rc9HJqh8hdKRb0ChA8oNdxYzu-O76_pR_sYOnkF0_3EZ2k5nO4y_vfaXYxvCJfzk4_n3ysSoaFyjW1GiputRTCI6tx2gO3ynMLFpAGIEtB4meF94LpwKQD5FE4rwvRYe2gXPTeA39NNmb9DHYIlUGi9dZqBEA00InOjQMPSOei79TbekTY8o8bV8KPxywYU5PMkFqbDJOJMJkC04gcrBp9z9E3_l39OEK5qhpDZ6cHiJEpI9G42jvHm6AsaubGgw6W8xA61zLX4f2IbEdcVx8pkI7I_lIwTBnmDwa5USPHkmm2-_dWe-RZ7GBes9knG8N8AW_IE_djuH-Yv00S_AjVZuxk priority: 102 providerName: IEEE |
| Title | Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review |
| URI | https://ieeexplore.ieee.org/document/9184118 https://www.proquest.com/docview/2444616292 https://doaj.org/article/c0dcc34f8a2844de9fa33ffbc72cb4de |
| Volume | 13 |
| WOSCitedRecordID | wos000571725700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCl5EneL8IgePFrukyRJvU6ceZIz5gbeQ5kOFucmsgv-9L0k3JoJevBTaJm363ut7v1-TvofQISUaiIZ0mWGwKazgmdCcZKXIqeWkFD6W87m_bvd64uFB9udKfYU1YSk9cBLcscmtMbTwQoMjLayTXlPqfWnaxJSwH7wvoJ4pmUo-mBMwuzrHUCuXx2DkncENsEECJDWwHEa-xaGYrr-ur_LDKcdIc7GGVmuIiDtpaOtowY020PJlLMH72UAvl-Px49DhLoz9Cad8gvhsOH63OJVogGCE-0NdBTiKYYMHDvTh8E1Yqw7nTp8f8bmuNO7MTV6f4E7sPnFPaUk7TrMGm-juont7dpXVRRMyU-SiyqiWnDELQMVI66gWlmqnHUR2AB6A5TSzlhHpCTcOoBG4asZKaO2FCRPyjm6hxdF45LYR5p4DIWtLwHiscCUrTctTDwgtTIdanTcRmYpQmTqjeChsMVSRWeRSJbmrIHdVy72JjmadXlNCjd-bnwbdzJqGbNjxANiIqm1E_WUjTdQImp1dRAKtBWLVRHtTTav6zX1TAHcK3uJEkp3_uPUuWgmPkz7a7KHFavLu9tGS-aie3yYH0WgP4k-HX4Rl8ME |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAoJLebSoSwv4wLGhWTv2xr1t34hlVbUF9WY59rittN2gbRaJf8_Yya5AICQuVh52ZOUbe77x2DMA7wW3ZGhozJykovClykqreFaVufCKV2VI6Xy-jgbjcXl1pc9WYGd5FgYR0-Yz_BAvky_f124el8p2NZkjRIgfwENZFLzfntZazLuKD1KIXWIkOotBY7oYQ_1c75KQD88vyBrkZKRGK0fy3_RQCtff5Vf5Y1JOmub42f_18TmsdYySDVsReAErOH0Jj09Sxt4f63B3UtfXE2RHJCM3rA0_yA4m9dyzNqMD6S52NrFNZK-MCnaOBB-yi7i1nd7t316zQ9tYNvzF173Hhqn5DG_aHfCsdTJswJfjo8uD06zLsZC5Ii-bTFitpPTEa5z2KGzphUWLRASIpxD1s9J7yXXgyiExKZrZpayodihd9N-jeAWr03qKm8BUUGS_DTQBIAusZOX6QQQidNF76m3eA77448Z1AchjHoyJSYZIrk0Lk4kwmQ6mHuwsG31r42_8u_p-hHJZNQbPTg8II9ONReNy75woQmlJNxcedbBChFC5AXcV3fdgPeK6_EgHaQ-2F4JhuoF-b4gdFaqvuOav_97qHTw5vfw8MqOP409b8DR2tl3B2YbVZjbHN_DIfW9u72dvkzT_BEUx76s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Google+Earth+Engine+Cloud+Computing+Platform+for+Remote+Sensing+Big+Data+Applications%3A+A+Comprehensive+Review&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Amani%2C+Meisam&rft.au=Ghorbanian%2C+Arsalan&rft.au=Ahmadi%2C+Seyed+Ali&rft.au=Kakooei%2C+Mohammad&rft.date=2020&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=13&rft.spage=5326&rft.epage=5350&rft_id=info:doi/10.1109%2FJSTARS.2020.3021052&rft.externalDocID=9184118 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |