Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics, i.e., the nonlinear relation among the captured spectral information and the correspondin...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 15; S. 968 - 999 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics, i.e., the nonlinear relation among the captured spectral information and the corresponding object of HSI data, make accurate classification challenging for traditional methods. In the last few years, deep learning (DL) has been substantiated as a powerful feature extractor that effectively addresses the nonlinear problems that appeared in a number of computer vision tasks. This prompts the deployment of DL for HSI classification (HSIC) which revealed good performance. This survey enlists a systematic overview of DL for HSIC and compared state-of-the-art strategies of the said topic. Primarily, we will encapsulate the main challenges of TML for HSIC and then we will acquaint the superiority of DL to address these problems. This article breaks down the state-of-the-art DL frameworks into spectral-features, spatial-features, and together spatial-spectral features to systematically analyze the achievements (future research directions as well) of these frameworks for HSIC. Moreover, we will consider the fact that DL requires a large number of labeled training examples whereas acquiring such a number for HSIC is challenging in terms of time and cost. Therefore, this survey discusses some strategies to improve the generalization performance of DL strategies which can provide some future guidelines. |
|---|---|
| AbstractList | Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics, i.e., the nonlinear relation among the captured spectral information and the corresponding object of HSI data, make accurate classification challenging for traditional methods. In the last few years, deep learning (DL) has been substantiated as a powerful feature extractor that effectively addresses the nonlinear problems that appeared in a number of computer vision tasks. This prompts the deployment of DL for HSI classification (HSIC) which revealed good performance. This survey enlists a systematic overview of DL for HSIC and compared state-of-the-art strategies of the said topic. Primarily, we will encapsulate the main challenges of TML for HSIC and then we will acquaint the superiority of DL to address these problems. This article breaks down the state-of-the-art DL frameworks into spectral-features, spatial-features, and together spatial-spectral features to systematically analyze the achievements (future research directions as well) of these frameworks for HSIC. Moreover, we will consider the fact that DL requires a large number of labeled training examples whereas acquiring such a number for HSIC is challenging in terms of time and cost. Therefore, this survey discusses some strategies to improve the generalization performance of DL strategies which can provide some future guidelines. |
| Author | Ahmad, Muhammad Hong, Danfeng Mazzara, Manuel Distefano, Salvatore Yao, Jing Chanussot, Jocelyn Shabbir, Sidrah Wu, Xin Khan, Adil Mehmood Roy, Swalpa Kumar |
| Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0002-3320-2261 surname: Ahmad fullname: Ahmad, Muhammad email: mahmad00@gmail.com organization: Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Chiniot-Faisalabad Campus, Chiniot, Pakistan – sequence: 2 givenname: Sidrah surname: Shabbir fullname: Shabbir, Sidrah email: sidrah.shabbir@gmail.com organization: Department of Computer Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim yar khan, Pakistan – sequence: 3 givenname: Swalpa Kumar orcidid: 0000-0002-6580-3977 surname: Roy fullname: Roy, Swalpa Kumar email: swalpa@cse.jgec.ac.in organization: Department of Computer Science and Engineering, Jalpaiguri Government Engineering College, West Bengal, India – sequence: 4 givenname: Danfeng orcidid: 0000-0002-3212-9584 surname: Hong fullname: Hong, Danfeng email: hongdf@aircas.ac.cn organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Xin orcidid: 0000-0002-1733-3560 surname: Wu fullname: Wu, Xin email: 040251522wuxin@163.com organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 6 givenname: Jing orcidid: 0000-0003-1301-9758 surname: Yao fullname: Yao, Jing email: jasonyao92@gmail.com organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 7 givenname: Adil Mehmood orcidid: 0000-0003-2220-8518 surname: Khan fullname: Khan, Adil Mehmood email: a.khan@innopolis.ru organization: Institute of Data Science and Artificial Intelligence, Innopolis University, Innopolis, Russia – sequence: 8 givenname: Manuel orcidid: 0000-0002-3860-4948 surname: Mazzara fullname: Mazzara, Manuel email: m.mazzara@innopolis.ru organization: Institute of Software Development and Engineering, Innopolis University, Innopolis, Russia – sequence: 9 givenname: Salvatore surname: Distefano fullname: Distefano, Salvatore email: sdistefano@unime.it organization: Dipartimento di Matematica e Informatica—MIFT, University of Messina, Messina, Italy – sequence: 10 givenname: Jocelyn orcidid: 0000-0003-4817-2875 surname: Chanussot fullname: Chanussot, Jocelyn email: jocelyn.chanussot@grenoble-inp.fr organization: CNRS, Grenoble INP, GIPSA-Lab, Universite Grenoble Alpes, Grenoble, France |
| BookMark | eNqFkU9rGzEQxUVIoU6aT5CLoOd1NZL2j3IzbtO4pLTEPhaEVpoNMhtrK-0W_O0re0MOvfQ0Qrz3hvm9K3J5CAck5BbYEoCpT9-2u9XTdskZh6UAIfK8IAsOJRRQivKSLEAJVYBk8j25SmnPWMVrJRbk18NxwJgGtGM0Pd28mGek696k5DtvzejDodhF4_zplQVjoJ8RB_o9OOzTHV3R7RT_4JF2IdL7aZwi0p8xnAPTB_KuM33Cm9d5TXb3X3brh-Lxx9fNevVYWMmasRASqkp0zsmWoWyaWjnsoHacdbJuK-accK20FtEKkJ1FA1J1NTQOG6ZacU02c6wLZq-H6F9MPOpgvD5_hPisTRy97VEzyUUGwgS0QiqwylaulsZY3lauNJizPs5ZQwy_J0yj3ocp5suT5hWHzAwYyyoxq2w-NUXs3rYC06dG9NyIPjWiXxvJLvWPy_rxjDiz9_1_vLez1yPi2zZVyZJndn8BhxCcBA |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_app15179830 crossref_primary_10_3390_machines10100873 crossref_primary_10_1016_j_marpolbul_2025_117965 crossref_primary_10_3390_rs16224247 crossref_primary_10_1117_1_JEI_33_4_043052 crossref_primary_10_1109_TGRS_2022_3196057 crossref_primary_10_1016_j_jrmge_2025_03_018 crossref_primary_10_3390_rs16244653 crossref_primary_10_1109_JSTARS_2024_3452494 crossref_primary_10_1088_1361_6501_ad0c2f crossref_primary_10_3390_rs15245656 crossref_primary_10_3390_rs14184523 crossref_primary_10_7717_peerj_cs_1271 crossref_primary_10_1049_ell2_13293 crossref_primary_10_1109_JSTARS_2022_3233125 crossref_primary_10_1109_TGRS_2022_3217892 crossref_primary_10_3390_rs15215208 crossref_primary_10_1109_JSTARS_2023_3283342 crossref_primary_10_1007_s11042_024_19969_0 crossref_primary_10_3390_rs15082150 crossref_primary_10_1109_JSTARS_2025_3530935 crossref_primary_10_1109_TGRS_2023_3286826 crossref_primary_10_1109_TGRS_2025_3581935 crossref_primary_10_3389_fpls_2024_1376915 crossref_primary_10_1109_JSTARS_2024_3372138 crossref_primary_10_1109_JSTARS_2024_3415729 crossref_primary_10_1016_j_sigpro_2023_109165 crossref_primary_10_1063_5_0240444 crossref_primary_10_1109_JSTARS_2024_3394704 crossref_primary_10_3390_rs15194657 crossref_primary_10_1016_j_compag_2023_108577 crossref_primary_10_1016_j_patcog_2024_111197 crossref_primary_10_1016_j_neucom_2024_128271 crossref_primary_10_1109_LGRS_2023_3287188 crossref_primary_10_1049_ipr2_12733 crossref_primary_10_1109_ACCESS_2023_3253627 crossref_primary_10_3390_rs14030505 crossref_primary_10_3390_rs16020404 crossref_primary_10_3390_s22041623 crossref_primary_10_1109_JSTARS_2025_3566423 crossref_primary_10_1109_TGRS_2023_3314619 crossref_primary_10_14358_PERS_22_00130R2 crossref_primary_10_3390_rs14112692 crossref_primary_10_1109_JSTARS_2024_3461851 crossref_primary_10_1109_ACCESS_2023_3332695 crossref_primary_10_1109_LGRS_2024_3365611 crossref_primary_10_3390_rs16152775 crossref_primary_10_1016_j_eswa_2024_125132 crossref_primary_10_1109_ACCESS_2024_3455369 crossref_primary_10_3390_rs15020304 crossref_primary_10_3390_rs16091615 crossref_primary_10_1080_01431161_2023_2290996 crossref_primary_10_1109_TNNLS_2024_3511575 crossref_primary_10_1080_05704928_2023_2270035 crossref_primary_10_1109_JSTARS_2023_3284655 crossref_primary_10_1109_TGRS_2022_3208165 crossref_primary_10_1007_s11042_024_19327_0 crossref_primary_10_1007_s13042_024_02272_7 crossref_primary_10_3390_rs15235492 crossref_primary_10_3390_rs15225331 crossref_primary_10_1109_JSTARS_2022_3172112 crossref_primary_10_1109_TGRS_2023_3271424 crossref_primary_10_3390_rs17172968 crossref_primary_10_1117_1_JRS_16_036517 crossref_primary_10_1109_TGRS_2024_3482473 crossref_primary_10_1109_LGRS_2024_3367171 crossref_primary_10_1016_j_infrared_2025_106123 crossref_primary_10_1109_TGRS_2023_3239411 crossref_primary_10_1016_j_jag_2024_104092 crossref_primary_10_1016_j_vibspec_2025_103828 crossref_primary_10_1117_1_JRS_16_048506 crossref_primary_10_1109_TGRS_2024_3511953 crossref_primary_10_1016_j_asoc_2022_109650 crossref_primary_10_3390_electronics13132540 crossref_primary_10_1109_ACCESS_2023_3243243 crossref_primary_10_1016_j_neunet_2023_08_059 crossref_primary_10_1109_JSTARS_2022_3173676 crossref_primary_10_1016_j_eswa_2023_122172 crossref_primary_10_1109_JSTARS_2024_3383854 crossref_primary_10_1109_TGRS_2024_3429372 crossref_primary_10_1109_TGRS_2025_3556088 crossref_primary_10_1109_JSTARS_2024_3362936 crossref_primary_10_1109_TGRS_2024_3440271 crossref_primary_10_1016_j_neucom_2024_128751 crossref_primary_10_1007_s42452_022_05105_w crossref_primary_10_3390_rs17122008 crossref_primary_10_1109_JSTARS_2025_3565894 crossref_primary_10_1109_JSTARS_2022_3229834 crossref_primary_10_1109_TGRS_2024_3364143 crossref_primary_10_3390_app14051701 crossref_primary_10_1016_j_cosrev_2024_100666 crossref_primary_10_1109_TGRS_2023_3328263 crossref_primary_10_1109_TGRS_2022_3177633 crossref_primary_10_1016_j_knosys_2025_113236 crossref_primary_10_1016_j_jiixd_2025_04_002 crossref_primary_10_1016_j_eswa_2023_121299 crossref_primary_10_1016_j_rsase_2025_101618 crossref_primary_10_1109_TGRS_2024_3368079 crossref_primary_10_1109_TGRS_2025_3559137 crossref_primary_10_1109_JSTARS_2024_3494258 crossref_primary_10_3390_rs14102355 crossref_primary_10_3390_rs17173126 crossref_primary_10_1109_LGRS_2022_3181627 crossref_primary_10_1016_j_cosrev_2024_100658 crossref_primary_10_1016_j_engappai_2025_111151 crossref_primary_10_1109_TGRS_2022_3160513 crossref_primary_10_1109_TGRS_2023_3314550 crossref_primary_10_1109_TGRS_2024_3361555 crossref_primary_10_1109_JSTARS_2025_3582083 crossref_primary_10_1080_2150704X_2024_2302939 crossref_primary_10_1109_TGRS_2024_3452700 crossref_primary_10_1109_TGRS_2023_3242346 crossref_primary_10_3390_atmos16050541 crossref_primary_10_3390_rs15153701 crossref_primary_10_1080_01431161_2023_2221802 crossref_primary_10_1109_TGRS_2024_3407812 crossref_primary_10_1109_LGRS_2024_3431188 crossref_primary_10_1109_TGRS_2022_3209182 crossref_primary_10_1109_TGRS_2023_3244805 crossref_primary_10_1109_TGRS_2024_3520639 crossref_primary_10_1016_j_jcmds_2022_100070 crossref_primary_10_1109_ACCESS_2024_3420089 crossref_primary_10_3390_rs16162988 crossref_primary_10_1109_JSTARS_2025_3562477 crossref_primary_10_1007_s10489_025_06493_3 crossref_primary_10_3390_s24041187 crossref_primary_10_1109_JSTARS_2024_3465831 crossref_primary_10_3390_app15084188 crossref_primary_10_3390_axioms11060269 crossref_primary_10_1007_s12393_022_09327_x crossref_primary_10_1109_TGRS_2022_3189015 crossref_primary_10_1109_TGRS_2025_3534790 crossref_primary_10_1109_JSTARS_2023_3319587 crossref_primary_10_1016_j_foodcont_2023_109716 crossref_primary_10_1109_JSTARS_2023_3337112 crossref_primary_10_3390_s23042055 crossref_primary_10_1016_j_jag_2024_103773 crossref_primary_10_3390_rs16214050 crossref_primary_10_3390_s23198025 crossref_primary_10_1109_JSTARS_2025_3556351 crossref_primary_10_1016_j_engappai_2023_107070 crossref_primary_10_1109_LGRS_2024_3353909 crossref_primary_10_1109_TGRS_2025_3573473 crossref_primary_10_1109_LGRS_2022_3179135 crossref_primary_10_1109_LGRS_2024_3506034 crossref_primary_10_1109_TGRS_2024_3387420 crossref_primary_10_3390_app14167361 crossref_primary_10_1109_LGRS_2023_3236672 crossref_primary_10_1080_01431161_2024_2318767 crossref_primary_10_1016_j_knosys_2024_112215 crossref_primary_10_1109_TIM_2023_3279922 crossref_primary_10_1080_10106049_2022_2138984 crossref_primary_10_1109_ACCESS_2025_3587226 crossref_primary_10_1109_TGRS_2023_3241193 crossref_primary_10_1109_TGRS_2024_3350055 crossref_primary_10_1007_s12145_023_01181_7 crossref_primary_10_1109_TGRS_2025_3533475 crossref_primary_10_1109_TCSVT_2024_3486755 crossref_primary_10_3390_rs17091574 crossref_primary_10_1109_TGRS_2024_3426358 crossref_primary_10_1016_j_engappai_2023_107835 crossref_primary_10_1109_TGRS_2022_3147198 crossref_primary_10_1109_TGRS_2024_3463187 crossref_primary_10_1109_JSTARS_2025_3558889 crossref_primary_10_3390_rs13214472 crossref_primary_10_1016_j_eswa_2024_123587 crossref_primary_10_1080_01431161_2022_2132123 crossref_primary_10_1016_j_engappai_2023_106993 crossref_primary_10_1016_j_jfca_2025_107857 crossref_primary_10_1109_JSTARS_2025_3532816 crossref_primary_10_3390_diagnostics15131686 crossref_primary_10_3390_s22010123 crossref_primary_10_1109_TGRS_2025_3572805 crossref_primary_10_3390_rs16163082 crossref_primary_10_1109_TGRS_2024_3374324 crossref_primary_10_1109_TGRS_2024_3457674 crossref_primary_10_1080_07038992_2025_2551533 crossref_primary_10_1016_j_infrared_2023_104985 crossref_primary_10_1016_j_ecolind_2022_108999 crossref_primary_10_3390_app14010250 crossref_primary_10_1007_s11042_025_21061_0 crossref_primary_10_1109_TGRS_2024_3401231 crossref_primary_10_1016_j_asoc_2023_111176 crossref_primary_10_1109_TGRS_2025_3576656 crossref_primary_10_1109_TGRS_2024_3430985 crossref_primary_10_1016_j_eswa_2024_124583 crossref_primary_10_1109_TGRS_2024_3434423 crossref_primary_10_1109_JSTARS_2025_3544583 crossref_primary_10_1109_LGRS_2024_3393290 crossref_primary_10_1177_15589250241302435 crossref_primary_10_1109_TGRS_2025_3603835 crossref_primary_10_1016_j_jag_2024_103979 crossref_primary_10_1080_01431161_2025_2555279 crossref_primary_10_1109_TGRS_2025_3561850 crossref_primary_10_1016_j_eswa_2025_126818 crossref_primary_10_1109_TGRS_2024_3362471 crossref_primary_10_1007_s00521_025_11315_1 crossref_primary_10_1080_10106049_2023_2231428 crossref_primary_10_1109_TGRS_2023_3340517 crossref_primary_10_1109_TGRS_2025_3600692 crossref_primary_10_1109_JSTARS_2024_3465227 crossref_primary_10_1109_TGRS_2022_3176913 crossref_primary_10_1109_JSTARS_2024_3424954 crossref_primary_10_1007_s12524_024_01933_y crossref_primary_10_3390_electronics14010102 crossref_primary_10_32604_cmc_2024_056318 crossref_primary_10_3390_rs17142494 crossref_primary_10_1109_JSTARS_2023_3298477 crossref_primary_10_3390_rs15071820 crossref_primary_10_1109_JSTARS_2024_3429492 crossref_primary_10_1016_j_jag_2025_104356 crossref_primary_10_1007_s10462_025_11265_z crossref_primary_10_1109_TGRS_2024_3508737 crossref_primary_10_3390_rs15184432 crossref_primary_10_1109_TGRS_2023_3300688 crossref_primary_10_1049_ipr2_13116 crossref_primary_10_1117_1_OE_62_10_103103 crossref_primary_10_1080_01431161_2024_2370504 crossref_primary_10_1109_JSTARS_2024_3509538 crossref_primary_10_1109_JSTARS_2025_3571226 crossref_primary_10_1109_JSTARS_2025_3529985 crossref_primary_10_1109_TGRS_2024_3482848 crossref_primary_10_1109_TGRS_2023_3275871 crossref_primary_10_3390_rs15051206 crossref_primary_10_3390_rs17152727 crossref_primary_10_1016_j_jag_2023_103332 crossref_primary_10_1016_j_uclim_2023_101468 crossref_primary_10_3390_rs14164066 crossref_primary_10_1109_JSTARS_2024_3369950 crossref_primary_10_1007_s00371_024_03728_1 crossref_primary_10_1109_JSTARS_2024_3476333 crossref_primary_10_1016_j_eswa_2023_120496 crossref_primary_10_3390_rs16244661 |
| Cites_doi | 10.1109/TGRS.2011.2128330 10.1016/j.ijleo.2021.166267 10.1109/TGRS.2021.3052048 10.3390/rs10030396 10.1109/ICIP.2017.8297014 10.1109/LGRS.2020.3013235 10.3390/molecules23112831 10.1109/LGRS.2009.2035644 10.3390/rs10091425 10.3390/rs71114988 10.1016/j.micpro.2020.103070 10.1109/WHISPERS52202.2021.9483983 10.3390/rs10071156 10.1109/79.974730 10.1109/TGRS.2017.2752738 10.1109/TGRS.2020.2964627 10.1109/JSTARS.2016.2598859 10.1109/TGRS.2018.2815613 10.1016/j.isprsjprs.2020.06.014 10.1016/j.eswa.2019.04.006 10.1109/TGRS.2004.842481 10.1109/LGRS.2018.2794980 10.1109/MGRS.2013.2244672 10.1007/978-981-13-0212-1_18 10.1109/TGRS.2020.3035642 10.1109/TGRS.2020.3014313 10.1109/LGRS.2017.2759168 10.1016/j.isprsjprs.2018.05.014 10.1109/CVPR.2016.90 10.3390/rs12020280 10.1109/LGRS.2017.2665679 10.1109/LGRS.2017.2737823 10.1080/01431161.2013.876120 10.3390/electron-ics8030292 10.1007/BF00344251 10.1007/978-3-319-59072-1_32 10.1109/MMSP.2018.8547139 10.1109/LGRS.2020.3043710 10.1109/LGRS.2017.2765339 10.1016/j.isprsjprs.2019.09.006 10.1109/JPROC.2017.2675998 10.3390/rs12010159 10.3390/s17102421 10.3390/s19010204 10.1109/TGRS.2020.3016820 10.1109/LGRS.2015.2402391 10.1109/TGRS.2004.831865 10.1109/TGRS.2005.846154 10.1186/1687-6180-2012-142 10.3390/rs11091136 10.1109/TIP.2018.2878958 10.1109/IPTA.2016.7820963 10.1109/JSTARS.2012.2227245 10.1109/MGRS.2020.2979764 10.3390/rs8060483 10.1109/ACCESS.2019.2916095 10.3390/app8020212 10.1109/LGRS.2012.2228625 10.1109/LGRS.2015.2453130 10.1016/s0034-4257(98)00064-9 10.1109/JSTARS.2021.3088228 10.1049/iet-cvi.2014.0270 10.1109/TGRS.2019.2902568 10.1007/978-3-319-68548-9_46 10.1016/j.neucom.2017.09.065 10.1109/TGRS.2018.2805286 10.3390/rs10030395 10.1371/journal.pone.0188996 10.1109/TGRS.2020.2994205 10.1049/iet-ipr.2019.1462 10.1109/TGRS.2018.2838665 10.1109/LGRS.2015.2475299 10.1080/2150704X.2018.1557787 10.1109/JSTARS.2015.2488583 10.1109/TGRS.2017.2681721 10.1117/1.JRS.8.083690 10.1109/TGRS.2015.2514161 10.1049/iet-ipr.2019.0869 10.1038/s41586-019-0912-1 10.1109/TGRS.2021.3120198 10.1007/s11227-020-03187-0 10.3390/rs13122275 10.1117/12.2538564 10.1016/j.neunet.2018.05.019 10.1109/TGRS.2018.2886022 10.1016/j.patcog.2016.10.019 10.1109/JSTARS.2014.2329330 10.1016/j.parco.2007.12.005 10.1016/j.isprsjprs.2019.09.008 10.1016/j.ijleo.2017.03.051 10.1109/LGRS.2019.2921011 10.1016/j.ijleo.2019.163712 10.1007/s10994-019-05855-6 10.3390/rs11070864 10.1109/JSTARS.2018.2844873 10.1109/JSTARS.2012.2194696 10.1109/DSC.2017.32 10.1109/LGRS.2017.2786272 10.3390/ijgi7090349 10.1109/JSTARS.2017.2712119 10.1109/JSTARS.2015.2388577 10.1111/tgis.12164 10.1109/IGARSS.2015.7326945 10.1109/JSTARS.2018.2874225 10.1109/ACCESS.2020.3026925 10.3390/s21093045 10.1080/01431161.2011.608740 10.1080/2150704X.2021.1992034 10.1109/IPACT.2017.8244999 10.1007/s00521-021-06094-4 10.1109/TGRS.2019.2961681 10.1109/TGRS.2004.825578 10.1049/iet-ipr.2017.0168 10.1109/ICT.2019.8798816 10.1080/01431161.2020.1736732 10.1109/LGRS.2021.3108965 10.1109/LGRS.2019.2919755 10.1109/LGRS.2017.2764915 10.1109/TGRS.2019.2908756 10.1109/ACCESS.2017.2706363 10.1109/IGARSS.2018.8518846 10.1007/s10462-007-9052-3 10.1162/neco.2006.18.7.1527 10.1109/TGRS.2019.2912468 10.1016/j.ijleo.2018.10.142 10.1109/ICIP.2008.4712139 10.1080/01431161.2012.705443 10.1113/jphysiol.1962.sp006837 10.3390/rs8030259 10.1109/TGRS.2020.2971081 10.1016/j.neucom.2018.03.012 10.3390/rs10091454 10.1016/j.isprsjprs.2022.02.021 10.1109/TGRS.2017.2698503 10.1109/JSTARS.2016.2536943 10.1109/LGRS.2021.3112755 10.3390/rs8050436 10.1109/MSP.2013.2279179 10.1109/TGRS.2017.2689018 10.1109/TGRS.2004.842478 10.1109/TGRS.2015.2393857 10.1109/ICCV.1999.790410 10.1109/CISP.2008.114 10.1109/TSMC.1973.4309314 10.1080/2150704X.2017.1331053 10.1162/neco.1989.1.2.270 10.3390/rs10040574 10.3390/rs12010086 10.1109/TGRS.2018.2837142 10.1109/TGRS.2020.3015157 10.1109/TGRS.2019.2897139 10.1109/TGRS.2017.2755542 10.1109/LGRS.2018.2853705 10.1109/TGRS.2019.2952319 10.1007/s11554-018-0793-9 10.1515/9781400874668 10.1109/JSTARS.2016.2609404 10.1016/j.asoc.2018.08.049 10.1109/LGRS.2019.2909495 10.1016/S0893-6080(98)00116-6 10.1109/JSTARS.2016.2646138 10.1162/neco.1997.9.8.1735 10.1109/JSTARS.2017.2747600 10.1109/IGARSS.2016.7729116 10.3390/app10144739 10.1109/TGRS.2021.3130716 10.1016/j.infrared.2017.08.021 10.1109/TGRS.2011.2108305 10.1109/SSCI.2016.7850136 10.1016/j.isprsjprs.2014.10.002 10.1109/ICTAI.2016.0158 10.1109/72.279181 10.1109/TGRS.2017.2730583 10.1016/j.rse.2007.07.028 10.1109/LGRS.2018.2830403 10.1016/j.isprsjprs.2018.10.006 10.1109/JSTARS.2020.3022781 10.1080/22797254.2017.1274566 10.1080/10408398.2017.1363709 10.1080/15481603.2017.1323377 10.1016/j.ijleo.2021.167757 10.1109/TGRS.2019.2957251 10.1109/TGRS.2021.3064958 10.1023/A:1011139631724 10.1109/MGRS.2021.3064051 10.1016/j.patcog.2017.10.013 10.1016/j.patcog.2017.10.007 10.1109/TGRS.2017.2713123 10.1186/s40537-017-0089-0 10.3390/rs11070883 10.1109/TGRS.2010.2060550 10.1109/TGRS.2018.2828042 10.1109/TGRS.2020.3043267 10.1016/j.neucom.2018.02.105 10.1016/j.isprsjprs.2018.02.001 10.1109/CVPR.2005.177 10.1109/IGARSS.2016.7729926 10.1109/CIS.2008.204 10.1007/978-981-15-0633-8_119 10.1016/j.isprsjprs.2017.11.021 10.1109/LGRS.2020.2976482 10.1016/j.procs.2015.12.101 10.1109/TGRS.2015.2496185 10.1126/science.1127647 10.1007/978-3-642-15246-7_27 10.1109/TNNLS.2019.2955777 10.3156/jsoft.29.5_177_2 10.1109/JPROC.2012.2197589 10.1016/j.isprsjprs.2016.04.008 10.1155/2018/7068349 10.3390/rs9030298 10.1109/TGRS.2018.2888485 10.1109/TGRS.2018.2818945 10.3389/fncom.2015.00104 10.1109/CVPR.2006.68 10.1109/LGRS.2017.2723763 10.3115/v1/w14-4012 10.3390/s17112644 10.1186/s40537-019-0197-0 10.3390/app10175955 10.1109/TGRS.2018.2890705 10.1109/LGRS.2012.2225596 10.1109/LGRS.2011.2145353 10.1109/LGRS.2017.2780890 10.1016/j.neucom.2016.09.010 10.1080/2150704x.2017.1280200 10.1109/LGRS.2015.2513443 10.3390/rs9121330 10.1109/RAIT.2018.8389024 10.1080/01431161.2012.714508 10.1109/MGRS.2017.2762087 10.1145/1015330.1015385 10.1145/130385.130417 10.3390/rs71114680 10.1109/TIP.2017.2772836 10.1109/EORSA.2016.7552845 10.1109/TGRS.2019.2907932 10.1109/TGRS.2018.2868851 10.1109/TGRS.2017.2675902 10.3390/app10217783 10.1109/TCYB.2019.2915094 10.1117/1.JRS.10.035004 10.1145/1869790.1869829 10.1007/978-3-319-59129-2_15 10.5220/0007258000002108 10.3390/rs9101042 10.1016/j.neucom.2015.12.008 10.1109/TGRS.2019.2899057 10.3390/rs8020157 10.1109/ICIST.2019.8836913 10.1016/j.dsp.2018.06.016 10.3390/rs9010067 10.1109/LGRS.2018.2869563 10.1007/978-3-030-58452-8_37 10.1109/TCYB.2020.3028931 10.1109/JSTARS.2019.2892975 10.1109/TGRS.2017.2710079 10.1080/01431160802559046 10.1109/EIT.2018.8500107 10.1109/TGRS.2018.2860464 10.1016/j.neucom.2021.03.035 10.3390/rs9060618 10.1109/LGRS.2014.2306689 10.1109/MSP.2011.940409 10.1109/TGRS.2018.2860125 10.1109/TGRS.2019.2893180 10.1109/TPAMI.2002.1017623 10.3390/app10196862 10.1007/s12524-019-01045-y 10.1109/MGRS.2019.2898520 10.7312/haza92762-003 10.1109/TGRS.2011.2151866 10.1109/TGRS.2019.2899129 10.1007/978-3-031-31407-0_35 10.1109/LGRS.2018.2878773 10.1109/JSTARS.2020.3041868 10.1109/36.905239 10.1201/b17320 10.1109/TGRS.2017.2756851 10.1109/TGRS.2017.2735488 10.1109/TGRS.2017.2747862 10.1109/TGRS.2015.2435801 10.1109/TGRS.2017.2783886 10.1109/CGiV.2016.58 10.1109/CVPR.2005.216 10.5555/2999134.2999257 10.1109/TGRS.2017.2778343 10.3390/rs11242974 10.1109/TIT.1968.1054102 10.1109/LGRS.2019.2918719 10.1109/ACCESS.2020.3027776 10.1109/TPAMI.2012.213 10.1007/978-3-030-03341-5_34 10.1109/PIERS-Spring46901.2019.9017309 10.1109/TGRS.2018.2841823 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2021.3133021 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 999 |
| ExternalDocumentID | oai_doaj_org_article_0423535031b3491c9c6d74aac2b6d5ae 10_1109_JSTARS_2021_3133021 9645266 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42030111; 41722108; 62101045 funderid: 10.13039/501100001809 – fundername: AXA Research Fund funderid: 10.13039/501100001961 – fundername: China Postdoctoral Science Foundation grantid: 2021M690385 funderid: 10.13039/501100002858 – fundername: MIAI@Grenoble Alpes grantid: ANR-19-P3IA-0003 – fundername: Analytical Center for the Government of the Russian Federation grantid: 70-2021-00143 dd. 01.11.2021; IGK 000000D730321P5Q0002 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c408t-341663fdd4b0e48879def17d20f47b60dd3db4cceec314fcea149f718de809b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 271 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745503600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:52:31 EDT 2025 Mon Jul 28 15:40:49 EDT 2025 Tue Nov 18 21:18:43 EST 2025 Sat Nov 29 04:51:11 EST 2025 Wed Aug 27 03:02:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-341663fdd4b0e48879def17d20f47b60dd3db4cceec314fcea149f718de809b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2220-8518 0000-0002-1733-3560 0000-0002-3212-9584 0000-0002-3860-4948 0000-0002-6580-3977 0000-0003-4817-2875 0000-0003-1301-9758 0000-0002-3320-2261 |
| OpenAccessLink | https://doaj.org/article/0423535031b3491c9c6d74aac2b6d5ae |
| PQID | 2621793100 |
| PQPubID | 75722 |
| PageCount | 32 |
| ParticipantIDs | ieee_primary_9645266 crossref_citationtrail_10_1109_JSTARS_2021_3133021 crossref_primary_10_1109_JSTARS_2021_3133021 doaj_primary_oai_doaj_org_article_0423535031b3491c9c6d74aac2b6d5ae proquest_journals_2621793100 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 ref328 ref208 ref205 ref326 ref58 ref206 ref53 ref203 ref324 ref52 ref204 ref325 ref55 ref322 ref54 ref202 ref323 ref209 Ahmad (ref24) 2011 ref210 ref211 ref51 ref50 ref46 ref218 ref45 ref219 ref48 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 ref49 ref8 ref7 ref4 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref40 ref220 ref35 Loshchilov (ref123) 2019 ref306 ref34 ref307 ref37 ref304 ref36 ref305 ref31 ref302 ref30 ref303 ref33 ref300 ref32 ref301 Hinton (ref240) 2012 ref39 ref308 ref309 ref310 ref317 ref318 ref26 ref315 ref25 ref316 ref20 ref313 ref314 ref311 ref21 ref312 ref28 ref27 Ablin (ref59) 2013; 2 ref319 ref29 Settles (ref297) 2009 ref320 ref200 ref321 (ref9) 2020 Hinton (ref121) 2012; 14 Huang (ref176) 2018 ref249 Ahmad (ref23) 2011; 3 ref129 ref97 ref126 ref247 ref96 ref248 ref99 ref124 ref245 ref98 ref246 Kipf (ref216) 2016 Ahmad (ref38) 2017 ref93 ref133 ref254 ref92 ref134 ref255 ref95 ref131 ref252 ref94 ref132 ref250 ref130 ref251 ref91 ref90 ref89 ref139 ref86 ref137 ref258 Kotsiantis (ref56) 2007; 160 ref85 ref138 ref259 ref88 ref256 ref87 ref136 ref257 Luo (ref253) 2018 ref82 ref144 ref265 ref81 ref145 ref266 ref84 ref142 ref263 ref83 ref143 ref140 ref261 ref141 ref262 ref80 ref260 ref79 ref108 ref229 ref78 ref109 ref106 ref227 ref107 ref228 ref75 ref104 ref225 Chen (ref329) 2016; 2016 ref74 ref105 ref226 ref77 ref102 ref76 ref103 ref224 ref71 ref232 ref70 ref112 ref233 ref230 ref72 ref110 ref231 Ahmad (ref22) 2011 Aggarwal (ref295) 2014 ref68 ref67 ref117 ref238 ref69 ref118 ref64 ref115 ref236 ref63 ref237 (ref12) 2020 ref66 ref113 ref234 ref65 ref114 ref235 Erhan (ref128) 2010; 11 ref60 ref243 ref244 ref62 ref120 ref241 ref61 ref242 ref168 ref289 ref169 Nguyen (ref116) 2017 ref290 ref170 ref291 Ganti (ref293) 2012 ref177 ref298 ref178 ref299 Liu (ref125) 2019 Lin (ref167) 2013 ref175 ref296 ref173 ref294 ref174 ref171 ref292 ref172 ref179 Shaham (ref239) 2016 Kingma (ref122) 2015 ref180 ref181 ref188 ref189 Rifai (ref223) 2011 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref269 ref149 ref146 ref267 ref147 ref268 Haut (ref327) 2017; 3 ref155 ref276 ref156 ref277 ref153 ref274 ref154 ref275 ref151 ref272 ref152 ref273 ref270 Roy (ref127) 2021 ref150 ref271 ref157 ref278 ref158 ref279 ref280 Bottou (ref119) 1991; 91 ref166 ref287 ref288 ref164 ref285 ref165 ref286 ref162 ref283 ref163 ref284 ref160 ref281 ref282 ref13 Goodfellow (ref159) 2016 ref15 ref14 ref11 ref10 ref17 ref19 ref18 Ahmad (ref16) 2012; 2 Oliva (ref73) 2001; 42 Sugiyama (ref135) 2007; 8 Dong (ref201) 2019 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 Nalepa (ref264) 2019 Williams (ref161) 2021; 130 Chen (ref111) 2014 |
| References_xml | – ident: ref326 doi: 10.1109/TGRS.2011.2128330 – ident: ref11 doi: 10.1016/j.ijleo.2021.166267 – volume: 2016 start-page: 1 year: 2016 ident: ref329 article-title: Stacked denoise autoencoder based feature extraction and classification for hyperspectral images publication-title: J. Sensors – ident: ref283 doi: 10.1109/TGRS.2021.3052048 – ident: ref243 doi: 10.3390/rs10030396 – ident: ref200 doi: 10.1109/ICIP.2017.8297014 – ident: ref209 doi: 10.1109/LGRS.2020.3013235 – volume: 91 start-page: 1 issue: 8 volume-title: Proc. Neuro-Nmes year: 1991 ident: ref119 article-title: Stochastic gradient learning in neural networks – ident: ref147 doi: 10.3390/molecules23112831 – ident: ref91 doi: 10.1109/LGRS.2009.2035644 – ident: ref286 doi: 10.3390/rs10091425 – ident: ref96 doi: 10.3390/rs71114988 – ident: ref157 doi: 10.1016/j.micpro.2020.103070 – year: 2018 ident: ref253 article-title: Shorten spatial-spectral RNN with parallel-GRU for hyperspectral image classification – ident: ref190 doi: 10.1109/WHISPERS52202.2021.9483983 – ident: ref151 doi: 10.3390/rs10071156 – ident: ref27 doi: 10.1109/79.974730 – ident: ref305 doi: 10.1109/TGRS.2017.2752738 – ident: ref261 doi: 10.1109/TGRS.2020.2964627 – ident: ref310 doi: 10.1109/JSTARS.2016.2598859 – ident: ref255 doi: 10.1109/TGRS.2018.2815613 – ident: ref101 doi: 10.1016/j.isprsjprs.2020.06.014 – ident: ref208 doi: 10.1016/j.eswa.2019.04.006 – ident: ref75 doi: 10.1109/TGRS.2004.842481 – ident: ref301 doi: 10.1109/LGRS.2018.2794980 – ident: ref115 doi: 10.1109/MGRS.2013.2244672 – ident: ref177 doi: 10.1007/978-981-13-0212-1_18 – ident: ref57 doi: 10.1109/TGRS.2020.3035642 – ident: ref193 doi: 10.1109/TGRS.2020.3014313 – ident: ref227 doi: 10.1109/LGRS.2017.2759168 – ident: ref181 doi: 10.1016/j.isprsjprs.2018.05.014 – ident: ref132 doi: 10.1109/CVPR.2016.90 – year: 2020 ident: ref12 article-title: Applications of hyperspectral image – ident: ref206 doi: 10.3390/rs12020280 – ident: ref271 doi: 10.1109/LGRS.2017.2665679 – ident: ref224 doi: 10.1109/LGRS.2017.2737823 – volume-title: Deep Learning year: 2016 ident: ref159 – ident: ref53 doi: 10.1080/01431161.2013.876120 – ident: ref129 doi: 10.3390/electron-ics8030292 – ident: ref164 doi: 10.1007/BF00344251 – ident: ref238 doi: 10.1007/978-3-319-59072-1_32 – ident: ref288 doi: 10.1109/MMSP.2018.8547139 – ident: ref67 doi: 10.1109/LGRS.2020.3043710 – ident: ref149 doi: 10.1109/LGRS.2017.2765339 – ident: ref69 doi: 10.1016/j.isprsjprs.2019.09.006 – ident: ref49 doi: 10.1109/JPROC.2017.2675998 – ident: ref156 doi: 10.3390/rs12010159 – ident: ref186 doi: 10.3390/s17102421 – ident: ref64 doi: 10.3390/s19010204 – ident: ref107 doi: 10.1109/TGRS.2020.3016820 – ident: ref93 doi: 10.1109/LGRS.2015.2402391 – ident: ref321 doi: 10.1109/TGRS.2004.831865 – ident: ref76 doi: 10.1109/TGRS.2005.846154 – ident: ref77 doi: 10.1186/1687-6180-2012-142 – ident: ref1 doi: 10.3390/rs11091136 – ident: ref25 doi: 10.1109/TIP.2018.2878958 – ident: ref66 doi: 10.1109/IPTA.2016.7820963 – ident: ref42 doi: 10.1109/JSTARS.2012.2227245 – ident: ref65 doi: 10.1109/MGRS.2020.2979764 – ident: ref71 doi: 10.3390/rs8060483 – ident: ref189 doi: 10.1109/ACCESS.2019.2916095 – ident: ref175 doi: 10.3390/app8020212 – ident: ref89 doi: 10.1109/LGRS.2012.2228625 – ident: ref104 doi: 10.1109/LGRS.2015.2453130 – ident: ref316 doi: 10.1016/s0034-4257(98)00064-9 – ident: ref195 doi: 10.1109/JSTARS.2021.3088228 – ident: ref79 doi: 10.1049/iet-cvi.2014.0270 – ident: ref192 doi: 10.1109/TGRS.2019.2902568 – ident: ref178 doi: 10.1007/978-3-319-68548-9_46 – ident: ref237 doi: 10.1016/j.neucom.2017.09.065 – ident: ref275 doi: 10.1109/TGRS.2018.2805286 – ident: ref146 doi: 10.3390/rs10030395 – ident: ref35 doi: 10.1371/journal.pone.0188996 – ident: ref219 doi: 10.1109/TGRS.2020.2994205 – ident: ref197 doi: 10.1049/iet-ipr.2019.1462 – ident: ref311 doi: 10.1109/TGRS.2018.2838665 – ident: ref109 doi: 10.1109/LGRS.2015.2475299 – ident: ref155 doi: 10.1080/2150704X.2018.1557787 – ident: ref205 doi: 10.1109/JSTARS.2015.2488583 – ident: ref44 doi: 10.1109/TGRS.2017.2681721 – ident: ref99 doi: 10.1117/1.JRS.8.083690 – ident: ref140 doi: 10.1109/TGRS.2015.2514161 – year: 2021 ident: ref127 article-title: AngularGrad: A new optimization technique for angular convergence of convolutional neural networks – ident: ref280 doi: 10.1049/iet-ipr.2019.0869 – ident: ref114 doi: 10.1038/s41586-019-0912-1 – ident: ref215 doi: 10.1109/TGRS.2021.3120198 – ident: ref248 doi: 10.1007/s11227-020-03187-0 – ident: ref118 doi: 10.3390/rs13122275 – ident: ref290 doi: 10.1117/12.2538564 – ident: ref250 doi: 10.1016/j.neunet.2018.05.019 – start-page: 422 volume-title: Proc. Artif. Intell. Statist. year: 2012 ident: ref293 article-title: UPAL: Unbiased pool based active learning – ident: ref204 doi: 10.1109/TGRS.2018.2886022 – ident: ref148 doi: 10.1016/j.patcog.2016.10.019 – volume-title: Proc. 3rd Int. Conf. Learn. Representations year: 2015 ident: ref122 article-title: Adam: A method for stochastic optimization – ident: ref62 doi: 10.1109/JSTARS.2014.2329330 – ident: ref130 doi: 10.1016/j.parco.2007.12.005 – ident: ref15 doi: 10.1016/j.isprsjprs.2019.09.008 – ident: ref20 doi: 10.1016/j.ijleo.2017.03.051 – year: 2017 ident: ref116 article-title: Optimization landscape and expressivity of deep CNNs – ident: ref263 doi: 10.1109/LGRS.2019.2921011 – ident: ref36 doi: 10.1016/j.ijleo.2019.163712 – ident: ref265 doi: 10.1007/s10994-019-05855-6 – ident: ref328 doi: 10.3390/rs11070864 – ident: ref142 doi: 10.1109/JSTARS.2018.2844873 – ident: ref19 doi: 10.1109/JSTARS.2012.2194696 – ident: ref220 doi: 10.1109/DSC.2017.32 – ident: ref179 doi: 10.1109/LGRS.2017.2786272 – ident: ref168 doi: 10.3390/ijgi7090349 – ident: ref28 doi: 10.1109/JSTARS.2017.2712119 – start-page: 179 volume-title: Proc. Int. Proc. Comput. Sci. Inf. Technol. year: 2011 ident: ref22 article-title: Linear unmixing and target detection of hyperspectral imagery using OSP – ident: ref144 doi: 10.1109/JSTARS.2015.2388577 – ident: ref61 doi: 10.1111/tgis.12164 – ident: ref324 doi: 10.1109/IGARSS.2015.7326945 – ident: ref312 doi: 10.1109/JSTARS.2018.2874225 – ident: ref5 doi: 10.1109/ACCESS.2020.3026925 – ident: ref6 doi: 10.3390/s21093045 – ident: ref105 doi: 10.1080/01431161.2011.608740 – ident: ref182 doi: 10.1080/2150704X.2021.1992034 – ident: ref267 doi: 10.1109/IPACT.2017.8244999 – ident: ref8 doi: 10.1007/s00521-021-06094-4 – start-page: 1 volume-title: Proc. Int. Conf. Biol. Inf. Biomed. Eng. year: 2018 ident: ref176 article-title: Convolutional neural network for medical hyperspectral image classification with kernel fusion – ident: ref194 doi: 10.1109/TGRS.2019.2961681 – ident: ref137 doi: 10.1109/TGRS.2004.825578 – start-page: 833 volume-title: Proc. 28th Int. Conf. Int. Conf. Mach. Learn. year: 2011 ident: ref223 article-title: Contractive auto-encoders: Explicit invariance during feature extraction – volume-title: Proc. 7th Int. Conf. Learn. Representations year: 2019 ident: ref123 article-title: Decoupled weight decay regularization – volume-title: CoRR year: 2017 ident: ref38 article-title: Hyperspectral band selection using unsupervised non-linear deep auto encoder to train external classifiers – ident: ref13 doi: 10.1049/iet-ipr.2017.0168 – ident: ref84 doi: 10.1109/ICT.2019.8798816 – ident: ref138 doi: 10.1080/01431161.2020.1736732 – year: 2013 ident: ref167 article-title: Network in network – ident: ref214 doi: 10.1109/LGRS.2021.3108965 – ident: ref32 doi: 10.1109/LGRS.2019.2919755 – ident: ref184 doi: 10.1109/LGRS.2017.2764915 – ident: ref210 doi: 10.1109/TGRS.2019.2908756 – ident: ref230 doi: 10.1109/ACCESS.2017.2706363 – year: 2020 ident: ref9 article-title: 10 Important applications of hyperspectral image – ident: ref276 doi: 10.1109/IGARSS.2018.8518846 – ident: ref55 doi: 10.1007/s10462-007-9052-3 – ident: ref236 doi: 10.1162/neco.2006.18.7.1527 – ident: ref279 doi: 10.1109/TGRS.2019.2912468 – ident: ref39 doi: 10.1016/j.ijleo.2018.10.142 – ident: ref83 doi: 10.1109/ICIP.2008.4712139 – ident: ref52 doi: 10.1080/01431161.2012.705443 – ident: ref163 doi: 10.1113/jphysiol.1962.sp006837 – ident: ref102 doi: 10.3390/rs8030259 – ident: ref308 doi: 10.1109/TGRS.2020.2971081 – ident: ref254 doi: 10.1016/j.neucom.2018.03.012 – ident: ref145 doi: 10.3390/rs10091454 – ident: ref33 doi: 10.1016/j.isprsjprs.2022.02.021 – ident: ref284 doi: 10.1109/TGRS.2017.2698503 – ident: ref92 doi: 10.1109/JSTARS.2016.2536943 – ident: ref211 doi: 10.1109/LGRS.2021.3112755 – ident: ref48 doi: 10.3390/rs8050436 – ident: ref60 doi: 10.1109/MSP.2013.2279179 – ident: ref169 doi: 10.1109/TGRS.2017.2689018 – ident: ref139 doi: 10.1109/TGRS.2004.842478 – ident: ref46 doi: 10.1109/TGRS.2015.2393857 – ident: ref74 doi: 10.1109/ICCV.1999.790410 – ident: ref82 doi: 10.1109/CISP.2008.114 – ident: ref86 doi: 10.1109/TSMC.1973.4309314 – ident: ref154 doi: 10.1080/2150704X.2017.1331053 – ident: ref247 doi: 10.1162/neco.1989.1.2.270 – ident: ref268 doi: 10.3390/rs10040574 – ident: ref292 doi: 10.3390/rs12010086 – ident: ref207 doi: 10.1109/TGRS.2018.2837142 – ident: ref217 doi: 10.1109/TGRS.2020.3015157 – ident: ref30 doi: 10.1109/TGRS.2019.2897139 – ident: ref187 doi: 10.1109/TGRS.2017.2755542 – ident: ref29 doi: 10.1109/LGRS.2018.2853705 – ident: ref307 doi: 10.1109/TGRS.2019.2952319 – ident: ref14 doi: 10.1007/s11554-018-0793-9 – volume: 14 issue: 8 year: 2012 ident: ref121 article-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent – ident: ref112 doi: 10.1515/9781400874668 – ident: ref300 doi: 10.1109/JSTARS.2016.2609404 – volume: 2 start-page: 2231 year: 2012 ident: ref16 article-title: Hyperspectral remote sensing: Dimensional reduction and end member extraction publication-title: Int. J. Soft Comput. Eng. – ident: ref233 doi: 10.1016/j.asoc.2018.08.049 – ident: ref180 doi: 10.1109/LGRS.2019.2909495 – ident: ref120 doi: 10.1016/S0893-6080(98)00116-6 – ident: ref289 doi: 10.1109/JSTARS.2016.2646138 – ident: ref322 doi: 10.1162/neco.1997.9.8.1735 – ident: ref303 doi: 10.1109/JSTARS.2017.2747600 – ident: ref309 doi: 10.1109/IGARSS.2016.7729116 – ident: ref315 doi: 10.3390/app10144739 – ident: ref68 doi: 10.1109/TGRS.2021.3130716 – ident: ref229 doi: 10.1016/j.infrared.2017.08.021 – ident: ref18 doi: 10.1109/TGRS.2011.2108305 – year: 2009 ident: ref297 article-title: Active learning literature survey – ident: ref37 doi: 10.1109/SSCI.2016.7850136 – ident: ref94 doi: 10.1016/j.isprsjprs.2014.10.002 – ident: ref172 doi: 10.1109/ICTAI.2016.0158 – ident: ref133 doi: 10.1109/72.279181 – ident: ref304 doi: 10.1109/TGRS.2017.2730583 – ident: ref58 doi: 10.1016/j.rse.2007.07.028 – ident: ref185 doi: 10.1109/LGRS.2018.2830403 – ident: ref50 doi: 10.1016/j.isprsjprs.2018.10.006 – ident: ref282 doi: 10.1109/JSTARS.2020.3022781 – ident: ref228 doi: 10.1080/22797254.2017.1274566 – ident: ref10 doi: 10.1080/10408398.2017.1363709 – ident: ref259 doi: 10.1080/15481603.2017.1323377 – ident: ref117 doi: 10.1016/j.ijleo.2021.167757 – ident: ref141 doi: 10.1109/TGRS.2019.2957251 – ident: ref26 doi: 10.1109/TGRS.2021.3064958 – volume: 42 start-page: 145 issue: 3 year: 2001 ident: ref73 article-title: Modeling the shape of the scene: A holistic representation of the spatial envelope publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011139631724 – ident: ref2 doi: 10.1109/MGRS.2021.3064051 – ident: ref166 doi: 10.1016/j.patcog.2017.10.013 – ident: ref314 doi: 10.1016/j.patcog.2017.10.007 – ident: ref270 doi: 10.1109/TGRS.2017.2713123 – ident: ref287 doi: 10.1186/s40537-017-0089-0 – ident: ref256 doi: 10.3390/rs11070883 – ident: ref320 doi: 10.1109/TGRS.2010.2060550 – ident: ref45 doi: 10.1109/TGRS.2018.2828042 – start-page: 114 volume-title: Proc. Int. Conf. Inf. Commun. Manage. year: 2011 ident: ref24 article-title: AIK method for band clustering using statistics of correlation and dispersion matrix – ident: ref153 doi: 10.1109/TGRS.2020.3043267 – ident: ref249 doi: 10.1016/j.neucom.2018.02.105 – ident: ref234 doi: 10.1016/j.isprsjprs.2018.02.001 – ident: ref72 doi: 10.1109/CVPR.2005.177 – ident: ref318 doi: 10.1109/IGARSS.2016.7729926 – volume: 3 start-page: 606 year: 2011 ident: ref23 article-title: A new statistical approach for band clustering and band selection using K-means clustering publication-title: Int. J. Eng. Technol. – ident: ref266 doi: 10.1109/CIS.2008.204 – ident: ref302 doi: 10.1007/978-981-15-0633-8_119 – ident: ref188 doi: 10.1016/j.isprsjprs.2017.11.021 – volume-title: Proc. Int. Conf. Learn. Representations year: 2019 ident: ref125 article-title: On the variance of the adaptive learning rate and beyond – ident: ref281 doi: 10.1109/LGRS.2020.2976482 – ident: ref80 doi: 10.1016/j.procs.2015.12.101 – ident: ref98 doi: 10.1109/TGRS.2015.2496185 – ident: ref108 doi: 10.1126/science.1127647 – ident: ref222 doi: 10.1007/978-3-642-15246-7_27 – ident: ref124 doi: 10.1109/TNNLS.2019.2955777 – ident: ref272 doi: 10.3156/jsoft.29.5_177_2 – ident: ref34 doi: 10.1109/JPROC.2012.2197589 – ident: ref21 doi: 10.1016/j.isprsjprs.2016.04.008 – ident: ref165 doi: 10.1155/2018/7068349 – ident: ref174 doi: 10.3390/rs9030298 – ident: ref269 doi: 10.1109/TGRS.2018.2888485 – ident: ref325 doi: 10.1109/TGRS.2018.2818945 – ident: ref241 doi: 10.3389/fncom.2015.00104 – ident: ref97 doi: 10.1109/CVPR.2006.68 – ident: ref291 doi: 10.1109/LGRS.2017.2723763 – ident: ref323 doi: 10.3115/v1/w14-4012 – year: 2012 ident: ref240 article-title: Improving neural networks by preventing co-adaptation of feature detectors – ident: ref171 doi: 10.3390/s17112644 – ident: ref257 doi: 10.1186/s40537-019-0197-0 – ident: ref4 doi: 10.3390/app10175955 – ident: ref41 doi: 10.1109/TGRS.2018.2890705 – ident: ref103 doi: 10.1109/LGRS.2012.2225596 – ident: ref213 doi: 10.1109/LGRS.2011.2145353 – ident: ref273 doi: 10.1109/LGRS.2017.2780890 – ident: ref173 doi: 10.1016/j.neucom.2016.09.010 – ident: ref199 doi: 10.1080/2150704x.2017.1280200 – ident: ref47 doi: 10.1109/LGRS.2015.2513443 – ident: ref152 doi: 10.3390/rs9121330 – ident: ref306 doi: 10.1109/RAIT.2018.8389024 – volume-title: Proc. Int. Conf. Learn. Representations year: 2016 ident: ref216 article-title: Semi-supervised classification with graph convolutional networks – ident: ref54 doi: 10.1080/01431161.2012.714508 – ident: ref63 doi: 10.1109/MGRS.2017.2762087 – volume: 3 start-page: 1063 volume-title: Proc. 17th Int. Conf. Comput. Math. Methods Sci. Eng. year: 2017 ident: ref327 article-title: Cloud implementation of logistic regression for hyperspectral image classification – ident: ref294 doi: 10.1145/1015330.1015385 – ident: ref296 doi: 10.1145/130385.130417 – ident: ref110 doi: 10.3390/rs71114680 – ident: ref251 doi: 10.1109/TIP.2017.2772836 – ident: ref78 doi: 10.1109/EORSA.2016.7552845 – ident: ref245 doi: 10.1109/TGRS.2019.2907932 – ident: ref313 doi: 10.1109/TGRS.2018.2868851 – ident: ref242 doi: 10.1109/TGRS.2017.2675902 – ident: ref7 doi: 10.3390/app10217783 – year: 2014 ident: ref111 article-title: Convolutional neural network and convex optimization – volume: 160 start-page: 3 year: 2007 ident: ref56 article-title: Supervised machine learning: A review of classification techniques publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – ident: ref278 doi: 10.1109/TCYB.2019.2915094 – ident: ref88 doi: 10.1117/1.JRS.10.035004 – ident: ref90 doi: 10.1145/1869790.1869829 – ident: ref221 doi: 10.1007/978-3-319-59129-2_15 – ident: ref231 doi: 10.5220/0007258000002108 – year: 2019 ident: ref264 article-title: Hyperspectral data augmentation – ident: ref274 doi: 10.3390/rs9101042 – ident: ref106 doi: 10.1016/j.neucom.2015.12.008 – ident: ref277 doi: 10.1109/TGRS.2019.2899057 – ident: ref95 doi: 10.3390/rs8020157 – ident: ref262 doi: 10.1109/ICIST.2019.8836913 – ident: ref85 doi: 10.1016/j.dsp.2018.06.016 – ident: ref196 doi: 10.3390/rs9010067 – ident: ref218 doi: 10.1109/LGRS.2018.2869563 – ident: ref126 doi: 10.1007/978-3-030-58452-8_37 – ident: ref17 doi: 10.1109/TCYB.2020.3028931 – ident: ref244 doi: 10.1109/JSTARS.2019.2892975 – ident: ref198 doi: 10.1109/TGRS.2017.2710079 – ident: ref317 doi: 10.1080/01431160802559046 – ident: ref170 doi: 10.1109/EIT.2018.8500107 – volume: 2 start-page: 2986 issue: 8 year: 2013 ident: ref59 article-title: A survey of hyperspectral image classification in remote sensing publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – ident: ref202 doi: 10.1109/TGRS.2018.2860464 – ident: ref258 doi: 10.1016/j.neucom.2021.03.035 – ident: ref183 doi: 10.3390/rs9060618 – ident: ref134 doi: 10.1109/LGRS.2014.2306689 – ident: ref131 doi: 10.1109/MSP.2011.940409 – ident: ref150 doi: 10.1109/TGRS.2018.2860125 – ident: ref232 doi: 10.1109/TGRS.2019.2893180 – ident: ref87 doi: 10.1109/TPAMI.2002.1017623 – ident: ref3 doi: 10.3390/app10196862 – ident: ref235 doi: 10.1007/s12524-019-01045-y – year: 2019 ident: ref201 article-title: Band attention convolutional networks for hyperspectral image classification – ident: ref31 doi: 10.1109/MGRS.2019.2898520 – ident: ref162 doi: 10.7312/haza92762-003 – ident: ref51 doi: 10.1109/TGRS.2011.2151866 – ident: ref70 doi: 10.1109/TGRS.2019.2899129 – ident: ref160 doi: 10.1007/978-3-031-31407-0_35 – ident: ref260 doi: 10.1109/LGRS.2018.2878773 – ident: ref40 doi: 10.1109/JSTARS.2020.3041868 – volume: 11 start-page: 625 year: 2010 ident: ref128 article-title: Why does unsupervised pre-training help deep learning publication-title: J. Mach. Learn. Res. – ident: ref143 doi: 10.1109/36.905239 – start-page: 571 volume-title: Data Classification: Algorithms and Applications year: 2014 ident: ref295 article-title: Active learning: A survey doi: 10.1201/b17320 – start-page: 30 volume-title: Proc. Int. Conf. Mach. Learn. year: 2016 ident: ref239 article-title: A deep learning approach to unsupervised ensemble learning – ident: ref319 doi: 10.1109/TGRS.2017.2756851 – ident: ref43 doi: 10.1109/TGRS.2017.2735488 – ident: ref298 doi: 10.1109/TGRS.2017.2747862 – volume: 130 start-page: 1936 volume-title: Proc. 24th Int. Conf. Artificial Intell. Statistics year: 2021 ident: ref161 article-title: Wavelet pooling for convolutional neural networks – ident: ref100 doi: 10.1109/TGRS.2015.2435801 – ident: ref285 doi: 10.1109/TGRS.2017.2783886 – ident: ref81 doi: 10.1109/CGiV.2016.58 – ident: ref136 doi: 10.1109/CVPR.2005.216 – ident: ref158 doi: 10.5555/2999134.2999257 – ident: ref225 doi: 10.1109/TGRS.2017.2778343 – ident: ref299 doi: 10.3390/rs11242974 – ident: ref113 doi: 10.1109/TIT.1968.1054102 – ident: ref212 doi: 10.1109/LGRS.2019.2918719 – ident: ref191 doi: 10.1109/ACCESS.2020.3027776 – ident: ref226 doi: 10.1109/TPAMI.2012.213 – ident: ref252 doi: 10.1007/978-3-030-03341-5_34 – volume: 8 start-page: 1027 year: 2007 ident: ref135 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: J. Mach. Learn. Res. – ident: ref246 doi: 10.1109/PIERS-Spring46901.2019.9017309 – ident: ref203 doi: 10.1109/TGRS.2018.2841823 |
| SSID | ssj0062793 |
| Score | 2.669752 |
| Snippet | Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 968 |
| SubjectTerms | Classification Computer vision Deep learning Deep learning (DL) Feature extraction feature learning Histograms hyperspectral image classification (HSIC) Hyperspectral imaging hyperspectral imaging (HSI) Image classification Image color analysis Machine learning Polls & surveys Spectra spectral–spatial information Surveying Task analysis Training |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFH6oWOjFam1xqy05eHQ0k8kmE2-rdasXkerBgxDyEwTdldldwf--L5nsQmkp9DYMSRjme3kvL8n7PoDDaETtMOmqhtHaXJJTGUw0KtP41lmTFAt5FpuQ19ft_b26WYOjVS1MCCFfPgvH6TGf5fupW6StshOVTuGEWId1KWVfq7X0uoLJTLCL6xFVJcqYwjBUU3WCJj76eYu5IKsxRcUEntW_RaFM1l_UVf5wyTnOjD_83xduw1ZZT5JRbwA7sBYmH-Hdj6zX-7YLD5eYZ_bllB02u3pG90GyEGa6IpRRqTBc-cd-S5DMp-R7CC8kSaQ9zU7JiNwuutfwRnBtS8aZf4TcdNM84OwT3I0v7s4vqyKoUDlO23mFEQsXGNF7bmnAmSuVD7GWntHIpRXU-8Zb7jBuuqbm0QWD-VPE6OVDS5VtPsPGZDoJe0Bc7aijUVjjODdOmciNTNxg-C6G1gyALf-vdoVsPGlePOmcdFCle1B0AkUXUAZwtOr00nNt_Lv5WQJu1TQRZecXiIgu806naz_DZoiuyzZcoVk64SU3xjEr_NCEAewmFFeDFAAHcLA0A10m9UwzwZI7qyn98vde-_CepeqIvENzABvzbhG-wqZ7nT_Oum_ZXn8BJRrn9Q priority: 102 providerName: IEEE |
| Title | Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects |
| URI | https://ieeexplore.ieee.org/document/9645266 https://www.proquest.com/docview/2621793100 https://doaj.org/article/0423535031b3491c9c6d74aac2b6d5ae |
| Volume | 15 |
| WOSCitedRecordID | wos000745503600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iCl5EnWJ1Sg4eLUvTNG29zR9zXkSchx2EkJ8wmNvoNsH_3pe0G4qgF68hTcvLy3v50rzvQ-jCSZ5oAF1x5pQKJTmxBKARy9QUWkmvWMiC2ET--FgMh-XTF6kvfyespgeuDdfx9zayNAPfUykrYVzNTc6k1FRxk0nroy_selZgqo7BnILbNRxDCSk74OTd5wGgQZoASAUIT5NveSjQ9Tf6Kj-Ccsg0vT2022wRcbf-tH20YScHaPs-SPB-tNBrH6BjXSFZQbeHN4gIOGhb-ls_wdAxZCAzqk_58GKKb62dYa96Np5f4S4eLKt3-4Fhu4p7gVIEP1XTMOD8EL307l5u-nGjkRBrRopFDEkI9gzOGKaIhcWYl8a6JDeUOJYrToxJjWIaUqFOE-a0lQCJHCQkYwtSqvQIbU6mE3uMsE400cRxJTVjUpfSMZl7ui9oc7aQEaIrgwnd8Id7GYuxCDiClKK2svBWFo2VI3S5fmhW02f83v3az8S6q-e-Dg3gEaLxCPGXR0So5edxPUjp_91yHqH2al5Fs07ngnLqI1RCyMl_vPoU7VBfHhGOaNpoc1Et7Rna0u-L0bw6Dy56HkoMPwF4mel- |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB2VAqKX8lFQAwV84NilttfrXXNLCyEVJapoDj0gWf6UKpWk2iSV-u8ZezeREBUSt9XKtlb7xjMe2_MewIdoJHOYdBVVtDaX5BQGE43ClL5x1iTFQpHFJurJpLm8VOdbcLiphQkh5Mtn4WN6zGf5fu5WaavsSKVTOCkfwMNKCM66aq2135W8zhS7uCJRRSKN6TmGGFVHaOTDHxeYDXKGSSqm8Jz9EYcyXX-vr_KXU86RZvT0_77xGez2K0oy7EzgOWyF2Qt4_DUr9t7twc8xZppdQWWLzU5_oQMhWQozXRLKuBQYsPxVtylIlnPyOYQbkkTSrhefyJBcrNrbcEdwdUtGmYGEnLfzPODiJUxHX6Yn46KXVCicoM2ywJiFS4zovbA04NytlQ-R1Z7TKGorqfelt8Jh5HQlE9EFgxlUxPjlQ0OVLV_B9mw-C_tAHHPU0SitcUIYp0wUpk7sYPguhsYMgK__r3Y93XhSvbjWOe2gSneg6ASK7kEZwOGm003HtvHv5scJuE3TRJWdXyAiup95Ol38qcoKnZcthULDdNLXwhjHrfSVCQPYSyhuBukBHMDB2gx0P60XmkueHBqj9PX9vd7Dk_H0-5k-O518ewM7PNVK5P2aA9hetqvwFh652-XVon2Xbfc3WcTrPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification-Traditional+to+Deep+Models%3A+A+Survey+for+Future+Prospects&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Ahmad%2C+Muhammad&rft.au=Shabbir%2C+Sidrah&rft.au=Roy%2C+Swalpa+Kumar&rft.au=Hong%2C+Danfeng&rft.date=2022&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=15&rft.spage=968&rft.epage=999&rft_id=info:doi/10.1109%2FJSTARS.2021.3133021&rft.externalDocID=9645266 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |