Online Offloading Scheduling and Resource Allocation Algorithms for Vehicular Edge Computing System

To accommodate the exponentially increasing computation demands of vehicle-based applications, vehicular edge computing (VEC) system was introduced. This paper considers a three-layer VEC architecture and proposes an online offloading scheduling and resource allocation (OOSRA) algorithm to improve t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 52428 - 52442
Main Authors: Wang, Zhen, Zheng, Sifa, Ge, Qiang, Li, Keqiang
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To accommodate the exponentially increasing computation demands of vehicle-based applications, vehicular edge computing (VEC) system was introduced. This paper considers a three-layer VEC architecture and proposes an online offloading scheduling and resource allocation (OOSRA) algorithm to improve the system performance. Specifically, this study designs a game-theoretic online algorithm to solve the problem of computation task offloading scheduling, and employs an online bin-packing algorithm to compute the resource allocation modified from the First Fit algorithm, which can be adapted to various traffic flow and service attributes. Extensive simulations are conducted, and a numerical analysis of simulation results verifies the effectiveness of the OOSRA-VEC system. The algorithms proposed in this paper are online, adaptive, and distributed, which can provide useful references for future development in VEC system protocols.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2981045