Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects

Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics, i.e., the nonlinear relation among the captured spectral information and the correspondin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 15; s. 968 - 999
Hlavní autoři: Ahmad, Muhammad, Shabbir, Sidrah, Roy, Swalpa Kumar, Hong, Danfeng, Wu, Xin, Yao, Jing, Khan, Adil Mehmood, Mazzara, Manuel, Distefano, Salvatore, Chanussot, Jocelyn
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics, i.e., the nonlinear relation among the captured spectral information and the corresponding object of HSI data, make accurate classification challenging for traditional methods. In the last few years, deep learning (DL) has been substantiated as a powerful feature extractor that effectively addresses the nonlinear problems that appeared in a number of computer vision tasks. This prompts the deployment of DL for HSI classification (HSIC) which revealed good performance. This survey enlists a systematic overview of DL for HSIC and compared state-of-the-art strategies of the said topic. Primarily, we will encapsulate the main challenges of TML for HSIC and then we will acquaint the superiority of DL to address these problems. This article breaks down the state-of-the-art DL frameworks into spectral-features, spatial-features, and together spatial-spectral features to systematically analyze the achievements (future research directions as well) of these frameworks for HSIC. Moreover, we will consider the fact that DL requires a large number of labeled training examples whereas acquiring such a number for HSIC is challenging in terms of time and cost. Therefore, this survey discusses some strategies to improve the generalization performance of DL strategies which can provide some future guidelines.
AbstractList Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics, i.e., the nonlinear relation among the captured spectral information and the corresponding object of HSI data, make accurate classification challenging for traditional methods. In the last few years, deep learning (DL) has been substantiated as a powerful feature extractor that effectively addresses the nonlinear problems that appeared in a number of computer vision tasks. This prompts the deployment of DL for HSI classification (HSIC) which revealed good performance. This survey enlists a systematic overview of DL for HSIC and compared state-of-the-art strategies of the said topic. Primarily, we will encapsulate the main challenges of TML for HSIC and then we will acquaint the superiority of DL to address these problems. This article breaks down the state-of-the-art DL frameworks into spectral-features, spatial-features, and together spatial-spectral features to systematically analyze the achievements (future research directions as well) of these frameworks for HSIC. Moreover, we will consider the fact that DL requires a large number of labeled training examples whereas acquiring such a number for HSIC is challenging in terms of time and cost. Therefore, this survey discusses some strategies to improve the generalization performance of DL strategies which can provide some future guidelines.
Author Ahmad, Muhammad
Hong, Danfeng
Mazzara, Manuel
Distefano, Salvatore
Yao, Jing
Chanussot, Jocelyn
Shabbir, Sidrah
Wu, Xin
Khan, Adil Mehmood
Roy, Swalpa Kumar
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0002-3320-2261
  surname: Ahmad
  fullname: Ahmad, Muhammad
  email: mahmad00@gmail.com
  organization: Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Chiniot-Faisalabad Campus, Chiniot, Pakistan
– sequence: 2
  givenname: Sidrah
  surname: Shabbir
  fullname: Shabbir, Sidrah
  email: sidrah.shabbir@gmail.com
  organization: Department of Computer Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim yar khan, Pakistan
– sequence: 3
  givenname: Swalpa Kumar
  orcidid: 0000-0002-6580-3977
  surname: Roy
  fullname: Roy, Swalpa Kumar
  email: swalpa@cse.jgec.ac.in
  organization: Department of Computer Science and Engineering, Jalpaiguri Government Engineering College, West Bengal, India
– sequence: 4
  givenname: Danfeng
  orcidid: 0000-0002-3212-9584
  surname: Hong
  fullname: Hong, Danfeng
  email: hongdf@aircas.ac.cn
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Xin
  orcidid: 0000-0002-1733-3560
  surname: Wu
  fullname: Wu, Xin
  email: 040251522wuxin@163.com
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Jing
  orcidid: 0000-0003-1301-9758
  surname: Yao
  fullname: Yao, Jing
  email: jasonyao92@gmail.com
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Adil Mehmood
  orcidid: 0000-0003-2220-8518
  surname: Khan
  fullname: Khan, Adil Mehmood
  email: a.khan@innopolis.ru
  organization: Institute of Data Science and Artificial Intelligence, Innopolis University, Innopolis, Russia
– sequence: 8
  givenname: Manuel
  orcidid: 0000-0002-3860-4948
  surname: Mazzara
  fullname: Mazzara, Manuel
  email: m.mazzara@innopolis.ru
  organization: Institute of Software Development and Engineering, Innopolis University, Innopolis, Russia
– sequence: 9
  givenname: Salvatore
  surname: Distefano
  fullname: Distefano, Salvatore
  email: sdistefano@unime.it
  organization: Dipartimento di Matematica e Informatica—MIFT, University of Messina, Messina, Italy
– sequence: 10
  givenname: Jocelyn
  orcidid: 0000-0003-4817-2875
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn.chanussot@grenoble-inp.fr
  organization: CNRS, Grenoble INP, GIPSA-Lab, Universite Grenoble Alpes, Grenoble, France
BookMark eNqFkU9rGzEQxUVIoU6aT5CLoOd1NZL2j3IzbtO4pLTEPhaEVpoNMhtrK-0W_O0re0MOvfQ0Qrz3hvm9K3J5CAck5BbYEoCpT9-2u9XTdskZh6UAIfK8IAsOJRRQivKSLEAJVYBk8j25SmnPWMVrJRbk18NxwJgGtGM0Pd28mGek696k5DtvzejDodhF4_zplQVjoJ8RB_o9OOzTHV3R7RT_4JF2IdL7aZwi0p8xnAPTB_KuM33Cm9d5TXb3X3brh-Lxx9fNevVYWMmasRASqkp0zsmWoWyaWjnsoHacdbJuK-accK20FtEKkJ1FA1J1NTQOG6ZacU02c6wLZq-H6F9MPOpgvD5_hPisTRy97VEzyUUGwgS0QiqwylaulsZY3lauNJizPs5ZQwy_J0yj3ocp5suT5hWHzAwYyyoxq2w-NUXs3rYC06dG9NyIPjWiXxvJLvWPy_rxjDiz9_1_vLez1yPi2zZVyZJndn8BhxCcBA
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_app15179830
crossref_primary_10_3390_machines10100873
crossref_primary_10_1016_j_marpolbul_2025_117965
crossref_primary_10_3390_rs16224247
crossref_primary_10_1117_1_JEI_33_4_043052
crossref_primary_10_1109_TGRS_2022_3196057
crossref_primary_10_1016_j_jrmge_2025_03_018
crossref_primary_10_3390_rs16244653
crossref_primary_10_1109_JSTARS_2024_3452494
crossref_primary_10_1088_1361_6501_ad0c2f
crossref_primary_10_3390_rs15245656
crossref_primary_10_3390_rs14184523
crossref_primary_10_7717_peerj_cs_1271
crossref_primary_10_1049_ell2_13293
crossref_primary_10_1109_JSTARS_2022_3233125
crossref_primary_10_1109_TGRS_2022_3217892
crossref_primary_10_3390_rs15215208
crossref_primary_10_1109_JSTARS_2023_3283342
crossref_primary_10_1007_s11042_024_19969_0
crossref_primary_10_3390_rs15082150
crossref_primary_10_1109_JSTARS_2025_3530935
crossref_primary_10_1109_TGRS_2023_3286826
crossref_primary_10_1109_TGRS_2025_3581935
crossref_primary_10_3389_fpls_2024_1376915
crossref_primary_10_1109_JSTARS_2024_3372138
crossref_primary_10_1109_JSTARS_2024_3415729
crossref_primary_10_1016_j_sigpro_2023_109165
crossref_primary_10_1063_5_0240444
crossref_primary_10_1109_JSTARS_2024_3394704
crossref_primary_10_3390_rs15194657
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_1016_j_patcog_2024_111197
crossref_primary_10_1016_j_neucom_2024_128271
crossref_primary_10_1109_LGRS_2023_3287188
crossref_primary_10_1049_ipr2_12733
crossref_primary_10_1109_ACCESS_2023_3253627
crossref_primary_10_3390_rs14030505
crossref_primary_10_3390_rs16020404
crossref_primary_10_3390_s22041623
crossref_primary_10_1109_JSTARS_2025_3566423
crossref_primary_10_1109_TGRS_2023_3314619
crossref_primary_10_14358_PERS_22_00130R2
crossref_primary_10_3390_rs14112692
crossref_primary_10_1109_JSTARS_2024_3461851
crossref_primary_10_1109_ACCESS_2023_3332695
crossref_primary_10_1109_LGRS_2024_3365611
crossref_primary_10_3390_rs16152775
crossref_primary_10_1016_j_eswa_2024_125132
crossref_primary_10_1109_ACCESS_2024_3455369
crossref_primary_10_3390_rs15020304
crossref_primary_10_3390_rs16091615
crossref_primary_10_1080_01431161_2023_2290996
crossref_primary_10_1109_TNNLS_2024_3511575
crossref_primary_10_1080_05704928_2023_2270035
crossref_primary_10_1109_JSTARS_2023_3284655
crossref_primary_10_1109_TGRS_2022_3208165
crossref_primary_10_1007_s11042_024_19327_0
crossref_primary_10_1007_s13042_024_02272_7
crossref_primary_10_3390_rs15235492
crossref_primary_10_3390_rs15225331
crossref_primary_10_1109_JSTARS_2022_3172112
crossref_primary_10_1109_TGRS_2023_3271424
crossref_primary_10_3390_rs17172968
crossref_primary_10_1117_1_JRS_16_036517
crossref_primary_10_1109_TGRS_2024_3482473
crossref_primary_10_1109_LGRS_2024_3367171
crossref_primary_10_1016_j_infrared_2025_106123
crossref_primary_10_1109_TGRS_2023_3239411
crossref_primary_10_1016_j_jag_2024_104092
crossref_primary_10_1016_j_vibspec_2025_103828
crossref_primary_10_1117_1_JRS_16_048506
crossref_primary_10_1109_TGRS_2024_3511953
crossref_primary_10_1016_j_asoc_2022_109650
crossref_primary_10_3390_electronics13132540
crossref_primary_10_1109_ACCESS_2023_3243243
crossref_primary_10_1016_j_neunet_2023_08_059
crossref_primary_10_1109_JSTARS_2022_3173676
crossref_primary_10_1016_j_eswa_2023_122172
crossref_primary_10_1109_JSTARS_2024_3383854
crossref_primary_10_1109_TGRS_2024_3429372
crossref_primary_10_1109_TGRS_2025_3556088
crossref_primary_10_1109_JSTARS_2024_3362936
crossref_primary_10_1109_TGRS_2024_3440271
crossref_primary_10_1016_j_neucom_2024_128751
crossref_primary_10_1007_s42452_022_05105_w
crossref_primary_10_3390_rs17122008
crossref_primary_10_1109_JSTARS_2025_3565894
crossref_primary_10_1109_JSTARS_2022_3229834
crossref_primary_10_1109_TGRS_2024_3364143
crossref_primary_10_3390_app14051701
crossref_primary_10_1016_j_cosrev_2024_100666
crossref_primary_10_1109_TGRS_2023_3328263
crossref_primary_10_1109_TGRS_2022_3177633
crossref_primary_10_1016_j_knosys_2025_113236
crossref_primary_10_1016_j_jiixd_2025_04_002
crossref_primary_10_1016_j_eswa_2023_121299
crossref_primary_10_1016_j_rsase_2025_101618
crossref_primary_10_1109_TGRS_2024_3368079
crossref_primary_10_1109_TGRS_2025_3559137
crossref_primary_10_1109_JSTARS_2024_3494258
crossref_primary_10_3390_rs14102355
crossref_primary_10_3390_rs17173126
crossref_primary_10_1109_LGRS_2022_3181627
crossref_primary_10_1016_j_cosrev_2024_100658
crossref_primary_10_1016_j_engappai_2025_111151
crossref_primary_10_1109_TGRS_2022_3160513
crossref_primary_10_1109_TGRS_2023_3314550
crossref_primary_10_1109_TGRS_2024_3361555
crossref_primary_10_1109_JSTARS_2025_3582083
crossref_primary_10_1080_2150704X_2024_2302939
crossref_primary_10_1109_TGRS_2024_3452700
crossref_primary_10_1109_TGRS_2023_3242346
crossref_primary_10_3390_atmos16050541
crossref_primary_10_3390_rs15153701
crossref_primary_10_1080_01431161_2023_2221802
crossref_primary_10_1109_TGRS_2024_3407812
crossref_primary_10_1109_LGRS_2024_3431188
crossref_primary_10_1109_TGRS_2022_3209182
crossref_primary_10_1109_TGRS_2023_3244805
crossref_primary_10_1109_TGRS_2024_3520639
crossref_primary_10_1016_j_jcmds_2022_100070
crossref_primary_10_1109_ACCESS_2024_3420089
crossref_primary_10_3390_rs16162988
crossref_primary_10_1109_JSTARS_2025_3562477
crossref_primary_10_1007_s10489_025_06493_3
crossref_primary_10_3390_s24041187
crossref_primary_10_1109_JSTARS_2024_3465831
crossref_primary_10_3390_app15084188
crossref_primary_10_3390_axioms11060269
crossref_primary_10_1007_s12393_022_09327_x
crossref_primary_10_1109_TGRS_2022_3189015
crossref_primary_10_1109_TGRS_2025_3534790
crossref_primary_10_1109_JSTARS_2023_3319587
crossref_primary_10_1016_j_foodcont_2023_109716
crossref_primary_10_1109_JSTARS_2023_3337112
crossref_primary_10_3390_s23042055
crossref_primary_10_1016_j_jag_2024_103773
crossref_primary_10_3390_rs16214050
crossref_primary_10_3390_s23198025
crossref_primary_10_1109_JSTARS_2025_3556351
crossref_primary_10_1016_j_engappai_2023_107070
crossref_primary_10_1109_LGRS_2024_3353909
crossref_primary_10_1109_TGRS_2025_3573473
crossref_primary_10_1109_LGRS_2022_3179135
crossref_primary_10_1109_LGRS_2024_3506034
crossref_primary_10_1109_TGRS_2024_3387420
crossref_primary_10_3390_app14167361
crossref_primary_10_1109_LGRS_2023_3236672
crossref_primary_10_1080_01431161_2024_2318767
crossref_primary_10_1016_j_knosys_2024_112215
crossref_primary_10_1109_TIM_2023_3279922
crossref_primary_10_1080_10106049_2022_2138984
crossref_primary_10_1109_ACCESS_2025_3587226
crossref_primary_10_1109_TGRS_2023_3241193
crossref_primary_10_1109_TGRS_2024_3350055
crossref_primary_10_1007_s12145_023_01181_7
crossref_primary_10_1109_TGRS_2025_3533475
crossref_primary_10_1109_TCSVT_2024_3486755
crossref_primary_10_3390_rs17091574
crossref_primary_10_1109_TGRS_2024_3426358
crossref_primary_10_1016_j_engappai_2023_107835
crossref_primary_10_1109_TGRS_2022_3147198
crossref_primary_10_1109_TGRS_2024_3463187
crossref_primary_10_1109_JSTARS_2025_3558889
crossref_primary_10_3390_rs13214472
crossref_primary_10_1016_j_eswa_2024_123587
crossref_primary_10_1080_01431161_2022_2132123
crossref_primary_10_1016_j_engappai_2023_106993
crossref_primary_10_1016_j_jfca_2025_107857
crossref_primary_10_1109_JSTARS_2025_3532816
crossref_primary_10_3390_diagnostics15131686
crossref_primary_10_3390_s22010123
crossref_primary_10_1109_TGRS_2025_3572805
crossref_primary_10_3390_rs16163082
crossref_primary_10_1109_TGRS_2024_3374324
crossref_primary_10_1109_TGRS_2024_3457674
crossref_primary_10_1080_07038992_2025_2551533
crossref_primary_10_1016_j_infrared_2023_104985
crossref_primary_10_1016_j_ecolind_2022_108999
crossref_primary_10_3390_app14010250
crossref_primary_10_1007_s11042_025_21061_0
crossref_primary_10_1109_TGRS_2024_3401231
crossref_primary_10_1016_j_asoc_2023_111176
crossref_primary_10_1109_TGRS_2025_3576656
crossref_primary_10_1109_TGRS_2024_3430985
crossref_primary_10_1016_j_eswa_2024_124583
crossref_primary_10_1109_TGRS_2024_3434423
crossref_primary_10_1109_JSTARS_2025_3544583
crossref_primary_10_1109_LGRS_2024_3393290
crossref_primary_10_1177_15589250241302435
crossref_primary_10_1109_TGRS_2025_3603835
crossref_primary_10_1016_j_jag_2024_103979
crossref_primary_10_1080_01431161_2025_2555279
crossref_primary_10_1109_TGRS_2025_3561850
crossref_primary_10_1016_j_eswa_2025_126818
crossref_primary_10_1109_TGRS_2024_3362471
crossref_primary_10_1007_s00521_025_11315_1
crossref_primary_10_1080_10106049_2023_2231428
crossref_primary_10_1109_TGRS_2023_3340517
crossref_primary_10_1109_TGRS_2025_3600692
crossref_primary_10_1109_JSTARS_2024_3465227
crossref_primary_10_1109_TGRS_2022_3176913
crossref_primary_10_1109_JSTARS_2024_3424954
crossref_primary_10_1007_s12524_024_01933_y
crossref_primary_10_3390_electronics14010102
crossref_primary_10_32604_cmc_2024_056318
crossref_primary_10_3390_rs17142494
crossref_primary_10_1109_JSTARS_2023_3298477
crossref_primary_10_3390_rs15071820
crossref_primary_10_1109_JSTARS_2024_3429492
crossref_primary_10_1016_j_jag_2025_104356
crossref_primary_10_1007_s10462_025_11265_z
crossref_primary_10_1109_TGRS_2024_3508737
crossref_primary_10_3390_rs15184432
crossref_primary_10_1109_TGRS_2023_3300688
crossref_primary_10_1049_ipr2_13116
crossref_primary_10_1117_1_OE_62_10_103103
crossref_primary_10_1080_01431161_2024_2370504
crossref_primary_10_1109_JSTARS_2024_3509538
crossref_primary_10_1109_JSTARS_2025_3571226
crossref_primary_10_1109_JSTARS_2025_3529985
crossref_primary_10_1109_TGRS_2024_3482848
crossref_primary_10_1109_TGRS_2023_3275871
crossref_primary_10_3390_rs15051206
crossref_primary_10_3390_rs17152727
crossref_primary_10_1016_j_jag_2023_103332
crossref_primary_10_1016_j_uclim_2023_101468
crossref_primary_10_3390_rs14164066
crossref_primary_10_1109_JSTARS_2024_3369950
crossref_primary_10_1007_s00371_024_03728_1
crossref_primary_10_1109_JSTARS_2024_3476333
crossref_primary_10_1016_j_eswa_2023_120496
crossref_primary_10_3390_rs16244661
Cites_doi 10.1109/TGRS.2011.2128330
10.1016/j.ijleo.2021.166267
10.1109/TGRS.2021.3052048
10.3390/rs10030396
10.1109/ICIP.2017.8297014
10.1109/LGRS.2020.3013235
10.3390/molecules23112831
10.1109/LGRS.2009.2035644
10.3390/rs10091425
10.3390/rs71114988
10.1016/j.micpro.2020.103070
10.1109/WHISPERS52202.2021.9483983
10.3390/rs10071156
10.1109/79.974730
10.1109/TGRS.2017.2752738
10.1109/TGRS.2020.2964627
10.1109/JSTARS.2016.2598859
10.1109/TGRS.2018.2815613
10.1016/j.isprsjprs.2020.06.014
10.1016/j.eswa.2019.04.006
10.1109/TGRS.2004.842481
10.1109/LGRS.2018.2794980
10.1109/MGRS.2013.2244672
10.1007/978-981-13-0212-1_18
10.1109/TGRS.2020.3035642
10.1109/TGRS.2020.3014313
10.1109/LGRS.2017.2759168
10.1016/j.isprsjprs.2018.05.014
10.1109/CVPR.2016.90
10.3390/rs12020280
10.1109/LGRS.2017.2665679
10.1109/LGRS.2017.2737823
10.1080/01431161.2013.876120
10.3390/electron-ics8030292
10.1007/BF00344251
10.1007/978-3-319-59072-1_32
10.1109/MMSP.2018.8547139
10.1109/LGRS.2020.3043710
10.1109/LGRS.2017.2765339
10.1016/j.isprsjprs.2019.09.006
10.1109/JPROC.2017.2675998
10.3390/rs12010159
10.3390/s17102421
10.3390/s19010204
10.1109/TGRS.2020.3016820
10.1109/LGRS.2015.2402391
10.1109/TGRS.2004.831865
10.1109/TGRS.2005.846154
10.1186/1687-6180-2012-142
10.3390/rs11091136
10.1109/TIP.2018.2878958
10.1109/IPTA.2016.7820963
10.1109/JSTARS.2012.2227245
10.1109/MGRS.2020.2979764
10.3390/rs8060483
10.1109/ACCESS.2019.2916095
10.3390/app8020212
10.1109/LGRS.2012.2228625
10.1109/LGRS.2015.2453130
10.1016/s0034-4257(98)00064-9
10.1109/JSTARS.2021.3088228
10.1049/iet-cvi.2014.0270
10.1109/TGRS.2019.2902568
10.1007/978-3-319-68548-9_46
10.1016/j.neucom.2017.09.065
10.1109/TGRS.2018.2805286
10.3390/rs10030395
10.1371/journal.pone.0188996
10.1109/TGRS.2020.2994205
10.1049/iet-ipr.2019.1462
10.1109/TGRS.2018.2838665
10.1109/LGRS.2015.2475299
10.1080/2150704X.2018.1557787
10.1109/JSTARS.2015.2488583
10.1109/TGRS.2017.2681721
10.1117/1.JRS.8.083690
10.1109/TGRS.2015.2514161
10.1049/iet-ipr.2019.0869
10.1038/s41586-019-0912-1
10.1109/TGRS.2021.3120198
10.1007/s11227-020-03187-0
10.3390/rs13122275
10.1117/12.2538564
10.1016/j.neunet.2018.05.019
10.1109/TGRS.2018.2886022
10.1016/j.patcog.2016.10.019
10.1109/JSTARS.2014.2329330
10.1016/j.parco.2007.12.005
10.1016/j.isprsjprs.2019.09.008
10.1016/j.ijleo.2017.03.051
10.1109/LGRS.2019.2921011
10.1016/j.ijleo.2019.163712
10.1007/s10994-019-05855-6
10.3390/rs11070864
10.1109/JSTARS.2018.2844873
10.1109/JSTARS.2012.2194696
10.1109/DSC.2017.32
10.1109/LGRS.2017.2786272
10.3390/ijgi7090349
10.1109/JSTARS.2017.2712119
10.1109/JSTARS.2015.2388577
10.1111/tgis.12164
10.1109/IGARSS.2015.7326945
10.1109/JSTARS.2018.2874225
10.1109/ACCESS.2020.3026925
10.3390/s21093045
10.1080/01431161.2011.608740
10.1080/2150704X.2021.1992034
10.1109/IPACT.2017.8244999
10.1007/s00521-021-06094-4
10.1109/TGRS.2019.2961681
10.1109/TGRS.2004.825578
10.1049/iet-ipr.2017.0168
10.1109/ICT.2019.8798816
10.1080/01431161.2020.1736732
10.1109/LGRS.2021.3108965
10.1109/LGRS.2019.2919755
10.1109/LGRS.2017.2764915
10.1109/TGRS.2019.2908756
10.1109/ACCESS.2017.2706363
10.1109/IGARSS.2018.8518846
10.1007/s10462-007-9052-3
10.1162/neco.2006.18.7.1527
10.1109/TGRS.2019.2912468
10.1016/j.ijleo.2018.10.142
10.1109/ICIP.2008.4712139
10.1080/01431161.2012.705443
10.1113/jphysiol.1962.sp006837
10.3390/rs8030259
10.1109/TGRS.2020.2971081
10.1016/j.neucom.2018.03.012
10.3390/rs10091454
10.1016/j.isprsjprs.2022.02.021
10.1109/TGRS.2017.2698503
10.1109/JSTARS.2016.2536943
10.1109/LGRS.2021.3112755
10.3390/rs8050436
10.1109/MSP.2013.2279179
10.1109/TGRS.2017.2689018
10.1109/TGRS.2004.842478
10.1109/TGRS.2015.2393857
10.1109/ICCV.1999.790410
10.1109/CISP.2008.114
10.1109/TSMC.1973.4309314
10.1080/2150704X.2017.1331053
10.1162/neco.1989.1.2.270
10.3390/rs10040574
10.3390/rs12010086
10.1109/TGRS.2018.2837142
10.1109/TGRS.2020.3015157
10.1109/TGRS.2019.2897139
10.1109/TGRS.2017.2755542
10.1109/LGRS.2018.2853705
10.1109/TGRS.2019.2952319
10.1007/s11554-018-0793-9
10.1515/9781400874668
10.1109/JSTARS.2016.2609404
10.1016/j.asoc.2018.08.049
10.1109/LGRS.2019.2909495
10.1016/S0893-6080(98)00116-6
10.1109/JSTARS.2016.2646138
10.1162/neco.1997.9.8.1735
10.1109/JSTARS.2017.2747600
10.1109/IGARSS.2016.7729116
10.3390/app10144739
10.1109/TGRS.2021.3130716
10.1016/j.infrared.2017.08.021
10.1109/TGRS.2011.2108305
10.1109/SSCI.2016.7850136
10.1016/j.isprsjprs.2014.10.002
10.1109/ICTAI.2016.0158
10.1109/72.279181
10.1109/TGRS.2017.2730583
10.1016/j.rse.2007.07.028
10.1109/LGRS.2018.2830403
10.1016/j.isprsjprs.2018.10.006
10.1109/JSTARS.2020.3022781
10.1080/22797254.2017.1274566
10.1080/10408398.2017.1363709
10.1080/15481603.2017.1323377
10.1016/j.ijleo.2021.167757
10.1109/TGRS.2019.2957251
10.1109/TGRS.2021.3064958
10.1023/A:1011139631724
10.1109/MGRS.2021.3064051
10.1016/j.patcog.2017.10.013
10.1016/j.patcog.2017.10.007
10.1109/TGRS.2017.2713123
10.1186/s40537-017-0089-0
10.3390/rs11070883
10.1109/TGRS.2010.2060550
10.1109/TGRS.2018.2828042
10.1109/TGRS.2020.3043267
10.1016/j.neucom.2018.02.105
10.1016/j.isprsjprs.2018.02.001
10.1109/CVPR.2005.177
10.1109/IGARSS.2016.7729926
10.1109/CIS.2008.204
10.1007/978-981-15-0633-8_119
10.1016/j.isprsjprs.2017.11.021
10.1109/LGRS.2020.2976482
10.1016/j.procs.2015.12.101
10.1109/TGRS.2015.2496185
10.1126/science.1127647
10.1007/978-3-642-15246-7_27
10.1109/TNNLS.2019.2955777
10.3156/jsoft.29.5_177_2
10.1109/JPROC.2012.2197589
10.1016/j.isprsjprs.2016.04.008
10.1155/2018/7068349
10.3390/rs9030298
10.1109/TGRS.2018.2888485
10.1109/TGRS.2018.2818945
10.3389/fncom.2015.00104
10.1109/CVPR.2006.68
10.1109/LGRS.2017.2723763
10.3115/v1/w14-4012
10.3390/s17112644
10.1186/s40537-019-0197-0
10.3390/app10175955
10.1109/TGRS.2018.2890705
10.1109/LGRS.2012.2225596
10.1109/LGRS.2011.2145353
10.1109/LGRS.2017.2780890
10.1016/j.neucom.2016.09.010
10.1080/2150704x.2017.1280200
10.1109/LGRS.2015.2513443
10.3390/rs9121330
10.1109/RAIT.2018.8389024
10.1080/01431161.2012.714508
10.1109/MGRS.2017.2762087
10.1145/1015330.1015385
10.1145/130385.130417
10.3390/rs71114680
10.1109/TIP.2017.2772836
10.1109/EORSA.2016.7552845
10.1109/TGRS.2019.2907932
10.1109/TGRS.2018.2868851
10.1109/TGRS.2017.2675902
10.3390/app10217783
10.1109/TCYB.2019.2915094
10.1117/1.JRS.10.035004
10.1145/1869790.1869829
10.1007/978-3-319-59129-2_15
10.5220/0007258000002108
10.3390/rs9101042
10.1016/j.neucom.2015.12.008
10.1109/TGRS.2019.2899057
10.3390/rs8020157
10.1109/ICIST.2019.8836913
10.1016/j.dsp.2018.06.016
10.3390/rs9010067
10.1109/LGRS.2018.2869563
10.1007/978-3-030-58452-8_37
10.1109/TCYB.2020.3028931
10.1109/JSTARS.2019.2892975
10.1109/TGRS.2017.2710079
10.1080/01431160802559046
10.1109/EIT.2018.8500107
10.1109/TGRS.2018.2860464
10.1016/j.neucom.2021.03.035
10.3390/rs9060618
10.1109/LGRS.2014.2306689
10.1109/MSP.2011.940409
10.1109/TGRS.2018.2860125
10.1109/TGRS.2019.2893180
10.1109/TPAMI.2002.1017623
10.3390/app10196862
10.1007/s12524-019-01045-y
10.1109/MGRS.2019.2898520
10.7312/haza92762-003
10.1109/TGRS.2011.2151866
10.1109/TGRS.2019.2899129
10.1007/978-3-031-31407-0_35
10.1109/LGRS.2018.2878773
10.1109/JSTARS.2020.3041868
10.1109/36.905239
10.1201/b17320
10.1109/TGRS.2017.2756851
10.1109/TGRS.2017.2735488
10.1109/TGRS.2017.2747862
10.1109/TGRS.2015.2435801
10.1109/TGRS.2017.2783886
10.1109/CGiV.2016.58
10.1109/CVPR.2005.216
10.5555/2999134.2999257
10.1109/TGRS.2017.2778343
10.3390/rs11242974
10.1109/TIT.1968.1054102
10.1109/LGRS.2019.2918719
10.1109/ACCESS.2020.3027776
10.1109/TPAMI.2012.213
10.1007/978-3-030-03341-5_34
10.1109/PIERS-Spring46901.2019.9017309
10.1109/TGRS.2018.2841823
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2021.3133021
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 999
ExternalDocumentID oai_doaj_org_article_0423535031b3491c9c6d74aac2b6d5ae
10_1109_JSTARS_2021_3133021
9645266
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42030111; 41722108; 62101045
  funderid: 10.13039/501100001809
– fundername: AXA Research Fund
  funderid: 10.13039/501100001961
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M690385
  funderid: 10.13039/501100002858
– fundername: MIAI@Grenoble Alpes
  grantid: ANR-19-P3IA-0003
– fundername: Analytical Center for the Government of the Russian Federation
  grantid: 70-2021-00143 dd. 01.11.2021; IGK 000000D730321P5Q0002
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-341663fdd4b0e48879def17d20f47b60dd3db4cceec314fcea149f718de809b3
IEDL.DBID DOA
ISICitedReferencesCount 264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745503600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:52:31 EDT 2025
Mon Jul 28 15:40:49 EDT 2025
Tue Nov 18 21:18:43 EST 2025
Sat Nov 29 04:51:11 EST 2025
Wed Aug 27 03:02:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-341663fdd4b0e48879def17d20f47b60dd3db4cceec314fcea149f718de809b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2220-8518
0000-0002-1733-3560
0000-0002-3212-9584
0000-0002-3860-4948
0000-0002-6580-3977
0000-0003-4817-2875
0000-0003-1301-9758
0000-0002-3320-2261
OpenAccessLink https://doaj.org/article/0423535031b3491c9c6d74aac2b6d5ae
PQID 2621793100
PQPubID 75722
PageCount 32
ParticipantIDs ieee_primary_9645266
crossref_citationtrail_10_1109_JSTARS_2021_3133021
crossref_primary_10_1109_JSTARS_2021_3133021
doaj_primary_oai_doaj_org_article_0423535031b3491c9c6d74aac2b6d5ae
proquest_journals_2621793100
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref328
ref208
ref205
ref326
ref58
ref206
ref53
ref203
ref324
ref52
ref204
ref325
ref55
ref322
ref54
ref202
ref323
ref209
Ahmad (ref24) 2011
ref210
ref211
ref51
ref50
ref46
ref218
ref45
ref219
ref48
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref43
ref213
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref100
ref221
ref101
ref222
ref40
ref220
ref35
Loshchilov (ref123) 2019
ref306
ref34
ref307
ref37
ref304
ref36
ref305
ref31
ref302
ref30
ref303
ref33
ref300
ref32
ref301
Hinton (ref240) 2012
ref39
ref308
ref309
ref310
ref317
ref318
ref26
ref315
ref25
ref316
ref20
ref313
ref314
ref311
ref21
ref312
ref28
ref27
Ablin (ref59) 2013; 2
ref319
ref29
Settles (ref297) 2009
ref320
ref200
ref321
(ref9) 2020
Hinton (ref121) 2012; 14
Huang (ref176) 2018
ref249
Ahmad (ref23) 2011; 3
ref129
ref97
ref126
ref247
ref96
ref248
ref99
ref124
ref245
ref98
ref246
Kipf (ref216) 2016
Ahmad (ref38) 2017
ref93
ref133
ref254
ref92
ref134
ref255
ref95
ref131
ref252
ref94
ref132
ref250
ref130
ref251
ref91
ref90
ref89
ref139
ref86
ref137
ref258
Kotsiantis (ref56) 2007; 160
ref85
ref138
ref259
ref88
ref256
ref87
ref136
ref257
Luo (ref253) 2018
ref82
ref144
ref265
ref81
ref145
ref266
ref84
ref142
ref263
ref83
ref143
ref140
ref261
ref141
ref262
ref80
ref260
ref79
ref108
ref229
ref78
ref109
ref106
ref227
ref107
ref228
ref75
ref104
ref225
Chen (ref329) 2016; 2016
ref74
ref105
ref226
ref77
ref102
ref76
ref103
ref224
ref71
ref232
ref70
ref112
ref233
ref230
ref72
ref110
ref231
Ahmad (ref22) 2011
Aggarwal (ref295) 2014
ref68
ref67
ref117
ref238
ref69
ref118
ref64
ref115
ref236
ref63
ref237
(ref12) 2020
ref66
ref113
ref234
ref65
ref114
ref235
Erhan (ref128) 2010; 11
ref60
ref243
ref244
ref62
ref120
ref241
ref61
ref242
ref168
ref289
ref169
Nguyen (ref116) 2017
ref290
ref170
ref291
Ganti (ref293) 2012
ref177
ref298
ref178
ref299
Liu (ref125) 2019
Lin (ref167) 2013
ref175
ref296
ref173
ref294
ref174
ref171
ref292
ref172
ref179
Shaham (ref239) 2016
Kingma (ref122) 2015
ref180
ref181
ref188
ref189
Rifai (ref223) 2011
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref269
ref149
ref146
ref267
ref147
ref268
Haut (ref327) 2017; 3
ref155
ref276
ref156
ref277
ref153
ref274
ref154
ref275
ref151
ref272
ref152
ref273
ref270
Roy (ref127) 2021
ref150
ref271
ref157
ref278
ref158
ref279
ref280
Bottou (ref119) 1991; 91
ref166
ref287
ref288
ref164
ref285
ref165
ref286
ref162
ref283
ref163
ref284
ref160
ref281
ref282
ref13
Goodfellow (ref159) 2016
ref15
ref14
ref11
ref10
ref17
ref19
ref18
Ahmad (ref16) 2012; 2
Oliva (ref73) 2001; 42
Sugiyama (ref135) 2007; 8
Dong (ref201) 2019
ref2
ref1
ref191
ref192
ref190
ref199
ref197
ref198
ref195
ref196
ref193
ref194
Nalepa (ref264) 2019
Williams (ref161) 2021; 130
Chen (ref111) 2014
References_xml – ident: ref326
  doi: 10.1109/TGRS.2011.2128330
– ident: ref11
  doi: 10.1016/j.ijleo.2021.166267
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref329
  article-title: Stacked denoise autoencoder based feature extraction and classification for hyperspectral images
  publication-title: J. Sensors
– ident: ref283
  doi: 10.1109/TGRS.2021.3052048
– ident: ref243
  doi: 10.3390/rs10030396
– ident: ref200
  doi: 10.1109/ICIP.2017.8297014
– ident: ref209
  doi: 10.1109/LGRS.2020.3013235
– volume: 91
  start-page: 1
  issue: 8
  volume-title: Proc. Neuro-Nmes
  year: 1991
  ident: ref119
  article-title: Stochastic gradient learning in neural networks
– ident: ref147
  doi: 10.3390/molecules23112831
– ident: ref91
  doi: 10.1109/LGRS.2009.2035644
– ident: ref286
  doi: 10.3390/rs10091425
– ident: ref96
  doi: 10.3390/rs71114988
– ident: ref157
  doi: 10.1016/j.micpro.2020.103070
– year: 2018
  ident: ref253
  article-title: Shorten spatial-spectral RNN with parallel-GRU for hyperspectral image classification
– ident: ref190
  doi: 10.1109/WHISPERS52202.2021.9483983
– ident: ref151
  doi: 10.3390/rs10071156
– ident: ref27
  doi: 10.1109/79.974730
– ident: ref305
  doi: 10.1109/TGRS.2017.2752738
– ident: ref261
  doi: 10.1109/TGRS.2020.2964627
– ident: ref310
  doi: 10.1109/JSTARS.2016.2598859
– ident: ref255
  doi: 10.1109/TGRS.2018.2815613
– ident: ref101
  doi: 10.1016/j.isprsjprs.2020.06.014
– ident: ref208
  doi: 10.1016/j.eswa.2019.04.006
– ident: ref75
  doi: 10.1109/TGRS.2004.842481
– ident: ref301
  doi: 10.1109/LGRS.2018.2794980
– ident: ref115
  doi: 10.1109/MGRS.2013.2244672
– ident: ref177
  doi: 10.1007/978-981-13-0212-1_18
– ident: ref57
  doi: 10.1109/TGRS.2020.3035642
– ident: ref193
  doi: 10.1109/TGRS.2020.3014313
– ident: ref227
  doi: 10.1109/LGRS.2017.2759168
– ident: ref181
  doi: 10.1016/j.isprsjprs.2018.05.014
– ident: ref132
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: ref12
  article-title: Applications of hyperspectral image
– ident: ref206
  doi: 10.3390/rs12020280
– ident: ref271
  doi: 10.1109/LGRS.2017.2665679
– ident: ref224
  doi: 10.1109/LGRS.2017.2737823
– volume-title: Deep Learning
  year: 2016
  ident: ref159
– ident: ref53
  doi: 10.1080/01431161.2013.876120
– ident: ref129
  doi: 10.3390/electron-ics8030292
– ident: ref164
  doi: 10.1007/BF00344251
– ident: ref238
  doi: 10.1007/978-3-319-59072-1_32
– ident: ref288
  doi: 10.1109/MMSP.2018.8547139
– ident: ref67
  doi: 10.1109/LGRS.2020.3043710
– ident: ref149
  doi: 10.1109/LGRS.2017.2765339
– ident: ref69
  doi: 10.1016/j.isprsjprs.2019.09.006
– ident: ref49
  doi: 10.1109/JPROC.2017.2675998
– ident: ref156
  doi: 10.3390/rs12010159
– ident: ref186
  doi: 10.3390/s17102421
– ident: ref64
  doi: 10.3390/s19010204
– ident: ref107
  doi: 10.1109/TGRS.2020.3016820
– ident: ref93
  doi: 10.1109/LGRS.2015.2402391
– ident: ref321
  doi: 10.1109/TGRS.2004.831865
– ident: ref76
  doi: 10.1109/TGRS.2005.846154
– ident: ref77
  doi: 10.1186/1687-6180-2012-142
– ident: ref1
  doi: 10.3390/rs11091136
– ident: ref25
  doi: 10.1109/TIP.2018.2878958
– ident: ref66
  doi: 10.1109/IPTA.2016.7820963
– ident: ref42
  doi: 10.1109/JSTARS.2012.2227245
– ident: ref65
  doi: 10.1109/MGRS.2020.2979764
– ident: ref71
  doi: 10.3390/rs8060483
– ident: ref189
  doi: 10.1109/ACCESS.2019.2916095
– ident: ref175
  doi: 10.3390/app8020212
– ident: ref89
  doi: 10.1109/LGRS.2012.2228625
– ident: ref104
  doi: 10.1109/LGRS.2015.2453130
– ident: ref316
  doi: 10.1016/s0034-4257(98)00064-9
– ident: ref195
  doi: 10.1109/JSTARS.2021.3088228
– ident: ref79
  doi: 10.1049/iet-cvi.2014.0270
– ident: ref192
  doi: 10.1109/TGRS.2019.2902568
– ident: ref178
  doi: 10.1007/978-3-319-68548-9_46
– ident: ref237
  doi: 10.1016/j.neucom.2017.09.065
– ident: ref275
  doi: 10.1109/TGRS.2018.2805286
– ident: ref146
  doi: 10.3390/rs10030395
– ident: ref35
  doi: 10.1371/journal.pone.0188996
– ident: ref219
  doi: 10.1109/TGRS.2020.2994205
– ident: ref197
  doi: 10.1049/iet-ipr.2019.1462
– ident: ref311
  doi: 10.1109/TGRS.2018.2838665
– ident: ref109
  doi: 10.1109/LGRS.2015.2475299
– ident: ref155
  doi: 10.1080/2150704X.2018.1557787
– ident: ref205
  doi: 10.1109/JSTARS.2015.2488583
– ident: ref44
  doi: 10.1109/TGRS.2017.2681721
– ident: ref99
  doi: 10.1117/1.JRS.8.083690
– ident: ref140
  doi: 10.1109/TGRS.2015.2514161
– year: 2021
  ident: ref127
  article-title: AngularGrad: A new optimization technique for angular convergence of convolutional neural networks
– ident: ref280
  doi: 10.1049/iet-ipr.2019.0869
– ident: ref114
  doi: 10.1038/s41586-019-0912-1
– ident: ref215
  doi: 10.1109/TGRS.2021.3120198
– ident: ref248
  doi: 10.1007/s11227-020-03187-0
– ident: ref118
  doi: 10.3390/rs13122275
– ident: ref290
  doi: 10.1117/12.2538564
– ident: ref250
  doi: 10.1016/j.neunet.2018.05.019
– start-page: 422
  volume-title: Proc. Artif. Intell. Statist.
  year: 2012
  ident: ref293
  article-title: UPAL: Unbiased pool based active learning
– ident: ref204
  doi: 10.1109/TGRS.2018.2886022
– ident: ref148
  doi: 10.1016/j.patcog.2016.10.019
– volume-title: Proc. 3rd Int. Conf. Learn. Representations
  year: 2015
  ident: ref122
  article-title: Adam: A method for stochastic optimization
– ident: ref62
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref130
  doi: 10.1016/j.parco.2007.12.005
– ident: ref15
  doi: 10.1016/j.isprsjprs.2019.09.008
– ident: ref20
  doi: 10.1016/j.ijleo.2017.03.051
– year: 2017
  ident: ref116
  article-title: Optimization landscape and expressivity of deep CNNs
– ident: ref263
  doi: 10.1109/LGRS.2019.2921011
– ident: ref36
  doi: 10.1016/j.ijleo.2019.163712
– ident: ref265
  doi: 10.1007/s10994-019-05855-6
– ident: ref328
  doi: 10.3390/rs11070864
– ident: ref142
  doi: 10.1109/JSTARS.2018.2844873
– ident: ref19
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref220
  doi: 10.1109/DSC.2017.32
– ident: ref179
  doi: 10.1109/LGRS.2017.2786272
– ident: ref168
  doi: 10.3390/ijgi7090349
– ident: ref28
  doi: 10.1109/JSTARS.2017.2712119
– start-page: 179
  volume-title: Proc. Int. Proc. Comput. Sci. Inf. Technol.
  year: 2011
  ident: ref22
  article-title: Linear unmixing and target detection of hyperspectral imagery using OSP
– ident: ref144
  doi: 10.1109/JSTARS.2015.2388577
– ident: ref61
  doi: 10.1111/tgis.12164
– ident: ref324
  doi: 10.1109/IGARSS.2015.7326945
– ident: ref312
  doi: 10.1109/JSTARS.2018.2874225
– ident: ref5
  doi: 10.1109/ACCESS.2020.3026925
– ident: ref6
  doi: 10.3390/s21093045
– ident: ref105
  doi: 10.1080/01431161.2011.608740
– ident: ref182
  doi: 10.1080/2150704X.2021.1992034
– ident: ref267
  doi: 10.1109/IPACT.2017.8244999
– ident: ref8
  doi: 10.1007/s00521-021-06094-4
– start-page: 1
  volume-title: Proc. Int. Conf. Biol. Inf. Biomed. Eng.
  year: 2018
  ident: ref176
  article-title: Convolutional neural network for medical hyperspectral image classification with kernel fusion
– ident: ref194
  doi: 10.1109/TGRS.2019.2961681
– ident: ref137
  doi: 10.1109/TGRS.2004.825578
– start-page: 833
  volume-title: Proc. 28th Int. Conf. Int. Conf. Mach. Learn.
  year: 2011
  ident: ref223
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
– volume-title: Proc. 7th Int. Conf. Learn. Representations
  year: 2019
  ident: ref123
  article-title: Decoupled weight decay regularization
– volume-title: CoRR
  year: 2017
  ident: ref38
  article-title: Hyperspectral band selection using unsupervised non-linear deep auto encoder to train external classifiers
– ident: ref13
  doi: 10.1049/iet-ipr.2017.0168
– ident: ref84
  doi: 10.1109/ICT.2019.8798816
– ident: ref138
  doi: 10.1080/01431161.2020.1736732
– year: 2013
  ident: ref167
  article-title: Network in network
– ident: ref214
  doi: 10.1109/LGRS.2021.3108965
– ident: ref32
  doi: 10.1109/LGRS.2019.2919755
– ident: ref184
  doi: 10.1109/LGRS.2017.2764915
– ident: ref210
  doi: 10.1109/TGRS.2019.2908756
– ident: ref230
  doi: 10.1109/ACCESS.2017.2706363
– year: 2020
  ident: ref9
  article-title: 10 Important applications of hyperspectral image
– ident: ref276
  doi: 10.1109/IGARSS.2018.8518846
– ident: ref55
  doi: 10.1007/s10462-007-9052-3
– ident: ref236
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref279
  doi: 10.1109/TGRS.2019.2912468
– ident: ref39
  doi: 10.1016/j.ijleo.2018.10.142
– ident: ref83
  doi: 10.1109/ICIP.2008.4712139
– ident: ref52
  doi: 10.1080/01431161.2012.705443
– ident: ref163
  doi: 10.1113/jphysiol.1962.sp006837
– ident: ref102
  doi: 10.3390/rs8030259
– ident: ref308
  doi: 10.1109/TGRS.2020.2971081
– ident: ref254
  doi: 10.1016/j.neucom.2018.03.012
– ident: ref145
  doi: 10.3390/rs10091454
– ident: ref33
  doi: 10.1016/j.isprsjprs.2022.02.021
– ident: ref284
  doi: 10.1109/TGRS.2017.2698503
– ident: ref92
  doi: 10.1109/JSTARS.2016.2536943
– ident: ref211
  doi: 10.1109/LGRS.2021.3112755
– ident: ref48
  doi: 10.3390/rs8050436
– ident: ref60
  doi: 10.1109/MSP.2013.2279179
– ident: ref169
  doi: 10.1109/TGRS.2017.2689018
– ident: ref139
  doi: 10.1109/TGRS.2004.842478
– ident: ref46
  doi: 10.1109/TGRS.2015.2393857
– ident: ref74
  doi: 10.1109/ICCV.1999.790410
– ident: ref82
  doi: 10.1109/CISP.2008.114
– ident: ref86
  doi: 10.1109/TSMC.1973.4309314
– ident: ref154
  doi: 10.1080/2150704X.2017.1331053
– ident: ref247
  doi: 10.1162/neco.1989.1.2.270
– ident: ref268
  doi: 10.3390/rs10040574
– ident: ref292
  doi: 10.3390/rs12010086
– ident: ref207
  doi: 10.1109/TGRS.2018.2837142
– ident: ref217
  doi: 10.1109/TGRS.2020.3015157
– ident: ref30
  doi: 10.1109/TGRS.2019.2897139
– ident: ref187
  doi: 10.1109/TGRS.2017.2755542
– ident: ref29
  doi: 10.1109/LGRS.2018.2853705
– ident: ref307
  doi: 10.1109/TGRS.2019.2952319
– ident: ref14
  doi: 10.1007/s11554-018-0793-9
– volume: 14
  issue: 8
  year: 2012
  ident: ref121
  article-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent
– ident: ref112
  doi: 10.1515/9781400874668
– ident: ref300
  doi: 10.1109/JSTARS.2016.2609404
– volume: 2
  start-page: 2231
  year: 2012
  ident: ref16
  article-title: Hyperspectral remote sensing: Dimensional reduction and end member extraction
  publication-title: Int. J. Soft Comput. Eng.
– ident: ref233
  doi: 10.1016/j.asoc.2018.08.049
– ident: ref180
  doi: 10.1109/LGRS.2019.2909495
– ident: ref120
  doi: 10.1016/S0893-6080(98)00116-6
– ident: ref289
  doi: 10.1109/JSTARS.2016.2646138
– ident: ref322
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref303
  doi: 10.1109/JSTARS.2017.2747600
– ident: ref309
  doi: 10.1109/IGARSS.2016.7729116
– ident: ref315
  doi: 10.3390/app10144739
– ident: ref68
  doi: 10.1109/TGRS.2021.3130716
– ident: ref229
  doi: 10.1016/j.infrared.2017.08.021
– ident: ref18
  doi: 10.1109/TGRS.2011.2108305
– year: 2009
  ident: ref297
  article-title: Active learning literature survey
– ident: ref37
  doi: 10.1109/SSCI.2016.7850136
– ident: ref94
  doi: 10.1016/j.isprsjprs.2014.10.002
– ident: ref172
  doi: 10.1109/ICTAI.2016.0158
– ident: ref133
  doi: 10.1109/72.279181
– ident: ref304
  doi: 10.1109/TGRS.2017.2730583
– ident: ref58
  doi: 10.1016/j.rse.2007.07.028
– ident: ref185
  doi: 10.1109/LGRS.2018.2830403
– ident: ref50
  doi: 10.1016/j.isprsjprs.2018.10.006
– ident: ref282
  doi: 10.1109/JSTARS.2020.3022781
– ident: ref228
  doi: 10.1080/22797254.2017.1274566
– ident: ref10
  doi: 10.1080/10408398.2017.1363709
– ident: ref259
  doi: 10.1080/15481603.2017.1323377
– ident: ref117
  doi: 10.1016/j.ijleo.2021.167757
– ident: ref141
  doi: 10.1109/TGRS.2019.2957251
– ident: ref26
  doi: 10.1109/TGRS.2021.3064958
– volume: 42
  start-page: 145
  issue: 3
  year: 2001
  ident: ref73
  article-title: Modeling the shape of the scene: A holistic representation of the spatial envelope
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1011139631724
– ident: ref2
  doi: 10.1109/MGRS.2021.3064051
– ident: ref166
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref314
  doi: 10.1016/j.patcog.2017.10.007
– ident: ref270
  doi: 10.1109/TGRS.2017.2713123
– ident: ref287
  doi: 10.1186/s40537-017-0089-0
– ident: ref256
  doi: 10.3390/rs11070883
– ident: ref320
  doi: 10.1109/TGRS.2010.2060550
– ident: ref45
  doi: 10.1109/TGRS.2018.2828042
– start-page: 114
  volume-title: Proc. Int. Conf. Inf. Commun. Manage.
  year: 2011
  ident: ref24
  article-title: AIK method for band clustering using statistics of correlation and dispersion matrix
– ident: ref153
  doi: 10.1109/TGRS.2020.3043267
– ident: ref249
  doi: 10.1016/j.neucom.2018.02.105
– ident: ref234
  doi: 10.1016/j.isprsjprs.2018.02.001
– ident: ref72
  doi: 10.1109/CVPR.2005.177
– ident: ref318
  doi: 10.1109/IGARSS.2016.7729926
– volume: 3
  start-page: 606
  year: 2011
  ident: ref23
  article-title: A new statistical approach for band clustering and band selection using K-means clustering
  publication-title: Int. J. Eng. Technol.
– ident: ref266
  doi: 10.1109/CIS.2008.204
– ident: ref302
  doi: 10.1007/978-981-15-0633-8_119
– ident: ref188
  doi: 10.1016/j.isprsjprs.2017.11.021
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref125
  article-title: On the variance of the adaptive learning rate and beyond
– ident: ref281
  doi: 10.1109/LGRS.2020.2976482
– ident: ref80
  doi: 10.1016/j.procs.2015.12.101
– ident: ref98
  doi: 10.1109/TGRS.2015.2496185
– ident: ref108
  doi: 10.1126/science.1127647
– ident: ref222
  doi: 10.1007/978-3-642-15246-7_27
– ident: ref124
  doi: 10.1109/TNNLS.2019.2955777
– ident: ref272
  doi: 10.3156/jsoft.29.5_177_2
– ident: ref34
  doi: 10.1109/JPROC.2012.2197589
– ident: ref21
  doi: 10.1016/j.isprsjprs.2016.04.008
– ident: ref165
  doi: 10.1155/2018/7068349
– ident: ref174
  doi: 10.3390/rs9030298
– ident: ref269
  doi: 10.1109/TGRS.2018.2888485
– ident: ref325
  doi: 10.1109/TGRS.2018.2818945
– ident: ref241
  doi: 10.3389/fncom.2015.00104
– ident: ref97
  doi: 10.1109/CVPR.2006.68
– ident: ref291
  doi: 10.1109/LGRS.2017.2723763
– ident: ref323
  doi: 10.3115/v1/w14-4012
– year: 2012
  ident: ref240
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– ident: ref171
  doi: 10.3390/s17112644
– ident: ref257
  doi: 10.1186/s40537-019-0197-0
– ident: ref4
  doi: 10.3390/app10175955
– ident: ref41
  doi: 10.1109/TGRS.2018.2890705
– ident: ref103
  doi: 10.1109/LGRS.2012.2225596
– ident: ref213
  doi: 10.1109/LGRS.2011.2145353
– ident: ref273
  doi: 10.1109/LGRS.2017.2780890
– ident: ref173
  doi: 10.1016/j.neucom.2016.09.010
– ident: ref199
  doi: 10.1080/2150704x.2017.1280200
– ident: ref47
  doi: 10.1109/LGRS.2015.2513443
– ident: ref152
  doi: 10.3390/rs9121330
– ident: ref306
  doi: 10.1109/RAIT.2018.8389024
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2016
  ident: ref216
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref54
  doi: 10.1080/01431161.2012.714508
– ident: ref63
  doi: 10.1109/MGRS.2017.2762087
– volume: 3
  start-page: 1063
  volume-title: Proc. 17th Int. Conf. Comput. Math. Methods Sci. Eng.
  year: 2017
  ident: ref327
  article-title: Cloud implementation of logistic regression for hyperspectral image classification
– ident: ref294
  doi: 10.1145/1015330.1015385
– ident: ref296
  doi: 10.1145/130385.130417
– ident: ref110
  doi: 10.3390/rs71114680
– ident: ref251
  doi: 10.1109/TIP.2017.2772836
– ident: ref78
  doi: 10.1109/EORSA.2016.7552845
– ident: ref245
  doi: 10.1109/TGRS.2019.2907932
– ident: ref313
  doi: 10.1109/TGRS.2018.2868851
– ident: ref242
  doi: 10.1109/TGRS.2017.2675902
– ident: ref7
  doi: 10.3390/app10217783
– year: 2014
  ident: ref111
  article-title: Convolutional neural network and convex optimization
– volume: 160
  start-page: 3
  year: 2007
  ident: ref56
  article-title: Supervised machine learning: A review of classification techniques
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– ident: ref278
  doi: 10.1109/TCYB.2019.2915094
– ident: ref88
  doi: 10.1117/1.JRS.10.035004
– ident: ref90
  doi: 10.1145/1869790.1869829
– ident: ref221
  doi: 10.1007/978-3-319-59129-2_15
– ident: ref231
  doi: 10.5220/0007258000002108
– year: 2019
  ident: ref264
  article-title: Hyperspectral data augmentation
– ident: ref274
  doi: 10.3390/rs9101042
– ident: ref106
  doi: 10.1016/j.neucom.2015.12.008
– ident: ref277
  doi: 10.1109/TGRS.2019.2899057
– ident: ref95
  doi: 10.3390/rs8020157
– ident: ref262
  doi: 10.1109/ICIST.2019.8836913
– ident: ref85
  doi: 10.1016/j.dsp.2018.06.016
– ident: ref196
  doi: 10.3390/rs9010067
– ident: ref218
  doi: 10.1109/LGRS.2018.2869563
– ident: ref126
  doi: 10.1007/978-3-030-58452-8_37
– ident: ref17
  doi: 10.1109/TCYB.2020.3028931
– ident: ref244
  doi: 10.1109/JSTARS.2019.2892975
– ident: ref198
  doi: 10.1109/TGRS.2017.2710079
– ident: ref317
  doi: 10.1080/01431160802559046
– ident: ref170
  doi: 10.1109/EIT.2018.8500107
– volume: 2
  start-page: 2986
  issue: 8
  year: 2013
  ident: ref59
  article-title: A survey of hyperspectral image classification in remote sensing
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– ident: ref202
  doi: 10.1109/TGRS.2018.2860464
– ident: ref258
  doi: 10.1016/j.neucom.2021.03.035
– ident: ref183
  doi: 10.3390/rs9060618
– ident: ref134
  doi: 10.1109/LGRS.2014.2306689
– ident: ref131
  doi: 10.1109/MSP.2011.940409
– ident: ref150
  doi: 10.1109/TGRS.2018.2860125
– ident: ref232
  doi: 10.1109/TGRS.2019.2893180
– ident: ref87
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref3
  doi: 10.3390/app10196862
– ident: ref235
  doi: 10.1007/s12524-019-01045-y
– year: 2019
  ident: ref201
  article-title: Band attention convolutional networks for hyperspectral image classification
– ident: ref31
  doi: 10.1109/MGRS.2019.2898520
– ident: ref162
  doi: 10.7312/haza92762-003
– ident: ref51
  doi: 10.1109/TGRS.2011.2151866
– ident: ref70
  doi: 10.1109/TGRS.2019.2899129
– ident: ref160
  doi: 10.1007/978-3-031-31407-0_35
– ident: ref260
  doi: 10.1109/LGRS.2018.2878773
– ident: ref40
  doi: 10.1109/JSTARS.2020.3041868
– volume: 11
  start-page: 625
  year: 2010
  ident: ref128
  article-title: Why does unsupervised pre-training help deep learning
  publication-title: J. Mach. Learn. Res.
– ident: ref143
  doi: 10.1109/36.905239
– start-page: 571
  volume-title: Data Classification: Algorithms and Applications
  year: 2014
  ident: ref295
  article-title: Active learning: A survey
  doi: 10.1201/b17320
– start-page: 30
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2016
  ident: ref239
  article-title: A deep learning approach to unsupervised ensemble learning
– ident: ref319
  doi: 10.1109/TGRS.2017.2756851
– ident: ref43
  doi: 10.1109/TGRS.2017.2735488
– ident: ref298
  doi: 10.1109/TGRS.2017.2747862
– volume: 130
  start-page: 1936
  volume-title: Proc. 24th Int. Conf. Artificial Intell. Statistics
  year: 2021
  ident: ref161
  article-title: Wavelet pooling for convolutional neural networks
– ident: ref100
  doi: 10.1109/TGRS.2015.2435801
– ident: ref285
  doi: 10.1109/TGRS.2017.2783886
– ident: ref81
  doi: 10.1109/CGiV.2016.58
– ident: ref136
  doi: 10.1109/CVPR.2005.216
– ident: ref158
  doi: 10.5555/2999134.2999257
– ident: ref225
  doi: 10.1109/TGRS.2017.2778343
– ident: ref299
  doi: 10.3390/rs11242974
– ident: ref113
  doi: 10.1109/TIT.1968.1054102
– ident: ref212
  doi: 10.1109/LGRS.2019.2918719
– ident: ref191
  doi: 10.1109/ACCESS.2020.3027776
– ident: ref226
  doi: 10.1109/TPAMI.2012.213
– ident: ref252
  doi: 10.1007/978-3-030-03341-5_34
– volume: 8
  start-page: 1027
  year: 2007
  ident: ref135
  article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
  publication-title: J. Mach. Learn. Res.
– ident: ref246
  doi: 10.1109/PIERS-Spring46901.2019.9017309
– ident: ref203
  doi: 10.1109/TGRS.2018.2841823
SSID ssj0062793
Score 2.670266
Snippet Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 968
SubjectTerms Classification
Computer vision
Deep learning
Deep learning (DL)
Feature extraction
feature learning
Histograms
hyperspectral image classification (HSIC)
Hyperspectral imaging
hyperspectral imaging (HSI)
Image classification
Image color analysis
Machine learning
Polls & surveys
Spectra
spectral–spatial information
Surveying
Task analysis
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxQxFH-0RcGLrVZxbZUcPDY2yWSSTW-rdq0gpdgeehBCvgYKdbfM7hb63_clk10QRfA2DC9hmN_L-0jyfg_gg-u0jC62lEfTUGkco6bpFI2B-eidMIKXQuHv-vx8fH1tLrbgaFMLk1Iql8_Sx_xYzvLjPKzyVtmxyadwSm3DttZ6qNVaW10ldCHYxXjE0EwZUxmGODPHqOKTH5eYCwqOKSom8IL_5oUKWX_trvKHSS5-Zrr7f1-4B89rPEkmgwK8gK00ewlPv5Z-vQ_78PMM88yhnLJHsW-_0HyQ0ggzXxEqqFB0V_Fm2BIkyzn5ktIdyS3SbhcnZEIuV_19eiAY25Jp4R8hF_28TLh4BVfT06vPZ7Q2VKBBsvGSosfCAKOLUXqWcOVqE1PHdRSsk9orFmMTvQzoN0PDZReSw_ypQ-8V05gZ37yGndl8lt4Acab1yWO0FbWSTmkjUBqDsUZjxNLxMAKx_r82VLLx3PPi1pakgxk7gGIzKLaCMoKjzaC7gWvj3-KfMnAb0UyUXV4gIrauO5uv_bRNi6bLN9LwYIKKWjoXhFexdWkE-xnFzSQVwBEcrtXA1kW9sEKJbM44Y2__PuoAnolcHVF2aA5hZ9mv0jt4Eu6XN4v-fdHXR8AP554
  priority: 102
  providerName: IEEE
Title Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects
URI https://ieeexplore.ieee.org/document/9645266
https://www.proquest.com/docview/2621793100
https://doaj.org/article/0423535031b3491c9c6d74aac2b6d5ae
Volume 15
WOSCitedRecordID wos000745503600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA8iCr1I_Sjd1koOPTqYZDLJxtta3SqUZVEPHoSQ5GVA0F2Z_QD_-75kZhdFqJdehzeZ4eXlfSR5vx8hP12tJTioCg6mLKRxrDBlrQoIzIN3wgieG4X_6NGof3dnxq-ovtKdsBYeuFXcSbq3UZUV2p4vpeHBBAVaOheEV1C5mLwvZj2rYqr1wUqg2XUYQ5yZEzTywfUNVoOCY5GKJbzgb-JQhuvv-FXeOeUcaYafyU6XItJB-2u7ZCNO9sj270zB-7JP7i-xdGw7JBsUu3pCj0Azt2W69ZMVXWAEgod2l4_Op_Q8xmeaWM8eZ6d0QG8WzTK-UExX6TBDitBxM80Dzg7I7fDi9tdl0XEkFEGy_rzAIIQ5Qw0gPYu4GLWBWHMNgtVSe8UASvAyYCgMJZd1iA5LohoDEsQ-M778QjYn00n8SqgzlY8eEyjQSjqljUBpzK9KjUlIzUOPiJXCbOjwwxONxaPNdQQzttWyTVq2nZZ75Hj90nMLn_Fv8bM0E2vRhH2dH6BF2M4i7EcW0SP7aR7Xg5h0dqtUjxyu5tV263RmhRLJQ3HGvv2PT38nn0Rqj8hbNIdkc94s4g-yFZbzh1lzlE30KLcY_gXp-ukn
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VAoILr4IIFPCBY01tr9eOuYVHSEWIKppDD0iWXytVKkm1SSr13zP2biIhEBK31WpsrfYbz8P2fAPw1jVaRhdryqOpqDSOUVM1isbAfPROGMFLofBUz2bD83NzugdHu1qYlFK5fJbe5cdylh-XYZO3yo5NPoVT6hbcrqUUvKvW2tpdJXSh2MWIxNBMGtNzDHFmjlHJR9_PMBsUHJNUTOEF_80PFbr-vr_KH0a5eJrxw__7xkfwoI8oyahTgcewlxZP4O6X0rH35gB-TDDT7AoqWxQ7-YkGhJRWmPmSUMGFosOKF92mIFkvyaeUrkhukna5ek9G5GzTXqcbgtEtGRcGEnLaLsuEq6cwH3-ef5zQvqUCDZIN1xR9FoYYTYzSs4RrV5uYGq6jYI3UXrEYq-hlQM8ZKi6bkBxmUA36r5iGzPjqGewvlov0HIgztU8e462olXRKG4HSGI5VGmOWhocBiO3_taGnG89dLy5tSTuYsR0oNoNie1AGcLQbdNWxbfxb_EMGbieaqbLLC0TE9ivP5os_dVWj8fKVNDyYoKKWzgXhVaxdGsBBRnE3SQ_gAA63amD7Zb2yQols0DhjL_4-6g3cm8y_Te30ZPb1JdwXuVai7Nccwv663aRXcCdcry9W7euiu78A8bXq5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification-Traditional+to+Deep+Models%3A+A+Survey+for+Future+Prospects&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Ahmad%2C+Muhammad&rft.au=Shabbir%2C+Sidrah&rft.au=Roy%2C+Swalpa+Kumar&rft.au=Hong%2C+Danfeng&rft.date=2022&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=15&rft.spage=968&rft.epage=999&rft_id=info:doi/10.1109%2FJSTARS.2021.3133021&rft.externalDocID=9645266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon