Parallel MOEA Based on Consensus and Membrane Structure for Inferring Phylogenetic Reconstruction

In recent years, inferring phylogenies has attracted lots of attention in both academic community and various application fields. Phylogenetic inference usually consists of a couple of evolutionary relationships, which can be represented as a phylogenetic tree. The phylogenetic reconstruction proble...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 6177 - 6189
Main Authors: Zhang, Qianqian, Zhang, Jun, Zhong, Yue, Ye, Congming, Min, Xiaoping
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, inferring phylogenies has attracted lots of attention in both academic community and various application fields. Phylogenetic inference usually consists of a couple of evolutionary relationships, which can be represented as a phylogenetic tree. The phylogenetic reconstruction problem can be defined as an optimization problem, targeting at finding the most eligible tree among all possible topologies according to a selected criterion. Since the combinatorial number of possible topologies exceeds tolerance, various heuristic and metaheuristic methods have been proposed to find approximate solutions according to the selected criterion. However, different criterions are based on different principle and conflict with each other basically. In this line, scholars has proposed multi-objective evolutionary algorithm (MOEA) based on diverse criteria. Nevertheless, MOEA has suffered unbearable time consumption due to its inherent drawbacks of computational complexity and convergence. By studying the independence between the sub-populations in each time-consuming step of MOEA, the steps without global information can be designed to be executed in parallel, which can fundamentally address computational problems. Effective parallel algorithms designed with the characteristics of modern multicore clusters can solve such problems. In this sense, we propose a parallelized multi-objective evolutionary algorithm (MOEA-MC) by deploying on Spark, which added consensus into evolutionary algorithm to improve the quality of convergence and used membrane structure to keep equal solutions under different weights. In order to assess the performance achieved by the proposal, we have performed comparison among different methods on three real-world datasets separately. The results have certified that the solutions derived from MOEA-MC are superior to traditional methods in all studied datasets. And parallelized MOEA-MC can get dominant position and optimal Pareto-frontier simultaneously within minimal runtime.
AbstractList In recent years, inferring phylogenies has attracted lots of attention in both academic community and various application fields. Phylogenetic inference usually consists of a couple of evolutionary relationships, which can be represented as a phylogenetic tree. The phylogenetic reconstruction problem can be defined as an optimization problem, targeting at finding the most eligible tree among all possible topologies according to a selected criterion. Since the combinatorial number of possible topologies exceeds tolerance, various heuristic and metaheuristic methods have been proposed to find approximate solutions according to the selected criterion. However, different criterions are based on different principle and conflict with each other basically. In this line, scholars has proposed multi-objective evolutionary algorithm (MOEA) based on diverse criteria. Nevertheless, MOEA has suffered unbearable time consumption due to its inherent drawbacks of computational complexity and convergence. By studying the independence between the sub-populations in each time-consuming step of MOEA, the steps without global information can be designed to be executed in parallel, which can fundamentally address computational problems. Effective parallel algorithms designed with the characteristics of modern multicore clusters can solve such problems. In this sense, we propose a parallelized multi-objective evolutionary algorithm (MOEA-MC) by deploying on Spark, which added consensus into evolutionary algorithm to improve the quality of convergence and used membrane structure to keep equal solutions under different weights. In order to assess the performance achieved by the proposal, we have performed comparison among different methods on three real-world datasets separately. The results have certified that the solutions derived from MOEA-MC are superior to traditional methods in all studied datasets. And parallelized MOEA-MC can get dominant position and optimal Pareto-frontier simultaneously within minimal runtime.
Author Ye, Congming
Min, Xiaoping
Zhang, Qianqian
Zhong, Yue
Zhang, Jun
Author_xml – sequence: 1
  givenname: Qianqian
  orcidid: 0000-0003-1955-1366
  surname: Zhang
  fullname: Zhang, Qianqian
  organization: Department of Computer Science, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0003-0402-3034
  surname: Zhang
  fullname: Zhang, Jun
  organization: Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
– sequence: 3
  givenname: Yue
  orcidid: 0000-0002-8576-2439
  surname: Zhong
  fullname: Zhong, Yue
  organization: Department of Computer Science, Xiamen University, Xiamen, China
– sequence: 4
  givenname: Congming
  orcidid: 0000-0002-6011-2691
  surname: Ye
  fullname: Ye, Congming
  organization: Department of Computer Science, Xiamen University, Xiamen, China
– sequence: 5
  givenname: Xiaoping
  orcidid: 0000-0002-0817-0878
  surname: Min
  fullname: Min, Xiaoping
  email: mxp@xmu.edu.cn
  organization: Department of Computer Science, Xiamen University, Xiamen, China
BookMark eNp9kUFvEzEQhS1UJErpL-jFEucE27Pe2MewChCpVSsCZ2vinQ0bbe1i7x7673G6Lao44Iut0fvePOu9Z2chBmLsSoqllMJ-WjfNZrdbKiHtUlltVwbesHMla7sADfXZq_c7dpnzUZRjykivzhneYcJhoIHf3G7W_DNmankMvIkhU8hT5hhafkP3-4SB-G5Mkx-nRLyLiW9DRyn14cDvfj0O8UCBxt7z7-QL_aTsY_jA3nY4ZLp8vi_Yzy-bH823xfXt122zvl74SphxAaZF8MZbaaSWLdSdlgAaNVBn9lBR1dVGVrXeqxUZ8Noopf3Kg650BxLhgm1n3zbi0T2k_h7To4vYu6dBTAeHqcQbyFkQ1BrcExRjqzWa2lujyjLTCm9OXh9nr4cUf0-UR3eMUwolvlOVrmytpNBFZWeVTzHnRJ3z_YinP48J-8FJ4U4FubkgdyrIPRdUWPiHfUn8f-pqpnoi-ksYCyClgj9bUZ1i
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_math11153327
crossref_primary_10_1016_j_biosystems_2022_104606
crossref_primary_10_1111_itor_13164
crossref_primary_10_1016_j_asoc_2023_110270
Cites_doi 10.1109/TCBB.2017.2776280
10.1109/TEVC.2007.892759
10.1186/s12918-017-0476-3
10.1016/0025-5564(90)90123-G
10.1109/TCBB.2007.070203
10.1016/j.jpdc.2019.04.007
10.1109/TCDS.2017.2785332
10.1086/509588
10.1093/bioinformatics/btz694
10.1093/oxfordjournals.molbev.a026008
10.1017/CBO9780511819049
10.1109/TPDS.2014.2325828
10.1007/s00158-009-0460-7
10.1109/TNB.2018.2873221
10.1111/2041-210X.12529
10.1023/A:1013737224969
10.1016/j.artmed.2017.02.005
10.1007/978-1-4471-5304-7_14
10.1007/978-3-642-13800-3_17
10.1007/BF02101694
10.1109/TSMCC.2005.855515
10.1109/TEVC.2017.2749619
10.1073/pnas.162224399
10.1016/j.ins.2019.08.064
10.1007/BF01731581
10.1186/s13015-017-0116-x
10.1111/j.1096-0031.2005.00054.x
10.2307/2412810
10.1007/s11063-018-9947-9
10.1109/JIOT.2018.2870288
10.1093/bioinformatics/btz418
10.1007/11415770_23
10.1145/2925985
10.1093/bioinformatics/btv177
10.1093/gigascience/giy098
10.1016/j.artmed.2017.03.001
10.1016/B978-1-4832-3211-9.50009-7
10.1038/srep33870
10.1109/TEVC.2016.2600642
10.1093/bfgp/elv024
10.1016/j.jgg.2018.07.004
10.1038/nature02053
10.1109/4235.996017
10.2307/2406441
10.1021/acs.jproteome.7b00019
10.3724/SP.J.1259.2014.00049
10.1109/TEVC.2018.2883888
10.1016/j.ins.2019.05.070
10.3390/ijms19010062
10.1109/TNB.2019.2896981
10.1080/10635150050207401
10.1109/ICCSE.2016.7581647
10.1111/j.1558-5646.1981.tb04991.x
10.1016/j.ins.2015.06.040
10.1007/BF00182187
10.1093/oxfordjournals.molbev.a025924
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2959783
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 6189
ExternalDocumentID oai_doaj_org_article_930ed8abe3b34955a86c9825a58d0c8a
10_1109_ACCESS_2019_2959783
8933112
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 63192616
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2017J01099
  funderid: 10.13039/501100003392
– fundername: National Natural Science Foundation of China
  grantid: 61772441; 61872309; 61922020; 61425002; 61673328; 61872007
  funderid: 10.13039/501100001809
– fundername: national key R&D program of China
  grantid: 2017YFE0130600
– fundername: Project of marine economic innovation and development in Xiamen
  grantid: 16PFW034SF02
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-38da3c8c918151d36f51335a53ef8b34e4f681465b27e83c58225c7c3545f31a3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524682100035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:26 EDT 2025
Sun Nov 30 05:22:22 EST 2025
Sat Nov 29 02:41:40 EST 2025
Tue Nov 18 19:52:48 EST 2025
Wed Aug 27 02:41:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-38da3c8c918151d36f51335a53ef8b34e4f681465b27e83c58225c7c3545f31a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6011-2691
0000-0003-1955-1366
0000-0002-0817-0878
0000-0003-0402-3034
0000-0002-8576-2439
OpenAccessLink https://doaj.org/article/930ed8abe3b34955a86c9825a58d0c8a
PQID 2454962105
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2959783
proquest_journals_2454962105
crossref_primary_10_1109_ACCESS_2019_2959783
ieee_primary_8933112
doaj_primary_oai_doaj_org_article_930ed8abe3b34955a86c9825a58d0c8a
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref59
ref15
ref58
ref53
hwang (ref36) 1994
ref52
ref55
ref11
ref54
ref10
ref16
ref19
tamura (ref30) 1993; 10
rokas (ref4) 2003; 425
ref51
pearl (ref17) 1984
ref50
ref46
ref45
de laet (ref18) 2005
ref48
ref42
chor (ref13) 2005
ref41
ref44
ref49
ref8
tavaré (ref29) 1986; 17
ref3
ref6
ref5
ref40
ref35
ref34
ref37
coello (ref7) 2009; 272
ref31
ref33
ref32
wu (ref47) 2019; 131
ref2
ref1
ref39
zaharia (ref56) 2010; 10
pettey (ref43) 1987
ref38
zeng (ref68) 2019
wang (ref9) 0
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
wang (ref14) 0
ref66
ref22
ref65
ref21
ref28
ref27
ref60
ref62
ref61
References_xml – ident: ref64
  doi: 10.1109/TCBB.2017.2776280
– ident: ref12
  doi: 10.1109/TEVC.2007.892759
– ident: ref51
  doi: 10.1186/s12918-017-0476-3
– ident: ref25
  doi: 10.1016/0025-5564(90)90123-G
– ident: ref5
  doi: 10.1109/TCBB.2007.070203
– volume: 131
  start-page: 189
  year: 2019
  ident: ref47
  article-title: A risk defense method based on microscopic state prediction with partial information observations in social networks
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2019.04.007
– ident: ref60
  doi: 10.1109/TCDS.2017.2785332
– ident: ref33
  doi: 10.1086/509588
– ident: ref66
  doi: 10.1093/bioinformatics/btz694
– year: 1984
  ident: ref17
  publication-title: Heuristics Intelligent Search Strategies for Computer Problem Solving
– ident: ref26
  doi: 10.1093/oxfordjournals.molbev.a026008
– year: 1987
  ident: ref43
  article-title: Parallel genetic algorithm
  publication-title: Proc 2nd Int Conf Genet Algorithms
– ident: ref10
  doi: 10.1017/CBO9780511819049
– ident: ref15
  doi: 10.1109/TPDS.2014.2325828
– ident: ref45
  doi: 10.1007/s00158-009-0460-7
– year: 1994
  ident: ref36
  publication-title: Multiple Objective Decision Making Methods and Applications
– ident: ref61
  doi: 10.1109/TNB.2018.2873221
– ident: ref39
  doi: 10.1111/2041-210X.12529
– year: 0
  ident: ref9
  article-title: MTES: An intelligent trust evaluation scheme in sensor-cloud enabled industrial Internet of Things
  publication-title: IEEE Trans Ind Informat
  doi: 10.1023/A:1013737224969
– ident: ref52
  doi: 10.1016/j.artmed.2017.02.005
– ident: ref21
  doi: 10.1007/978-1-4471-5304-7_14
– ident: ref38
  doi: 10.1007/978-3-642-13800-3_17
– ident: ref28
  doi: 10.1007/BF02101694
– volume: 10
  start-page: 95
  year: 2010
  ident: ref56
  article-title: Spark: Cluster computing with working sets
  publication-title: HotCloud
– ident: ref2
  doi: 10.1109/TSMCC.2005.855515
– volume: 272
  year: 2009
  ident: ref7
  publication-title: Advances in Multi-Objective Nature Inspired Computing
– ident: ref35
  doi: 10.1109/TEVC.2017.2749619
– ident: ref44
  doi: 10.1073/pnas.162224399
– volume: 10
  start-page: 512
  year: 1993
  ident: ref30
  article-title: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees
  publication-title: Mol Biol Evol
– volume: 17
  start-page: 57
  year: 1986
  ident: ref29
  article-title: Some probabilistic and statistical problems in the analysis of DNA sequences
  publication-title: Lectures Math Life Sci
– ident: ref37
  doi: 10.1016/j.ins.2019.08.064
– ident: ref31
  doi: 10.1007/BF01731581
– ident: ref53
  doi: 10.1186/s13015-017-0116-x
– ident: ref34
  doi: 10.1111/j.1096-0031.2005.00054.x
– ident: ref16
  doi: 10.2307/2412810
– ident: ref63
  doi: 10.1007/s11063-018-9947-9
– ident: ref46
  doi: 10.1109/JIOT.2018.2870288
– ident: ref69
  doi: 10.1093/bioinformatics/btz418
– year: 2005
  ident: ref13
  article-title: Maximum likelihood of evolutionary trees is hard
  publication-title: Proc Annu Int Conf Res Comput Mol Biol
  doi: 10.1007/11415770_23
– ident: ref40
  doi: 10.1145/2925985
– year: 2019
  ident: ref68
  article-title: Predicting disease-associated circular RNAs using deep forests combined with positive-unlabeled learning methods
  publication-title: Briefings Bioinf
– ident: ref49
  doi: 10.1093/bioinformatics/btv177
– ident: ref20
  doi: 10.1007/11415770_23
– ident: ref54
  doi: 10.1093/gigascience/giy098
– ident: ref50
  doi: 10.1016/j.artmed.2017.03.001
– ident: ref22
  doi: 10.1017/CBO9780511819049
– ident: ref27
  doi: 10.1016/B978-1-4832-3211-9.50009-7
– ident: ref42
  doi: 10.1038/srep33870
– ident: ref8
  doi: 10.1109/TEVC.2016.2600642
– ident: ref65
  doi: 10.1093/bfgp/elv024
– ident: ref48
  doi: 10.1016/j.jgg.2018.07.004
– year: 0
  ident: ref14
  article-title: Energy-efficient and trustworthy data collection protocol based on mobile fog computing in Internet of Things
  publication-title: IEEE Trans Ind Informat
  doi: 10.1023/A:1013737224969
– volume: 425
  start-page: 798
  year: 2003
  ident: ref4
  article-title: Genome-scale approaches to resolving incongruence in molecular phylogenies
  publication-title: Nature
  doi: 10.1038/nature02053
– ident: ref11
  doi: 10.1109/4235.996017
– ident: ref24
  doi: 10.2307/2406441
– ident: ref55
  doi: 10.1021/acs.jproteome.7b00019
– ident: ref1
  doi: 10.3724/SP.J.1259.2014.00049
– ident: ref6
  doi: 10.1109/TEVC.2018.2883888
– ident: ref67
  doi: 10.1016/j.ins.2019.05.070
– ident: ref41
  doi: 10.3390/ijms19010062
– ident: ref62
  doi: 10.1109/TNB.2019.2896981
– ident: ref3
  doi: 10.1080/10635150050207401
– ident: ref57
  doi: 10.1109/ICCSE.2016.7581647
– ident: ref23
  doi: 10.1111/j.1558-5646.1981.tb04991.x
– start-page: 81
  year: 2005
  ident: ref18
  article-title: Parsimony and the problem of inapplicables in sequence data
  publication-title: Parsimony Phylogeny and Genomics
– ident: ref32
  doi: 10.1016/j.ins.2015.06.040
– ident: ref19
  doi: 10.1007/BF00182187
– ident: ref58
  doi: 10.1093/oxfordjournals.molbev.a025924
– ident: ref59
  doi: 10.1111/2041-210X.12529
SSID ssj0000816957
Score 2.1895413
Snippet In recent years, inferring phylogenies has attracted lots of attention in both academic community and various application fields. Phylogenetic inference...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6177
SubjectTerms Biomembranes
Combinatorial analysis
Consensus
Convergence
Criteria
Datasets
Evolutionary algorithms
Genetic algorithms
Heuristic methods
membrane structure
Membrane structures
Membranes
multi-objective evolutionary algorithm
Optimization
parallel algorithm
Parallel processing
phylogenetic reconstruction
Phylogenetics
Phylogeny
Reconstruction
Topology
Vegetation
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKxQEOQCmoCy3ygWPTJpn467hdtQKpLSvxod4sx5kIpJKtdlt-PzNeN6WiQuIWRbZl59nxvLFnnhDvg6pa0C4WwD6mpne6aHXvii7wGZwtW50cbt9Ozfm5vbhw8w2xP8bCIGK6fIYH_JjO8rtFvGFX2SFLw1csKfzIGLOO1Rr9KSwg4ZTJiYWq0h1OZzMaA9_ecgc19cRYuLf5pBz9WVTlrz9x2l5Onv9fx16IZ9mMlNM17ltiA4eX4ukfyQW3RZiHJQulXMqzT8dTeUTbVScXg2SJTta3WMkwdPIMfxJfHlB-Tolkb5YoyYyVHzkOkNuR8-9E6WmWcbCjZLJ6l3L2lfh6cvxl9qHIggpFbEp7XYDtAkQbHW3rqupA96zuooIC7G0LDTa9ZpegamuDFqIi60FFE4HMrB6qAK_F5rAYcEfIMgL0ZC7qxoYGySaqMVqy9qjNBgDMRNS3X9rHnG2cRS8ufWIdpfNreDzD4zM8E7E_VrpaJ9v4d_EjhnAsypmy0wvCxueF5x2U2NnQItAAnVLB6uiIFgdluzLaMBHbjOfYSIZyInZvJ4TPq3rl64bYtCaSrN48XOuteFIzH08uml2xSXjgnngcf13_WC3fpQn7Gy5L5sE
  priority: 102
  providerName: IEEE
Title Parallel MOEA Based on Consensus and Membrane Structure for Inferring Phylogenetic Reconstruction
URI https://ieeexplore.ieee.org/document/8933112
https://www.proquest.com/docview/2454962105
https://doaj.org/article/930ed8abe3b34955a86c9825a58d0c8a
Volume 8
WOSCitedRecordID wos000524682100035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHq22nSZPjuqwouLrgA28hTVMUtMquevS3O5PWdUXQi5ceSpq2M9Pk-6bJN4ztWZEUILWLgHJMWaVlVMhKR6Wlf3AqLmRIuN2c5efn6vZWD6dKfdGasEYeuDHcoYbYl8oWHgpAMC-skk4jrbFClbFTARoh6pkiU2EMVonUIm9lhpJYH3Z7PXwjWsulD1J8rlzBt6koKPa3JVZ-jMthsjleYostSuTd5umW2YyvV9jClHbgKrNDO6I6KA98cNHv8iOcjUr-VHOqwEnlK8bc1iUf-Eekw7Xnl0En9nXkOaJUfkrb_KgfPrxDxo5BRHsZOXHRL0XZNXZ93L_qnURtvYTIZbF6iUCVFpxyGmdtkZQgKyregpYCXym0ns8qSRk_UaS5V-AEggPhcgeIoipILKyz2fqp9huMxw6gQjQoM2Uzj5An9U4hmMM-MwDIOyz9NJ1xrZg41bR4MIFUxNo09jZkb9Pau8P2Jxc9N1oavzc_Ip9MmpIQdjiB4WHa8DB_hUeHrZJHJ50gPAOEmB22_elh0360Y5NmSJYlcmCx-R-33mLzKZHzkK_ZZrPoPb_D5tzby_14tBviFY-D9_5u2HX4AUMp7BE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VBQl64KsgFgr4wLFpk4zt2MftqlUrdpeVKKg3y3EcFalkq92W38-MNw0gEBK3KLItO8-O54098wDee1XUqG3IkH1MsrU6q3Vrs8bzGZzJa50cbl-m1XxuLi7sYgv2h1iYGGO6fBYP-DGd5TfLcMuuskOWhi9YUviekrIsNtFag0eFJSSsqvrUQkVuD8eTCY2C72_Zg5L6Uhn8bftJWfp7WZU__sVpgzl5_H9dewKPekNSjDfIP4Wt2D2DnV_SC-6CX_gVS6VcidnH47E4og2rEctOsEgnK1yshe8aMYvfiDF3UXxKqWRvV1GQISvOOBKQ2xGLSyL1NM843FEwXf2ZdPY5fD45Pp-cZr2kQhZkbm4yNI3HYIKljV0VDeqW9V2UVxhbU6OMstXsFFR1WUWDQZH9oEIVkAytFguPL2C7W3bxJYg8ILZkMGppvIxkFZUxGLL3qE2JiNUIyrsv7UKfb5xlL65c4h25dRt4HMPjenhGsD9Uut6k2_h38SOGcCjKubLTC8LG9UvPWcxjY3wdkQZolfJGB0vE2CvT5MH4EewynkMjPZQj2LubEK5f12tXSuLTmmiyevX3Wu_gwen5bOqmZ_MPr-Fhyew8OWz2YJuwiW_gfvh-83W9epsm7w9T-OoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+MOEA+Based+on+Consensus+and+Membrane+Structure+for+Inferring+Phylogenetic+Reconstruction&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Qianqian&rft.au=Zhang%2C+Jun&rft.au=Zhong%2C+Yue&rft.au=Ye%2C+Congming&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=6177&rft.epage=6189&rft_id=info:doi/10.1109%2FACCESS.2019.2959783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2959783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon