Health Indicator for Low-Speed Axial Bearings Using Variational Autoencoders

This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Fur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 35842 - 35852
Main Authors: Hemmer, Martin, Klausen, Andreas, Khang, Huynh Van, Robbersmyr, Kjell G., Waag, Tor I.
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Further, versatility is added by conditioning on the speed, extending the VAE to a conditional VAE (CVAE), thereby incorporating all speeds in a single model. Within the framework, the coefficients of autoregressive (AR) models are used as features. The dimensionality reduction inherent in the proposed method lowers the need of expert knowledge to design good condition indicators. Moreover, the suggested methodology allows for setting the probability of false alarms when encoding new data points to the latent variable space using the trained model. The effectiveness of the proposed method is validated based on two different datasets: from a workshop test of an offshore drilling machine and from an in-house test rig for axial bearings. In both datasets, the HI is exceeding the warning and alarm levels with a probability of false alarm (PFA) of 10 -6 , and the method is most effective at lower shaft speeds.
AbstractList This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Further, versatility is added by conditioning on the speed, extending the VAE to a conditional VAE (CVAE), thereby incorporating all speeds in a single model. Within the framework, the coefficients of autoregressive (AR) models are used as features. The dimensionality reduction inherent in the proposed method lowers the need of expert knowledge to design good condition indicators. Moreover, the suggested methodology allows for setting the probability of false alarms when encoding new data points to the latent variable space using the trained model. The effectiveness of the proposed method is validated based on two different datasets: from a workshop test of an offshore drilling machine and from an in-house test rig for axial bearings. In both datasets, the HI is exceeding the warning and alarm levels with a probability of false alarm (PFA) of 10-6, and the method is most effective at lower shaft speeds.
Author Robbersmyr, Kjell G.
Waag, Tor I.
Hemmer, Martin
Khang, Huynh Van
Klausen, Andreas
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0001-8751-8731
  surname: Hemmer
  fullname: Hemmer, Martin
  email: martin.hemmer@uia.no
  organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway
– sequence: 2
  givenname: Andreas
  orcidid: 0000-0002-5411-3655
  surname: Klausen
  fullname: Klausen, Andreas
  organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway
– sequence: 3
  givenname: Huynh Van
  orcidid: 0000-0002-0480-6859
  surname: Khang
  fullname: Khang, Huynh Van
  organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway
– sequence: 4
  givenname: Kjell G.
  orcidid: 0000-0001-9578-7325
  surname: Robbersmyr
  fullname: Robbersmyr, Kjell G.
  organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway
– sequence: 5
  givenname: Tor I.
  orcidid: 0000-0002-0530-3866
  surname: Waag
  fullname: Waag, Tor I.
  organization: NORCE Norwegian Research Centre AS, Grimstad, Norway
BookMark eNqFUU1PGzEQtSoqQSm_gMtKnDfY3l1_HNOIlkiROAS4Wv4YU0fLOrUdUf59DYsQ6oWRrBnPzHtjz_uGjqY4AULnBC8IwfJyuVpdbbcLiileUMl72dMv6IQSJttu6NjRh_gYneW8w9VETQ38BG2uQY_ld7OeXLC6xNT4ejbxqd3uAVyz_Bv02PwAncL0kJu7XF1zX2-6hDjV0vJQIkw2Okj5O_rq9Zjh7M2fotufV7er63Zz82u9Wm5a22NRWmqAeOstH8TA-t5jw33PKHdSYMqptNJYYwYPnIEAYbUxbADjvDOuY6Y7ReuZ1kW9U_sUHnV6VlEH9ZqI6UHpVIIdQWEpCRAqsCa6LsZqITB3HoOxnmrvK9fFzLVP8c8BclG7eEj1Y1nRfug5Yx2htaubu2yKOSfw71MJVi8iqFkE9SKCehOhouR_KBvK695K0mH8BHs-YwMAvE-TGBNc3_MPFPuXgg
CODEN IAECCG
CitedBy_id crossref_primary_10_1080_00295639_2024_2372515
crossref_primary_10_1016_j_ress_2024_110121
crossref_primary_10_1088_1361_6501_ad4732
crossref_primary_10_3390_app112311516
crossref_primary_10_1016_j_measurement_2022_112108
crossref_primary_10_1080_17445302_2023_2211241
crossref_primary_10_1016_j_ress_2021_107805
crossref_primary_10_1109_ACCESS_2024_3370949
crossref_primary_10_1007_s00170_020_06338_y
crossref_primary_10_1109_JSEN_2024_3409904
crossref_primary_10_32604_cmes_2022_019521
crossref_primary_10_1109_TCYB_2022_3228524
crossref_primary_10_1109_JSEN_2024_3416958
crossref_primary_10_1109_JSEN_2020_3040696
crossref_primary_10_1109_ACCESS_2023_3255417
crossref_primary_10_3390_en16124544
crossref_primary_10_1007_s10845_021_01822_y
crossref_primary_10_1109_JSEN_2023_3309013
crossref_primary_10_1109_TIM_2021_3072131
crossref_primary_10_1109_TIM_2022_3212547
crossref_primary_10_1016_j_isatra_2020_12_052
crossref_primary_10_1016_j_neucom_2025_129588
crossref_primary_10_1002_int_23008
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_1016_j_pnucene_2024_105114
crossref_primary_10_1016_j_ins_2024_120635
Cites_doi 10.1016/S0301-679X(99)00077-8
10.1007/s12206-017-0306-y
10.1016/j.measurement.2019.02.046
10.1016/j.measurement.2019.01.033
10.1016/j.ymssp.2018.02.016
10.1109/TIM.2018.2806984
10.1016/j.apacoust.2015.10.028
10.1016/j.compind.2019.01.008
10.1109/ACCESS.2018.2888842
10.1016/j.ymssp.2015.10.020
10.1109/ISGTEurope.2016.7856316
10.1007/978-3-319-13560-1_20
10.1109/TIT.1968.1054102
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.eswa.2010.09.042
10.1109/TIM.2017.2669947
10.1109/TIE.2015.2509913
10.1109/ACCESS.2018.2877447
10.1109/ChiCC.2015.7260634
10.1109/TPEL.2014.2358494
10.1214/aoms/1177729694
10.1016/j.ymssp.2017.06.012
10.1016/S0963-8695(02)00006-3
10.3390/s18051389
10.1016/j.rser.2015.12.111
10.1016/j.ymssp.2010.07.017
10.1109/TIM.2014.2330494
10.1016/j.ymssp.2016.06.033
10.1016/j.ymssp.2017.03.034
10.1016/S0963-8695(02)00005-1
10.1016/j.measurement.2017.02.033
10.1177/1475921718788299
10.1109/AERO.2007.352867
10.1098/rspa.1931.0069
10.1109/ACCESS.2017.2728010
10.3390/designs2040056
10.1016/j.sigpro.2016.07.028
10.1109/PHM-Chongqing.2018.00156
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2974942
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 35852
ExternalDocumentID oai_doaj_org_article_0991e1280a1a494ca8807df0ebcf2aff
10_1109_ACCESS_2020_2974942
9001012
Genre orig-research
GrantInformation_xml – fundername: Norges Forskningsråd
  grantid: 237896
  funderid: 10.13039/501100005416
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-2be1fcfc7585644f0b7f4627d9802729c9bcbb5fe76e8e8cabb65ebdfdbd36b3
IEDL.DBID RIE
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567617600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:19 EDT 2025
Sun Jun 29 16:13:41 EDT 2025
Tue Nov 18 22:06:01 EST 2025
Sat Nov 29 02:41:58 EST 2025
Wed Aug 27 02:35:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2be1fcfc7585644f0b7f4627d9802729c9bcbb5fe76e8e8cabb65ebdfdbd36b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8751-8731
0000-0001-9578-7325
0000-0002-0480-6859
0000-0002-0530-3866
0000-0002-5411-3655
OpenAccessLink https://ieeexplore.ieee.org/document/9001012
PQID 2454766312
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_primary_10_1109_ACCESS_2020_2974942
ieee_primary_9001012
crossref_citationtrail_10_1109_ACCESS_2020_2974942
doaj_primary_oai_doaj_org_article_0991e1280a1a494ca8807df0ebcf2aff
proquest_journals_2454766312
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References hemmer (ref30) 2017
ref12
benjamini (ref33) 2018; 57
ref15
stamboliska (ref4) 2014
ref14
ref53
ref55
ref11
ref10
ref17
ref16
ref19
bechhoefer (ref13) 2016; 7
ref18
ref51
loshchilov (ref48) 2017
ref45
box (ref54) 2015
ref43
ranzato (ref39) 2008
bechhoefer (ref5) 2016; 7
goodfellow (ref41) 2014
bechhoefer (ref32) 2011
ref8
ref7
ref9
ref3
ref6
arjovsky (ref44) 2017
yule (ref52) 1927; 226
ref35
ref34
ref37
ref36
ref31
ref2
ref1
ref38
kingma (ref47) 2015
kingma (ref40) 2013
clevert (ref50) 2015
abadi (ref46) 2015
srivastava (ref49) 2014; 15
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
makhzani (ref42) 2015
ref27
ref29
References_xml – ident: ref1
  doi: 10.1016/S0301-679X(99)00077-8
– ident: ref17
  doi: 10.1007/s12206-017-0306-y
– ident: ref14
  doi: 10.1016/j.measurement.2019.02.046
– ident: ref6
  doi: 10.1016/j.measurement.2019.01.033
– ident: ref18
  doi: 10.1016/j.ymssp.2018.02.016
– ident: ref20
  doi: 10.1109/TIM.2018.2806984
– ident: ref9
  doi: 10.1016/j.apacoust.2015.10.028
– ident: ref27
  doi: 10.1016/j.compind.2019.01.008
– ident: ref26
  doi: 10.1109/ACCESS.2018.2888842
– year: 2017
  ident: ref48
  article-title: Decoupled weight decay regularization
  publication-title: arXiv 1711 05101
– ident: ref10
  doi: 10.1016/j.ymssp.2015.10.020
– ident: ref55
  doi: 10.1109/ISGTEurope.2016.7856316
– year: 2017
  ident: ref44
  article-title: Towards principled methods for training generative adversarial networks
  publication-title: arXiv 1701 04862
– year: 2015
  ident: ref42
  article-title: Adversarial autoencoders
  publication-title: arXiv 1511 05644
– start-page: 1185
  year: 2008
  ident: ref39
  article-title: Sparse feature learning for deep belief networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1007/978-3-319-13560-1_20
– ident: ref34
  doi: 10.1109/TIT.1968.1054102
– volume: 57
  start-page: 289
  year: 2018
  ident: ref33
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J Roy Statist Soc B Statist Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref19
  doi: 10.1016/j.eswa.2010.09.042
– ident: ref29
  doi: 10.1109/TIM.2017.2669947
– ident: ref23
  doi: 10.1109/TIE.2015.2509913
– ident: ref28
  doi: 10.1109/ACCESS.2018.2877447
– ident: ref35
  doi: 10.1109/ChiCC.2015.7260634
– ident: ref21
  doi: 10.1109/TPEL.2014.2358494
– ident: ref43
  doi: 10.1214/aoms/1177729694
– volume: 226
  start-page: 267
  year: 1927
  ident: ref52
  article-title: On a method of investigating periodicities disturbed series, with special reference to Wolfer's sunspot numbers
  publication-title: Philos Trans R Soc Lond Ser A Containing Papers Math Phys Character
– ident: ref3
  doi: 10.1016/j.ymssp.2017.06.012
– start-page: 2672
  year: 2014
  ident: ref41
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 278
  year: 2017
  ident: ref30
  article-title: A comparison of acoustic emission and vibration measurements for condition monitoring of an offshore drilling machine
  publication-title: Proc Annu Conf Prognostics Health Manage Soc
– year: 2013
  ident: ref40
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– year: 2015
  ident: ref54
  publication-title: Time Series Analysis Forecasting and Control
– ident: ref8
  doi: 10.1016/S0963-8695(02)00006-3
– volume: 7
  start-page: 1
  year: 2016
  ident: ref13
  article-title: Techniques for large, slow bearing fault detection
  publication-title: Int Conf Prognostics Health Manage
– ident: ref16
  doi: 10.3390/s18051389
– year: 2014
  ident: ref4
  publication-title: Proactive Condition Monitoring of Low-Speed Machines
– ident: ref51
  doi: 10.1016/j.rser.2015.12.111
– ident: ref2
  doi: 10.1016/j.ymssp.2010.07.017
– ident: ref22
  doi: 10.1109/TIM.2014.2330494
– ident: ref12
  doi: 10.1016/j.ymssp.2016.06.033
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref49
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– year: 2015
  ident: ref46
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv 1603 04467
– ident: ref36
  doi: 10.1016/j.ymssp.2017.03.034
– ident: ref7
  doi: 10.1016/S0963-8695(02)00005-1
– ident: ref15
  doi: 10.1016/j.measurement.2017.02.033
– start-page: 275
  year: 2011
  ident: ref32
  article-title: Gear health threshold setting based on a probability of false alarm
  publication-title: Proc Annu Conf Prognostics Health Manage Soc
– ident: ref45
  doi: 10.1177/1475921718788299
– ident: ref31
  doi: 10.1109/AERO.2007.352867
– year: 2015
  ident: ref50
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: arXiv 1511 07289
– year: 2015
  ident: ref47
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref53
  doi: 10.1098/rspa.1931.0069
– ident: ref37
  doi: 10.1109/ACCESS.2017.2728010
– ident: ref25
  doi: 10.3390/designs2040056
– ident: ref38
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 7
  start-page: 1
  year: 2016
  ident: ref5
  article-title: Fault detection on large slow bearings
  publication-title: Proc PHME
– ident: ref11
  doi: 10.1109/PHM-Chongqing.2018.00156
SSID ssj0000816957
Score 2.3616652
Snippet This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35842
SubjectTerms Autoregressive models
Autoregressive processes
Bearing fault detection
condition monitoring
conditional variational autoencoder
Data points
Datasets
Decoding
Dimensionality reduction
Drilling machines
Drilling machines (tools)
False alarms
Fault detection
generative models
Industries
Low speed
Offshore drilling rigs
Roller bearings
Rolling bearings
Training
unsupervised learning
variational autoencoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPOhB1CpWq-Tg0bXZ7FdybItFoRTBIr2FfIIgbbGt-vOdZNNSEfTicZdsdjN5O3kzm32D0HVhKJXESIhNpEvySutEAodLLKVcZoViRrNQbKIajdhkwh-3Sn35PWG1PHBtuA4wmNSCEyUylTnPtQTAVcYRq7Sj0jnvfUnFt4Kp4INZWvKiijJDKeGdbr8PI4KAkJJbCiSa5_TbUhQU-2OJlR9-OSw2g0N0EFki7tZPd4R27PQY7W9pBzbRsP6BCD9M_ZcWiJwx0E88nH0kT3NYkXD3E5CFewBknwvHYWsAfoajmP3D3dVy5lUs_U7mEzQe3I3790ksjZDonLBlQpVNnXbas31gNI6oyuUlrQxnEGdSrrnSShXOVqVllmmpVFlYZZxRJitVdooa09nUniGccgkkS1qjM5uDr2M-KCukI7IoM5XpFqJrIwkdZcN99YpXEcIHwkVtWeEtK6JlW-hmc9G8Vs34vXnPW3_T1EtehxMABBGBIP4CQgs1_dxtOuFBPg_6bq_nUsTXcyGolzEDrpXS8_-49QXa88OpMzNt1Fi-rewl2tXvy5fF21VA5heX5eay
  priority: 102
  providerName: Directory of Open Access Journals
Title Health Indicator for Low-Speed Axial Bearings Using Variational Autoencoders
URI https://ieeexplore.ieee.org/document/9001012
https://www.proquest.com/docview/2454766312
https://doaj.org/article/0991e1280a1a494ca8807df0ebcf2aff
Volume 8
WOSCitedRecordID wos000567617600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFH6o9FAP2mrFVSs59OhoJvMjk-O6KC1YKSjFW8iPFxBkV3S39eTf7ksmDkpF6GWYGZIhM1_m5XsvyfcAvjVeCMO9Id_EhKKWzhWGOFyBQihTNbbzrkvJJuT5eXd1pX4twcGwFwYR0-IzPIynaS7fz9wihsqOVFJEI4O7LGXb79Ua4ikxgYRqZBYWKrk6Gk8m9A7kAgp-KIg2q1q8GnySRn9OqvKPJU7Dy-n6_zXsE6xlGsnGPe6fYQmnG7D6QlxwE876HUbsxzROxZBrzYifsrPZ3-LiloYsNn6grseOqafHYDlLawfYb7rK4UE2XsxnUeYyLnX-ApenJ5eT70XOnVC4mnfzQlgsgwsuugNEeQK3MtStkF515IgK5ZR11jYBZYsdds5Y2zZoffDWV62ttmBlOpviNrBSGWJhBr2rsCZj2EWvrTGBm6atbOVGIJ6_qXZZVzymt7jRyb_gSvdA6AiEzkCM4GCodNvLarxf_DiCNRSNmtjpBqGg8y-mieuWSMMtN6WhSs6QaZI-cLQuCBPCCDYjcsNDMmgj2HuGXuf_916LqHNGZKwUO2_X2oWPsYF9MGYPVuZ3C_wKH9yf-fX93X7y7On48_FkP3XTJ7kN5Ok
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD6UKqgPtlrF1bbmwcdOm8lc87hdWnZxXQQX6VvI5QQKslv20vrzPcmkg6VF8G1mSIbMfMnJd06S7wB8qZwQmjtNvon2WdlYm2nicBkKIXVRmdbZNiabaGaz9upKft-Bk_4sDCLGzWd4Gi7jWr5b2m0IlZ3JqIhGBvdZVZaCd6e1-ohKSCEhqyZJC-Vcng1HI_oKcgIFPxVEnGUpHkw_UaU_pVV5ZIvjBHO5939N24fXiUiyYYf8G9jBxVt49Ze84AFMuzNGbLIIizHkXDNiqGy6vMt-3NCkxYa_qfOxc-rrIVzO4u4B9pPuUoCQDbebZRC6DJud38H88mI-Gmcpe0JmS95uMmEw99bb4BAQ6fHcNL6sReNkS66okFYaa0zlsamxxdZqY-oKjfPOuKI2xXvYXSwX-AFYLjXxMI3OFliSOWyD31Zpz3VVF6awAxD3_1TZpCweElz8UtHD4FJ1QKgAhEpADOCkr3TTCWv8u_h5AKsvGlSx4wNCQaVBpojt5kgTLte5pkpWk3FqnOdorBfa-wEcBOT6lyTQBnB4D71KI3itRFA6IzqWi49P1_oML8bzb1M1ncy-foKXobFdaOYQdjerLR7Bc3u7uV6vjmM3_QP6muYK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Health+Indicator+for+Low-Speed+Axial+Bearings+Using+Variational+Autoencoders&rft.jtitle=IEEE+access&rft.au=Hemmer%2C+Martin&rft.au=Klausen%2C+Andreas&rft.au=Khang%2C+Huynh+Van&rft.au=Robbersmyr%2C+Kjell+G.&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=35842&rft.epage=35852&rft_id=info:doi/10.1109%2FACCESS.2020.2974942&rft.externalDocID=9001012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon