Task-Driven Dictionary Learning

Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these mod...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 34; číslo 4; s. 791 - 804
Hlavní autori: Mairal, J., Bach, F., Ponce, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Los Alamitos, CA IEEE 01.04.2012
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.
AbstractList Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations. Le codage parcimonieux consiste à représenter des signaux comme combinaisons linéaires de quelques éléments d'un dictionnaire. Cette approche a fait l'objet d'un nombre important de travaux en apprentissage statistique, traitement du signal et neuro-sciences. Pour des signaux qui admettent des représentations parcimonieuses, il est maintenant admis que cette approche permet d'obtenir de très bons résultats en restauration. Dans ce contexte, apprendre le dictionnaire résulte en un problème non convexe de factorisation de matrice, qui peut être traité efficacement par des outils d'optimisation classique. Cette même approche a aussi été utilisée pour des tâches autres que la reconstruction, comme la classification d'image, mais apprendre le dictionnaire de façon supervisée est plus difficile. Nous présentons dans cet article une méthode d'apprentissage de dictionnaire supervisée, fondée sur un algorithme d'optimisation stochastique, pour des tâches de classification ou de regression. Les expériences menées en reconnaissance de chiffres, problèmes inverses non-linéaires dans les images, et codage compréssé, montrent que notre approache est efficace à large échelle, et permet de résoudre des tâches de classification et regression pour des données admettant des représentations parcimonieuses.
Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.
Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.
Author Mairal, J.
Bach, F.
Ponce, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Mairal
  fullname: Mairal, J.
  email: julien@stat.berkeley.edu
  organization: Dept. of Stat., Univ. of California, Berkeley, CA, USA
– sequence: 2
  givenname: F.
  surname: Bach
  fullname: Bach, F.
  email: francis.bach@inria.fr
  organization: Lab. d'Inf., Ecole Normale Supe'rieure, Paris, France
– sequence: 3
  givenname: J.
  surname: Ponce
  fullname: Ponce, J.
  email: jean.ponce@ens.fr
  organization: INRIA-Willow Project-Team, Ecole Normale Super., Paris, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26015862$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21808090$$D View this record in MEDLINE/PubMed
https://inria.hal.science/inria-00521534$$DView record in HAL
BookMark eNp10cFLHDEUBvAgFl2tVy9CK4VCocz2vZdJTI6LtlXY0h6255DJJhqdzWgyK_S_70x3uwWhpxzy-5KXfEdsP3XJM3aKMEUE_WnxY_btZkqAOEUh99iEUEKlSdM-mwBKqpQidciOSrkHwFoAP2CHhAoUaJiwtwtbHqqrHJ99Or-Kro9dsvnX-dzbnGK6fc1eBdsWf7Jdj9nPL58Xl9fV_PvXm8vZvHI1qL4iF3gQHBpQTRMs1yoAYUDpCDyRU1Y74ZolCDfs1lx7F4ImJzhfcgWBH7OPm3PvbGsec1wNQ5jORnM9m5uYcrQGQBAKXj_ToD9s9GPunta-9GYVi_Nta5Pv1sUgoFIS4EIM9N0Let-tcxreYjRRrUjKEb3ZonWz8svdAH__aQDvt8AWZ9uQbXKx_HMSUCg5DjbdOJe7UrIPO4JgxsLMn8LMWJgZChsC9YuAi70dW-izje3_Y2ebWPTe7-4Q-kKglPw3rWudqg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TSP_2015_2469637
crossref_primary_10_1007_s00138_014_0613_6
crossref_primary_10_1109_ACCESS_2021_3120635
crossref_primary_10_1016_j_knosys_2014_10_004
crossref_primary_10_1177_1550147717701435
crossref_primary_10_1109_TCI_2022_3175309
crossref_primary_10_1016_j_nicl_2019_101725
crossref_primary_10_1109_TIP_2012_2192127
crossref_primary_10_1016_j_neucom_2016_01_076
crossref_primary_10_1016_j_neucom_2013_10_033
crossref_primary_10_1109_TCYB_2016_2581861
crossref_primary_10_1109_TIP_2021_3053369
crossref_primary_10_1016_j_patcog_2015_12_005
crossref_primary_10_1016_j_neuroimage_2015_02_015
crossref_primary_10_1109_TNNLS_2018_2836802
crossref_primary_10_1109_TSP_2018_2830299
crossref_primary_10_1109_JBHI_2022_3199910
crossref_primary_10_1016_j_eswa_2018_03_048
crossref_primary_10_1109_TPAMI_2023_3328377
crossref_primary_10_1162_NECO_a_00672
crossref_primary_10_1016_j_patcog_2016_06_012
crossref_primary_10_1109_TGRS_2015_2399978
crossref_primary_10_1109_MSP_2022_3163870
crossref_primary_10_1109_TCYB_2016_2547941
crossref_primary_10_1049_ipr2_12068
crossref_primary_10_1109_TMM_2013_2284759
crossref_primary_10_1109_TCSVT_2018_2890511
crossref_primary_10_1109_TSP_2021_3062988
crossref_primary_10_1016_j_sigpro_2016_10_022
crossref_primary_10_1109_LGRS_2018_2868789
crossref_primary_10_1109_ACCESS_2020_2974927
crossref_primary_10_1016_j_jvcir_2016_04_003
crossref_primary_10_1109_TSP_2020_3006766
crossref_primary_10_1016_j_eswa_2023_120517
crossref_primary_10_1109_TSMC_2017_2736248
crossref_primary_10_1049_iet_ipr_2019_1312
crossref_primary_10_1137_22M1506547
crossref_primary_10_1016_j_measurement_2021_109810
crossref_primary_10_1093_jmicro_dft042
crossref_primary_10_1109_TGRS_2021_3127536
crossref_primary_10_1109_TNNLS_2022_3183326
crossref_primary_10_1007_s42979_022_01042_y
crossref_primary_10_1109_ACCESS_2017_2786672
crossref_primary_10_1109_TSP_2013_2274276
crossref_primary_10_3390_en9060379
crossref_primary_10_1007_s11263_014_0722_8
crossref_primary_10_1016_j_ijleo_2013_11_042
crossref_primary_10_1109_TPAMI_2012_95
crossref_primary_10_1109_TIP_2015_2465171
crossref_primary_10_1016_j_sigpro_2016_06_016
crossref_primary_10_1109_TIP_2014_2346029
crossref_primary_10_3390_rs8080683
crossref_primary_10_1109_ACCESS_2021_3078232
crossref_primary_10_1002_mp_13225
crossref_primary_10_1007_s00422_013_0579_x
crossref_primary_10_1109_TPWRS_2020_3035639
crossref_primary_10_1109_TCSVT_2019_2902672
crossref_primary_10_1016_j_anucene_2024_110777
crossref_primary_10_1155_2016_8272859
crossref_primary_10_1016_j_neucom_2018_05_073
crossref_primary_10_1109_TGRS_2016_2599163
crossref_primary_10_1109_TMM_2016_2566578
crossref_primary_10_3390_app11167701
crossref_primary_10_1016_j_eswa_2016_10_019
crossref_primary_10_1109_TIP_2020_3024728
crossref_primary_10_1016_j_patrec_2017_08_021
crossref_primary_10_1016_j_cviu_2014_02_007
crossref_primary_10_1103_PhysRevD_111_064074
crossref_primary_10_1109_TGRS_2016_2594952
crossref_primary_10_1111_cgf_12438
crossref_primary_10_1007_s11263_017_1007_9
crossref_primary_10_1109_TLT_2013_2297701
crossref_primary_10_1007_s11042_021_11322_z
crossref_primary_10_1016_j_patrec_2019_09_009
crossref_primary_10_1109_MAES_2021_3049857
crossref_primary_10_1109_TIP_2015_2438548
crossref_primary_10_1109_TPAMI_2019_2904255
crossref_primary_10_1109_TSP_2015_2472372
crossref_primary_10_1007_s12559_016_9445_1
crossref_primary_10_1109_TGRS_2015_2484619
crossref_primary_10_1109_TSP_2014_2325798
crossref_primary_10_1049_iet_rsn_2015_0007
crossref_primary_10_1109_TIP_2019_2914376
crossref_primary_10_1109_TNNLS_2018_2796133
crossref_primary_10_1016_j_neuroimage_2013_11_040
crossref_primary_10_1109_JSTSP_2015_2402643
crossref_primary_10_1109_TIP_2017_2771499
crossref_primary_10_1109_TMI_2017_2777870
crossref_primary_10_1109_TSP_2017_2721905
crossref_primary_10_1007_s11263_014_0784_7
crossref_primary_10_1109_TCSVT_2016_2515738
crossref_primary_10_1109_TSP_2017_2712128
crossref_primary_10_3390_e24111646
crossref_primary_10_1109_TNNLS_2024_3453374
crossref_primary_10_1109_TIP_2016_2530313
crossref_primary_10_1109_TSP_2016_2569463
crossref_primary_10_1016_j_engappai_2018_09_008
crossref_primary_10_1109_ACCESS_2020_3038695
crossref_primary_10_1137_19M126044X
crossref_primary_10_1109_MSP_2018_2820224
crossref_primary_10_1155_2017_3012910
crossref_primary_10_1007_s11548_016_1434_z
crossref_primary_10_1186_s12880_015_0087_7
crossref_primary_10_1109_TCSVT_2020_3017683
crossref_primary_10_3390_rs10020190
crossref_primary_10_1109_TNNLS_2015_2436951
crossref_primary_10_1109_TIP_2015_2479405
crossref_primary_10_1155_2016_3824027
crossref_primary_10_1155_2016_8414157
crossref_primary_10_1186_s13634_018_0533_0
crossref_primary_10_1109_TIP_2016_2594490
crossref_primary_10_3390_app14010306
crossref_primary_10_1016_j_jvcir_2016_07_015
crossref_primary_10_1016_j_neucom_2021_03_111
crossref_primary_10_1007_s10044_015_0499_6
crossref_primary_10_1109_TBME_2018_2812602
crossref_primary_10_1016_j_cviu_2015_01_006
crossref_primary_10_3390_app15179368
crossref_primary_10_1109_TCSVT_2019_2923007
crossref_primary_10_1016_j_infrared_2015_05_014
crossref_primary_10_1109_ACCESS_2019_2953366
crossref_primary_10_1109_TNNLS_2015_2513393
crossref_primary_10_1109_TCSVT_2019_2901713
crossref_primary_10_1109_JSTSP_2015_2423260
crossref_primary_10_1016_j_patcog_2018_03_021
crossref_primary_10_1109_LSP_2022_3167313
crossref_primary_10_1109_LSP_2017_2657605
crossref_primary_10_1016_j_infrared_2013_05_010
crossref_primary_10_1016_j_patrec_2015_04_010
crossref_primary_10_1109_TMM_2017_2716835
crossref_primary_10_1007_s11042_017_5201_0
crossref_primary_10_1016_j_engappai_2013_09_008
crossref_primary_10_1007_s00205_021_01718_4
crossref_primary_10_1016_j_neucom_2017_07_003
crossref_primary_10_1016_j_neuroimage_2014_12_042
crossref_primary_10_1016_j_jvcir_2013_02_001
crossref_primary_10_1109_COMST_2016_2610963
crossref_primary_10_1016_j_patcog_2017_01_013
crossref_primary_10_1109_TIP_2018_2857001
crossref_primary_10_1109_TED_2020_3025982
crossref_primary_10_1109_TNNLS_2017_2740224
crossref_primary_10_1016_j_bspc_2018_02_008
crossref_primary_10_1109_TPWRS_2017_2660246
crossref_primary_10_1109_TKDE_2015_2397444
crossref_primary_10_1016_j_neucom_2021_08_112
crossref_primary_10_1109_TNNLS_2017_2742528
crossref_primary_10_1109_TIP_2014_2316423
crossref_primary_10_1016_j_dsp_2017_06_023
crossref_primary_10_1016_j_neucom_2019_06_011
crossref_primary_10_1016_j_bspc_2019_101559
crossref_primary_10_1109_TIP_2020_3023795
crossref_primary_10_1186_s13636_018_0132_x
crossref_primary_10_1007_s11263_015_0831_z
crossref_primary_10_1016_j_knosys_2020_106124
crossref_primary_10_1016_j_imavis_2014_07_001
crossref_primary_10_1109_TIP_2020_3004246
crossref_primary_10_1016_j_neucom_2020_09_088
crossref_primary_10_1137_17M1145689
crossref_primary_10_3390_math11122674
crossref_primary_10_1016_j_neucom_2020_09_089
crossref_primary_10_1109_TMM_2017_2763321
crossref_primary_10_1109_TSP_2017_2725227
crossref_primary_10_1109_JSTARS_2020_2987827
crossref_primary_10_1186_1687_5281_2013_52
crossref_primary_10_1016_j_neucom_2016_01_026
crossref_primary_10_1109_TIFS_2017_2766039
crossref_primary_10_1007_s10489_023_04708_z
crossref_primary_10_1016_j_neucom_2018_09_022
crossref_primary_10_1007_s11263_014_0786_5
crossref_primary_10_1109_TPAMI_2019_2961672
crossref_primary_10_1109_TGRS_2014_2335177
crossref_primary_10_1016_j_neucom_2016_05_015
crossref_primary_10_1109_TIP_2013_2282078
crossref_primary_10_1109_TSIPN_2017_2662618
crossref_primary_10_1016_j_ins_2019_02_024
crossref_primary_10_1016_j_neunet_2020_12_007
crossref_primary_10_1109_TCSVT_2016_2607345
crossref_primary_10_1007_s13042_017_0684_6
crossref_primary_10_1016_j_patcog_2017_02_009
crossref_primary_10_1109_JSTSP_2020_2992430
crossref_primary_10_3390_rs10010116
crossref_primary_10_1093_jrsssc_qlad035
crossref_primary_10_1155_2017_8381094
crossref_primary_10_1016_j_dsp_2019_03_008
crossref_primary_10_3390_s23218768
crossref_primary_10_1016_j_dsp_2020_102703
crossref_primary_10_1080_0305215X_2020_1754406
crossref_primary_10_1118_1_4942376
crossref_primary_10_1007_s11432_014_5258_6
crossref_primary_10_1109_TMM_2018_2867720
crossref_primary_10_1016_j_neucom_2016_09_037
crossref_primary_10_1145_3572910
crossref_primary_10_1177_1550147718809020
crossref_primary_10_1007_s10115_019_01400_y
crossref_primary_10_1109_ACCESS_2019_2929837
crossref_primary_10_1137_21M1438992
crossref_primary_10_1007_s11063_017_9665_8
crossref_primary_10_1016_j_neucom_2019_12_068
crossref_primary_10_1016_j_patcog_2017_03_034
crossref_primary_10_1109_TIE_2017_2748034
crossref_primary_10_1002_mrc_4532
crossref_primary_10_1109_TII_2015_2404299
crossref_primary_10_1016_j_patcog_2016_01_028
crossref_primary_10_1016_j_knosys_2020_106419
crossref_primary_10_1109_TIE_2019_2898618
crossref_primary_10_1016_j_engappai_2014_03_011
crossref_primary_10_1109_COMST_2017_2705027
crossref_primary_10_1109_TIP_2016_2588330
crossref_primary_10_3390_rs15112832
crossref_primary_10_3934_ipi_2016012
crossref_primary_10_1109_TIP_2014_2332394
crossref_primary_10_1063_5_0076022
crossref_primary_10_1016_j_knosys_2019_03_031
crossref_primary_10_1016_j_measurement_2024_114287
crossref_primary_10_1109_TCI_2018_2862644
crossref_primary_10_3390_sym9020024
crossref_primary_10_1186_s13634_019_0638_0
crossref_primary_10_1016_j_acha_2016_08_002
crossref_primary_10_1109_TSP_2018_2807422
crossref_primary_10_1038_s41598_018_27364_7
crossref_primary_10_1109_TPAMI_2017_2764893
crossref_primary_10_1109_TNNLS_2017_2693221
crossref_primary_10_3390_rs11070769
crossref_primary_10_1109_TGRS_2016_2514508
crossref_primary_10_1109_TPAMI_2014_2353631
crossref_primary_10_1109_TCYB_2013_2278548
crossref_primary_10_1109_TIP_2018_2851067
crossref_primary_10_1007_s11263_014_0755_z
crossref_primary_10_1007_s13042_020_01188_2
crossref_primary_10_1016_j_ins_2014_08_066
crossref_primary_10_1109_TIP_2017_2679440
crossref_primary_10_1007_s10044_018_0704_5
crossref_primary_10_1016_j_cviu_2015_10_007
crossref_primary_10_1109_TIP_2017_2691549
crossref_primary_10_1007_s11263_015_0833_x
crossref_primary_10_1109_ACCESS_2019_2930288
crossref_primary_10_1109_TII_2019_2936467
crossref_primary_10_1109_TIP_2020_3021291
crossref_primary_10_1007_s11042_016_3630_9
crossref_primary_10_1088_1741_2552_ab6d89
crossref_primary_10_1109_TIP_2018_2875363
crossref_primary_10_1109_JSSC_2020_3033400
crossref_primary_10_1364_AO_55_001381
crossref_primary_10_1109_TSP_2017_2712120
crossref_primary_10_1145_2756556
crossref_primary_10_1109_LGRS_2014_2328319
crossref_primary_10_1007_s00041_020_09738_6
crossref_primary_10_1109_ACCESS_2018_2791578
crossref_primary_10_1109_TSP_2015_2399864
crossref_primary_10_1016_j_cviu_2018_08_002
crossref_primary_10_1109_TIP_2011_2179057
crossref_primary_10_1109_TIP_2018_2866691
crossref_primary_10_1016_j_patcog_2015_03_005
crossref_primary_10_1109_TPAMI_2014_2316824
crossref_primary_10_1016_j_patcog_2013_11_007
crossref_primary_10_3390_s16101718
crossref_primary_10_1016_j_neucom_2015_06_013
crossref_primary_10_1109_LSP_2013_2285218
crossref_primary_10_1109_TGRS_2013_2285049
crossref_primary_10_1145_3449360
crossref_primary_10_1016_j_neucom_2016_08_144
crossref_primary_10_1016_j_neucom_2013_02_005
crossref_primary_10_1109_JSTARS_2017_2671021
crossref_primary_10_1007_s12559_016_9438_0
crossref_primary_10_1177_1550147719836082
crossref_primary_10_1137_15M1040311
crossref_primary_10_1109_TR_2018_2804922
crossref_primary_10_1109_TIT_2018_2799931
crossref_primary_10_1007_s00521_016_2764_z
crossref_primary_10_1109_ACCESS_2015_2505243
crossref_primary_10_1109_TIP_2019_2928121
crossref_primary_10_1109_TPAMI_2016_2547384
crossref_primary_10_1109_TPAMI_2016_2527652
crossref_primary_10_1109_ACCESS_2019_2905552
crossref_primary_10_1162_NECO_a_00872
crossref_primary_10_1007_s11263_014_0771_z
crossref_primary_10_1109_TII_2019_2926778
crossref_primary_10_1007_s10618_016_0461_2
crossref_primary_10_1109_TIP_2017_2718187
crossref_primary_10_1109_TCSVT_2019_2918852
crossref_primary_10_1016_j_ins_2021_06_008
crossref_primary_10_1109_JIOT_2020_3038631
crossref_primary_10_1109_LGRS_2017_2651150
crossref_primary_10_1016_j_patcog_2014_07_031
crossref_primary_10_1016_j_ijleo_2017_04_055
crossref_primary_10_1007_s00371_021_02160_z
crossref_primary_10_1109_TSP_2015_2486743
crossref_primary_10_1109_TSP_2019_2954526
crossref_primary_10_1145_3461701
crossref_primary_10_12677_mos_2024_132154
crossref_primary_10_1109_TIP_2016_2623487
crossref_primary_10_1109_TPAMI_2019_2921031
crossref_primary_10_1109_TAI_2024_3432028
crossref_primary_10_1002_hbm_22502
crossref_primary_10_1109_TIP_2015_2416634
crossref_primary_10_1109_TPAMI_2012_230
crossref_primary_10_1109_TASLP_2017_2690570
crossref_primary_10_1109_LSP_2017_2690461
crossref_primary_10_1109_TSP_2020_3033354
crossref_primary_10_1109_TUFFC_2015_2493881
crossref_primary_10_1109_TSP_2016_2634546
crossref_primary_10_1016_j_mri_2018_06_008
crossref_primary_10_1016_j_neucom_2018_09_090
crossref_primary_10_1016_j_sigpro_2015_06_013
crossref_primary_10_1109_TSMC_2022_3170443
crossref_primary_10_1007_s10489_021_02344_z
crossref_primary_10_1038_s41598_021_86275_2
crossref_primary_10_1109_MSP_2020_3016905
crossref_primary_10_1109_TIP_2015_2496275
crossref_primary_10_1016_j_engappai_2023_105859
crossref_primary_10_1016_j_sigpro_2020_107634
crossref_primary_10_1016_j_image_2019_05_002
crossref_primary_10_1016_j_cmpb_2017_02_007
crossref_primary_10_1109_ACCESS_2020_2971261
crossref_primary_10_1109_TIP_2015_2431440
crossref_primary_10_1109_TIP_2017_2700761
crossref_primary_10_1109_ACCESS_2024_3522122
crossref_primary_10_3390_app9153169
crossref_primary_10_1109_TCSVT_2016_2589858
crossref_primary_10_1016_j_neucom_2015_03_061
crossref_primary_10_1109_TIP_2014_2316373
crossref_primary_10_1016_j_neucom_2014_12_060
crossref_primary_10_1109_JSTARS_2016_2530850
crossref_primary_10_1109_TSP_2021_3115943
crossref_primary_10_1007_s00371_016_1287_z
crossref_primary_10_1007_s11042_016_3492_1
crossref_primary_10_1016_j_patcog_2019_02_018
crossref_primary_10_1109_TIP_2020_2965289
crossref_primary_10_1016_j_media_2020_101696
crossref_primary_10_1364_AO_58_008471
crossref_primary_10_1109_TSP_2013_2295062
crossref_primary_10_1109_JSTARS_2015_2404578
crossref_primary_10_1109_JSTARS_2020_3028774
crossref_primary_10_1016_j_neucom_2016_04_044
crossref_primary_10_1016_j_patcog_2020_107793
crossref_primary_10_1109_TGRS_2016_2622399
crossref_primary_10_1109_TNNLS_2014_2361052
crossref_primary_10_1109_JSTSP_2016_2555241
crossref_primary_10_1109_TGRS_2014_2325067
crossref_primary_10_1007_s11063_023_11164_w
crossref_primary_10_1016_j_jvcir_2015_03_005
crossref_primary_10_1109_TGRS_2014_2361919
crossref_primary_10_1016_j_neuroimage_2013_02_069
crossref_primary_10_1109_TIP_2015_2431435
crossref_primary_10_1109_TSP_2021_3093769
crossref_primary_10_1016_j_ijleo_2019_163150
crossref_primary_10_1109_TIFS_2014_2359642
crossref_primary_10_3390_rs9040386
crossref_primary_10_1109_TIP_2014_2322938
crossref_primary_10_1007_s00521_020_05541_y
crossref_primary_10_1109_TIP_2021_3112057
crossref_primary_10_1109_TPAMI_2013_88
Cites_doi 10.7551/mitpress/7503.003.0147
10.1073/pnas.0406398101
10.5555/944919.944937
10.1017/CBO9780511569920.005
10.1007/978-0-387-31256-9
10.1109/MSP.2007.914730
10.1109/TIT.2005.855614
10.1109/TSP.2006.881199
10.1109/5.726791
10.1109/TIP.2007.911828
10.1109/ICPR.2002.1048439
10.1109/CVPR.2009.5206757
10.1111/j.1467-9868.2005.00503.x
10.1109/TIP.2006.881969
10.1214/009053604000000067.MR2060166
10.1137/S1064827596304010
10.1007/3-540-49430-8_2
10.1145/1553374.1553453
10.1109/CVPR.2009.5206545
10.1109/83.862639
10.1007/s10994-007-5040-8
10.1109/CVPR.2007.383157
10.1109/MSP.2008.923513
10.1109/TPAMI.2008.79
10.1145/1273496.1273592
10.4171/022-3/69
10.1007/11736790_8
10.1109/TIT.2006.871582
10.1017/CBO9780511809682
10.1073/pnas.0910530107
10.1109/CVPR.2008.4587652
10.1016/S0042-6989(97)00169-7
10.1109/TIP.2009.2022459
10.1111/j.2517-6161.1996.tb02080.x
10.1002/cpa.20042
10.1109/CVPR.2010.5539963
10.1109/ISCAS.1999.779928
10.1162/089976601300014385
10.1145/1390156.1390224
10.1109/ICCV.2009.5459452
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
DOI 10.1109/TPAMI.2011.156
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
Statistics
EISSN 2160-9292
1939-3539
EndPage 804
ExternalDocumentID oai:HAL:inria-00521534v2
2591545281
21808090
26015862
10_1109_TPAMI_2011_156
5975166
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
ID FETCH-LOGICAL-c408t-2cf3f530b08bbfa398f021f16c20e22c8a9c5cbd05cfa3439ecff92c533d380f3
IEDL.DBID RIE
ISICitedReferencesCount 610
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300581700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Tue Oct 28 06:37:00 EDT 2025
Wed Oct 01 12:53:39 EDT 2025
Mon Jun 30 07:13:49 EDT 2025
Thu Apr 03 06:51:03 EDT 2025
Wed Apr 02 07:26:44 EDT 2025
Sat Nov 29 08:07:01 EST 2025
Tue Nov 18 22:11:38 EST 2025
Wed Aug 27 02:47:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dictionaries
compressed sensing
Scalability
Image processing
Lasso
Matrix factorization
dictionary learning
Modeling
Optimization
Restoration
Semi-supervised learning
Natural scenes
Sparse representation
Mathematical programming
Nonlinear problems
Regression analysis
Basis pursuit
Supervised classification
Inverse problem
Supervised learning
Signal processing
Data models
Large scale
Manuscript character
Artificial intelligence
Image classification
matrix factorization
semi-supervised learning
sparse principal component analysis
sparse coding
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2cf3f530b08bbfa398f021f16c20e22c8a9c5cbd05cfa3439ecff92c533d380f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8644-1058
0000-0001-6991-2110
OpenAccessLink https://inria.hal.science/inria-00521534
PMID 21808090
PQID 922482665
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_1018860075
crossref_citationtrail_10_1109_TPAMI_2011_156
hal_primary_oai_HAL_inria_00521534v2
pubmed_primary_21808090
crossref_primary_10_1109_TPAMI_2011_156
ieee_primary_5975166
proquest_journals_922482665
pascalfrancis_primary_26015862
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2012
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref54
ref17
ref16
Lee (ref33)
ref18
LeCun (ref45) 1990; 2
ref50
Blei (ref27); 20
Bradley (ref10); 21
ref46
Floyd (ref47); 17
Foi (ref49)
Mairal (ref9); 21
ref42
LeCun (ref25) 2006
Bottou (ref41) 1998
ref44
ref43
ref8
ref7
Mallat (ref1) 1999
ref4
Mairal (ref19) 2010; 11
Dabov (ref48)
ref3
ref6
Bottou (ref31); 20
ref35
ref34
ref37
ref36
ref30
Kushner (ref40) 2003
ref32
ref2
Grosse (ref5)
Weiss (ref38)
ref24
ref23
ref26
ref20
Neelamani (ref51) 2009; 1
ref22
ref21
ref28
ref29
Seeger (ref39) 2008; 9
References_xml – ident: ref23
  doi: 10.7551/mitpress/7503.003.0147
– ident: ref52
  doi: 10.1073/pnas.0406398101
– volume-title: Proc. 23rd Conf. Uncertainty in Artificial Intelligence
  ident: ref5
  article-title: Shift-Invariant Sparse Coding for Audio Classification
– ident: ref20
  doi: 10.5555/944919.944937
– ident: ref43
  doi: 10.1017/CBO9780511569920.005
– ident: ref58
  doi: 10.1007/978-0-387-31256-9
– volume: 21
  start-page: 1033
  volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref9
  article-title: Supervised Dictionary Learning
– volume-title: Proc. Int’l TICSP Workshop Spectral Methods and Multirate Signal Processing
  ident: ref49
  article-title: Inverse Halftoning Based on the Anisotropic lpa-Ici Deconvolution
– ident: ref37
  doi: 10.1109/MSP.2007.914730
– ident: ref57
  doi: 10.1109/TIT.2005.855614
– ident: ref18
  doi: 10.1109/TSP.2006.881199
– volume-title: Online Learning and Neural Networks
  year: 1998
  ident: ref41
  article-title: Online Algorithms and Stochastic Approximations
– year: 2003
  ident: ref40
  publication-title: Stochastic Approximation and Recursive Algorithms and Applications
– ident: ref44
  doi: 10.1109/5.726791
– volume: 17
  start-page: 75
  volume-title: Proc. Soc. of Information Display
  ident: ref47
  article-title: An Adaptive Algorithm for Spatial Grey Scale
– ident: ref3
  doi: 10.1109/TIP.2007.911828
– ident: ref46
  doi: 10.1109/ICPR.2002.1048439
– ident: ref12
  doi: 10.1109/CVPR.2009.5206757
– ident: ref29
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 20
  start-page: 121
  volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref27
  article-title: Supervised Topic Models
– ident: ref2
  doi: 10.1109/TIP.2006.881969
– ident: ref42
  doi: 10.1214/009053604000000067.MR2060166
– volume: 20
  start-page: 161
  volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref31
  article-title: The Trade-Offs of Large Scale Learning
– ident: ref13
  doi: 10.1137/S1064827596304010
– ident: ref28
  doi: 10.1007/3-540-49430-8_2
– volume-title: Proc. Int’l TICSP Workshop Spectral Methods Multirate Signal Processing
  ident: ref48
  article-title: Inverse Halftoning by Pointwise Shape-Adaptive DCT Regularized Deconvolution
– ident: ref22
  doi: 10.1145/1553374.1553453
– ident: ref11
  doi: 10.1109/CVPR.2009.5206545
– ident: ref50
  doi: 10.1109/83.862639
– volume: 9
  start-page: 759
  year: 2008
  ident: ref39
  article-title: Bayesian Inference and Optimal Design for the Sparse Linear Model
  publication-title: J. Machine Learning Research
– ident: ref21
  doi: 10.1007/s10994-007-5040-8
– volume: 2
  year: 1990
  ident: ref45
  article-title: Handwritten Digit Recognition with a Back-Propagation Network
  publication-title: Proc. Advances in Neural Information Processing Systems
– ident: ref24
  doi: 10.1109/CVPR.2007.383157
– volume: 11
  start-page: 19
  year: 2010
  ident: ref19
  article-title: Online Learning for Matrix Factorization and Sparse Coding
  publication-title: J. Machine Learning Research
– ident: ref53
  doi: 10.1109/MSP.2008.923513
– ident: ref15
  doi: 10.1109/TPAMI.2008.79
– ident: ref7
  doi: 10.1145/1273496.1273592
– ident: ref35
  doi: 10.4171/022-3/69
– ident: ref56
  doi: 10.1007/11736790_8
– ident: ref36
  doi: 10.1109/TIT.2006.871582
– volume: 1
  start-page: 84
  issue: 1
  year: 2009
  ident: ref51
  article-title: WInHD: Wavelet-Based Inverse Halftoning via Deconvolution
  publication-title: Rejecta Mathematica
– ident: ref32
  doi: 10.1017/CBO9780511809682
– ident: ref54
  doi: 10.1073/pnas.0910530107
– volume-title: A Wavelet Tour of Signal Processing
  year: 1999
  ident: ref1
– ident: ref8
  doi: 10.1109/CVPR.2008.4587652
– ident: ref14
  doi: 10.1016/S0042-6989(97)00169-7
– ident: ref16
  doi: 10.1109/TIP.2009.2022459
– volume: 21
  start-page: 113
  volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref10
  article-title: Differentiable Sparse Coding
– ident: ref30
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref34
  doi: 10.1002/cpa.20042
– ident: ref55
  doi: 10.1109/CVPR.2010.5539963
– ident: ref17
  doi: 10.1109/ISCAS.1999.779928
– volume-title: Predicting Structured Data
  year: 2006
  ident: ref25
  article-title: A Tutorial on Energy-Based Learning
– ident: ref6
  doi: 10.1162/089976601300014385
– start-page: 556
  volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref33
  article-title: Algorithms for Non-Negative Matrix Factorization
– ident: ref26
  doi: 10.1145/1390156.1390224
– volume-title: Proc. Snowbird Learning Workshop
  ident: ref38
  article-title: Learning Compressed Sensing
– ident: ref4
  doi: 10.1109/ICCV.2009.5459452
SSID ssj0014503
Score 2.5966763
Snippet Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning,...
Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 791
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Basis pursuit
Classification
compressed sensing
Computer science; control theory; systems
Cost function
Data processing. List processing. Character string processing
Databases, Factual
Detection, estimation, filtering, equalization, prediction
Dictionaries
dictionary learning
Exact sciences and technology
Humans
Information systems. Data bases
Information, signal and communications theory
Lasso
Machine Learning
matrix factorization
Memory organisation. Data processing
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
semi-supervised learning
Sensors
Signal and communications theory
Signal, noise
Software
Sparse matrices
Statistics
Studies
Telecommunications and information theory
Vectors
Title Task-Driven Dictionary Learning
URI https://ieeexplore.ieee.org/document/5975166
https://www.ncbi.nlm.nih.gov/pubmed/21808090
https://www.proquest.com/docview/922482665
https://www.proquest.com/docview/1018860075
https://inria.hal.science/inria-00521534
Volume 34
WOSCitedRecordID wos000300581700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51Kw5woNDyCIUlSJW4EOo4cWIfV5SqSFD1sEh7sxI_ygqURZvdSvx7ZhxvKBI9cIvkSeR4ZuwZe_x9ACc5k2XbNIRvh5lOKb3N2rxSmeVSCNMWRGQXyCbqy0u5WKirPXg33oVxzoXiM_eeHsNZvl2ZLW2VnWLwK_KqmsCkruvhrtZ4YlCKwIKMEQx6OKYREaAxZ-p0fjX78mlA68RsJcD_EpoiTcO31qLJN6qEDBQrVCDZ9DhGfiC3uDv6DKvQ-cH_9f8RPIzRZjobzOMx7LnuEA52TA5pdOxDeHALlvAIXs-b_nt2tqaJMD1bhpsPzfpXGrFYr5_A1_OP8w8XWSRSyEzJ5CbjxhdeFKxlsm19UyjpcWn3eWU4c5wb2SiDirFMGGzFEMUZ7xU3GAraQjJfPIX9btW555CWkjtrrMXAQZS2qNrclMoow_Ad5fM6gWw3pNpElHEiu_ihQ7bBlA7a0KQNjdpI4O0o_3PA17hT8gQ1NAoRLPbF7LNeduiomna3ce4ub3gCRzTwo1wc8wSmf6l0bCdINYFpXQLHOx3r6Ma9VhjgYP5ViQTejK3of3So0nRute2pRE5KAvlHmWeDafz5drSzF__u0zHcx5_jQx3QS9jfrLfuFdwzN5tlv56ikS_kNBj5b21_86U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BQk4UGh5hEIbpEpcCHUcO7WPK0q1FdtVD4vUm5X4AStQFm12K_HvmXGyoUj0wC2SJ1E847Fn7PH3ARznTIm6qgjfDjMdoYLL6rzUmeNKSlsXRGQXySZOp1N1fa2vtuD9cBfGex-Lz_wHeoxn-W5h17RVdoLBr8zLchvuSSF43t3WGs4MhIw8yBjDoI9jItFDNOZMn8yuRpcXHV4n5isRAJjwFGkivrUabX-jWshIskIlklWLWgodvcXd8Wdch853_68HT-BxH2-mo26APIUt3-zB7obLIe1dew8e3QIm3IejWdV-z86WNBWmZ_N496Fa_kp7NNavz-DL-afZx3HWUylkVjC1yrgNRZAFq5mq61AVWgVc3ENeWs4851ZV2qJpHJMWWzFI8TYEzS0Gg65QLBTPYadZNP4lpEJx76xzGDpI4Yqyzq3QVluG7-iQnyaQbVRqbI8zTnQXP0zMN5g20RqGrGHQGgm8G-R_dggbd0oeo4UGIQLGHo8mZt6gqxra38bZW9zwBPZJ8YNcr_MEDv8y6dBOoGoSE7sEDjY2Nr0jt0ZjiIMZWCkTeDu0ogfSsUrV-MW6pSI5pQjmH2VedEPjz7f7cfbq3_90BA_Gs8uJmVxMPx_AQ-wo76qCXsPOarn2b-C-vVnN2-VhHOq_AYDu9gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task-Driven+Dictionary+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=MAIRAL%2C+Julien&rft.au=BACH%2C+Francis&rft.au=PONCE%2C+Jean&rft.date=2012-04-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=34&rft.issue=4&rft.spage=791&rft.epage=804&rft_id=info:doi/10.1109%2FTPAMI.2011.156&rft.externalDBID=n%2Fa&rft.externalDocID=26015862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon