Clustering Uncertain Data Objects Using Jeffreys-Divergence and Maximum Bipartite Matching Based Similarity Measure
In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing...
Saved in:
| Published in: | IEEE access Vol. 9; pp. 79505 - 79519 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms. |
|---|---|
| AbstractList | In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms. In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and [Formula Omitted]-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms. In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and <tex-math notation="LaTeX">$k$ </tex-math>-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms. |
| Author | Yazidi, Anis Sharma, Krishna Kumar Seal, Ayan Selamat, Ali Krejcar, Ondrej |
| Author_xml | – sequence: 1 givenname: Krishna Kumar surname: Sharma fullname: Sharma, Krishna Kumar organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, Jabalpur, India – sequence: 2 givenname: Ayan orcidid: 0000-0002-9939-2926 surname: Seal fullname: Seal, Ayan email: ayanseal30@ieee.org organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, Jabalpur, India – sequence: 3 givenname: Anis orcidid: 0000-0001-7591-1659 surname: Yazidi fullname: Yazidi, Anis organization: Department of Computer Science, Oslo Metropolitan University, Oslo, Norway – sequence: 4 givenname: Ali orcidid: 0000-0001-9746-8459 surname: Selamat fullname: Selamat, Ali organization: Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic – sequence: 5 givenname: Ondrej orcidid: 0000-0002-5992-2574 surname: Krejcar fullname: Krejcar, Ondrej organization: Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic |
| BookMark | eNp9UcFu1DAUtFCRKKVf0Islzlns2HHsY5sWKGrVw7Jn663zsniVTRbbqdi_xyEFIQ74Yms8M2_05i05G8YBCbnibMU5Mx-um-ZuvV6VrOQrwbQwyrwi5yVXphCVUGd_vd-Qyxj3LB-doao-J7Hpp5gw-GFHN4PDkMAP9BYS0KftHl2KdBPnzy_YdQFPsbj1zxh2mLkUhpY-wg9_mA70xh8hJJ8wI8l9myU3ELGla3_wPQSfTvQRIU4B35HXHfQRL1_uC7L5ePe1-Vw8PH26b64fCieZTkUJuO2w40x0qKSutdBSA0pwgLVCV7el1k5K01bMVaBVpwFa46BWstWlFBfkfvFtR9jbY_AHCCc7gre_gDHs7BzZ9Whd5USeZKptXUlduTxHaMUyUIuWK5G93i9exzB-nzAmux-nMOT4tsyL1UpxrjPLLCwXxhgDdtb5BMmPQwrge8uZnSuzS2V2rsy-VJa14h_t78T_V10tKo-IfxRGSmby4n4CT6yk_A |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04664_4 crossref_primary_10_1016_j_inffus_2024_102630 crossref_primary_10_1016_j_dsp_2023_104118 crossref_primary_10_1109_ACCESS_2021_3130066 crossref_primary_10_1109_ACCESS_2024_3461798 crossref_primary_10_1016_j_compeleceng_2022_108066 crossref_primary_10_1016_j_eswa_2023_121518 crossref_primary_10_1109_ACCESS_2022_3216705 crossref_primary_10_3390_sym16020212 crossref_primary_10_1016_j_neucom_2024_128884 crossref_primary_10_1109_ACCESS_2023_3322929 crossref_primary_10_1007_s10044_024_01261_4 crossref_primary_10_3390_math11184008 |
| Cites_doi | 10.1109/ICDE.1992.213147 10.1007/11731139_24 10.1016/j.mcm.2006.07.007 10.1007/978-3-642-35326-0_44 10.1088/1755-1315/31/1/012012 10.1016/j.eswa.2019.06.050 10.1016/j.ins.2019.11.022 10.1007/978-3-540-44792-4_3 10.1109/TKDE.2011.121 10.1109/TPAMI.1984.4767478 10.1109/TKDE.2016.2563436 10.1145/3068335 10.1109/TKDE.2011.221 10.5194/se-9-385-2018 10.14778/2180912.2180914 10.1145/1081870.1081955 10.1016/j.compag.2020.105342 10.1145/272991.272995 10.1109/ACCESS.2019.2910195 10.3390/sym13040596 10.1007/978-3-540-87993-0_19 10.1016/j.tecto.2018.09.005 10.1016/j.engappai.2020.103928 10.1109/ICDM.2005.75 10.1016/j.ins.2020.08.080 10.1109/TNNLS.2016.2580570 10.1016/j.patcog.2020.107627 10.5194/se-10-193-2019 10.1016/j.knosys.2017.05.008 10.1109/ISIT.2008.4595271 10.1127/0941-2948/2006/0130 10.1109/ICDM.2010.134 10.1145/1376916.1376944 10.1016/j.eswa.2020.114326 10.1109/ICDMW.2007.40 10.1016/j.asoc.2019.106016 10.1016/j.patrec.2005.10.010 10.1109/ICS.2016.0067 10.1109/TCBB.2007.70245 10.1016/j.knosys.2020.106567 10.1016/j.inffus.2018.04.003 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3083969 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2169-3536 |
| EndPage | 79519 |
| ExternalDocumentID | oai_doaj_org_article_c5c3f1095b75485c8ae386009573d163 10_1109_ACCESS_2021_3083969 9440910 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: “Smart Solutions in Ubiquitous Computing Environments”, Grant Agency of Excellence, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic grantid: UHK-FIM-GE-2204/2021 – fundername: Malaysia Research University Network (MRUN) grantid: Vot 4L876 – fundername: Fundamental Research Grant Scheme (FRGS) grantid: Vot5F073 – fundername: Ministry of Higher Education, Malaysia; Ministry of Education Malaysia funderid: 10.13039/501100003093 – fundername: Ministry of Education, Youth and Sports of Czech Republic grantid: ERDF no. CZ.02.1.01/0.0/0.0/18_069/0010054 – fundername: Universiti Teknologi Malaysia (UTM) under Research University grantid: Vot-20H04 funderid: 10.13039/501100005417 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-2aebfef103fe648783848ae4acae76ec7d288c449d50c5a86f8aad9ca764d8243 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:46 EDT 2025 Sun Jun 29 12:44:59 EDT 2025 Tue Nov 18 22:32:15 EST 2025 Sat Nov 29 06:12:18 EST 2025 Wed Aug 27 02:50:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-2aebfef103fe648783848ae4acae76ec7d288c449d50c5a86f8aad9ca764d8243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9746-8459 0000-0001-7591-1659 0000-0002-9939-2926 0000-0002-5992-2574 |
| OpenAccessLink | https://doaj.org/article/c5c3f1095b75485c8ae386009573d163 |
| PQID | 2536866118 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2536866118 crossref_citationtrail_10_1109_ACCESS_2021_3083969 ieee_primary_9440910 crossref_primary_10_1109_ACCESS_2021_3083969 doaj_primary_oai_doaj_org_article_c5c3f1095b75485c8ae386009573d163 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 seal (ref4) 2021 ref11 ref10 ref17 ref16 ref19 kaufman (ref40) 1987 ref50 ref46 ref48 ref47 ref41 ref44 ref43 karami (ref42) 2014; 91 ref49 papadimitriou (ref33) 1998 ref8 ref3 ref6 ref5 galindo (ref18) 2005 silverman (ref15) 1986; 26 ref34 ref37 ref36 ref31 ref30 ref32 gullo (ref9) 2008 ref2 ref1 ref39 ref38 chau (ref7) 2006 ref24 ref23 ref26 ref25 ref20 (ref45) 1987 ref22 ref21 ref28 ref27 ref29 bhattacharyya (ref35) 1943; 35 |
| References_xml | – ident: ref20 doi: 10.1109/ICDE.1992.213147 – start-page: 199 year: 2006 ident: ref7 article-title: Uncertain data mining: An example in clustering location data publication-title: Proc Pacific-Asia Conf Knowl Discovery Data Mining doi: 10.1007/11731139_24 – volume: 35 start-page: 99 year: 1943 ident: ref35 article-title: On a measure of divergence between two statistical populations defined by their probability distributions publication-title: Bull Calcutta Math Soc – ident: ref37 doi: 10.1016/j.mcm.2006.07.007 – ident: ref36 doi: 10.1007/978-3-642-35326-0_44 – ident: ref44 doi: 10.1088/1755-1315/31/1/012012 – ident: ref24 doi: 10.1016/j.eswa.2019.06.050 – ident: ref27 doi: 10.1016/j.ins.2019.11.022 – ident: ref19 doi: 10.1007/978-3-540-44792-4_3 – start-page: 405 year: 1987 ident: ref40 publication-title: Clustering by means of medoids in statistical data analysis based on the – ident: ref3 doi: 10.1109/TKDE.2011.121 – ident: ref41 doi: 10.1109/TPAMI.1984.4767478 – ident: ref34 doi: 10.1109/TKDE.2016.2563436 – ident: ref43 doi: 10.1145/3068335 – ident: ref13 doi: 10.1109/TKDE.2011.221 – ident: ref23 doi: 10.5194/se-9-385-2018 – year: 2005 ident: ref18 publication-title: Fuzzy Databases Modeling Design and Implementation Modeling Design and Implementation – ident: ref12 doi: 10.14778/2180912.2180914 – ident: ref17 doi: 10.1145/1081870.1081955 – ident: ref48 doi: 10.1016/j.compag.2020.105342 – ident: ref39 doi: 10.1145/272991.272995 – year: 1998 ident: ref33 publication-title: Combinatorial Optimization Algorithms and Complexity – ident: ref14 doi: 10.1109/TKDE.2011.221 – volume: 26 year: 1986 ident: ref15 publication-title: Density Estimation for Statistics and Data Analysis – ident: ref50 doi: 10.1109/ACCESS.2019.2910195 – ident: ref2 doi: 10.3390/sym13040596 – start-page: 229 year: 2008 ident: ref9 article-title: Clustering uncertain data via k-medoids publication-title: Proc Int Conf Scalable Uncertainty Manage doi: 10.1007/978-3-540-87993-0_19 – ident: ref22 doi: 10.1016/j.tecto.2018.09.005 – ident: ref6 doi: 10.1016/j.engappai.2020.103928 – ident: ref16 doi: 10.1109/ICDM.2005.75 – ident: ref31 doi: 10.1016/j.ins.2020.08.080 – volume: 91 start-page: 1 year: 2014 ident: ref42 article-title: Choosing DBSCAN parameters automatically using differential evolution publication-title: Int J Comput Appl – start-page: 1 year: 2021 ident: ref4 article-title: Performance and convergence analysis of modified C-means using Jeffreys-divergence for clustering publication-title: Int J Artif Intell Interact Multimedia – ident: ref5 doi: 10.1109/TNNLS.2016.2580570 – ident: ref29 doi: 10.1016/j.patcog.2020.107627 – ident: ref21 doi: 10.5194/se-10-193-2019 – ident: ref28 doi: 10.1016/j.knosys.2017.05.008 – ident: ref30 doi: 10.1109/ISIT.2008.4595271 – ident: ref46 doi: 10.1127/0941-2948/2006/0130 – ident: ref11 doi: 10.1109/ICDM.2010.134 – ident: ref10 doi: 10.1145/1376916.1376944 – ident: ref1 doi: 10.1016/j.eswa.2020.114326 – ident: ref8 doi: 10.1109/ICDMW.2007.40 – ident: ref49 doi: 10.1016/j.asoc.2019.106016 – ident: ref47 doi: 10.1016/j.patrec.2005.10.010 – ident: ref25 doi: 10.1109/ICS.2016.0067 – ident: ref38 doi: 10.1109/TCBB.2007.70245 – ident: ref32 doi: 10.1016/j.knosys.2020.106567 – ident: ref26 doi: 10.1016/j.inffus.2018.04.003 – year: 1987 ident: ref45 publication-title: National Weather Service |
| SSID | ssj0000816957 |
| Score | 2.2914693 |
| Snippet | In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning.... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 79505 |
| SubjectTerms | Algorithms bipartite matching Clustering Clustering algorithms Computational modeling Computer science Estimation Machine learning Machine learning algorithms Measurement uncertainty Monte Carlo simulation Pattern recognition probability density estimation Sensors Similarity Similarity measures Statistical analysis Uncertain data clustering |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB0B4tAeSoFWbEuRDz0SSGI7to_sUsQFWqlF4hY59kSKxC6IZKt-fseON0JqVam3xLEjW2-ceTMZzwB8Jq1TqaLFjHuJmcBGZAZlkXkkrt2iw9z7WGxC3d7q-3vzbQtOp7MwiBiDz_AsXMZ_-f7RrYOr7NwIEdTbNmwrVY1ntSZ_SiggYaRKiYWK3JxfLBa0BjIBy-KME9MwIaj5hfKJOfpTUZU_vsRRvVzt_d_E3sKbRCPZxYj7Pmzh6gD2NiUaWNqxB_D6Rb7BQ-gXD-uQGIFu2B09j9EA7NIOln1tgkOmZzGEgKXzXX12GcI2Yr5OZlee3dhf3XK9ZPPuKYjcgNQyxGhMNid16Nn3btmRrUzUnt2M3sd3cHf15cfiOktVFzIncj1kpcWmxbbIeYsVmTOaa6EtCussqgqd8qXWTgjjZe6k1VWrrfXGWVUJr0vB38PO6nGFR8Ac99wQ49O2IaKW86ayBcdSSBICgxpnUG7gqF1KSR4qYzzU0TTJTT1iWAcM64ThDE6nQU9jRo5_d58HnKeuIZ12bCAA67Q7aycdpxUb2Siy4KSj9XJdBfqpuCfGOoPDAPr0koT3DI43UlOnrd_XpeSVJtZT6A9_H_URXoUJjn6cY9gZntf4CXbdz6Hrn0-iVP8Gt6z2rQ priority: 102 providerName: IEEE |
| Title | Clustering Uncertain Data Objects Using Jeffreys-Divergence and Maximum Bipartite Matching Based Similarity Measure |
| URI | https://ieeexplore.ieee.org/document/9440910 https://www.proquest.com/docview/2536866118 https://doaj.org/article/c5c3f1095b75485c8ae386009573d163 |
| Volume | 9 |
| WOSCitedRecordID | wos000673853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh5JAcSpO0ZPNYdMgx7tqWLEvHfST0smkhXchNyNIYDNltiL0hp_z2jmTtshBoL70YbCTbmhlrvpFH3xByjV5HlFkNCXMFJBwqnigossQBYu0aLKTOhWIT5f29fHxUP3dKffmcsJ4euBfcyBaW1RkCgapEcF1YaYBJ4ZFByRyCCT_7pqXaCabCHCwzgS0izRB2H42nUxwRBoR59o0h7lA-xXnHFQXG_lhi5cO8HJzN3WfyKaJEOu7f7pjsweqEHO1wB56Sdvq09iQHeEIXqLnwZ5_OTGfoj8ovrrQ0pAPQuFerTWY-BSNwb1KzcnRu3prlekknzbOXQgd4pQuZlXSCrs3Rh2bZYNyLMJ3O-5XEL2Rxd_tr-j2JFRQSy1PZJbmBqgYUH6tBYGgimeQoQG6sgVKALV0upeVcuSK1hZGilsY4ZU0puJM5Z1_J_ur3Cs4ItcwxhehNmgpBV8oqYTIGOS9QoQokDEi-Eaa2kV7cV7l40iHMSJXuNaC9BnTUwIDcbDs99-waf28-8VraNvXU2OECGoyOBqP_ZTADcup1vL2J4txjpgG53Ohcx8-41XnBhEQEk8nz__HoC3Loh9Ov4FyS_e5lDVfkwL52TfsyDBaMx_n77TDsQ_wDq7v0Ng |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbGQAIeGGxDHAzIA4_r1jZJmzzubkxD7A4kNmlvVZq4UqXdbVp7iJ-Pk-aqSSAk3to0qRJ9Tv3ZdWyAT6R1ijJrMOFOYiKwFolGmSUOiWs3aDF1LhSbKBcLdX2tv2_B4XgWBhFD8Bke-cvwL9_d2rV3lR1rIbx6ewSPpRB5OpzWGj0qvoSElmVMLZSl-vhkNqNVkBGYZ0ecuIb2Yc0P1E_I0h_LqvzxLQ4K5mzn_6b2El5EIslOBuRfwRaudmFnU6SBxT27C88fZBzcg252s_apEeiGXdHzEA_ATk1v2Lfau2Q6FoIIWDzh1SWnPnAjZOxkZuXY3Pxql-slm7Z3Xuh6pJY-xGOyKSlEx360y5asZSL3bD74H_fh6uzz5ew8iXUXEitS1Se5wbrBJkt5gwUZNIoroQwKYw2WBdrS5UpZIbSTqZVGFY0yxmlrykI4lQv-GrZXtyt8A8xyxzVxPmVqomoprwuTccyFJDHQqHAC-QaOysak5L42xk0VjJNUVwOGlcewihhO4HAcdDfk5Ph396nHeezqE2qHBgKwivuzstJyWrGWdUk2nLS0Xq4KT0BL7oizTmDPgz6-JOI9gYON1FRx83dVLnmhiPdk6u3fR32Ep-eX84vq4svi6zt45ic7eHUOYLu_X-N7eGJ_9m13_yFI-G-sBfn0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Uncertain+Data+Objects+Using+Jeffreys-Divergence+and+Maximum+Bipartite+Matching+Based+Similarity+Measure&rft.jtitle=IEEE+access&rft.au=Sharma%2C+Krishna+Kumar&rft.au=Seal%2C+Ayan&rft.au=Yazidi%2C+Anis&rft.au=Selamat%2C+Ali&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=79505&rft.epage=79519&rft_id=info:doi/10.1109%2FACCESS.2021.3083969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3083969 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |