Clustering Uncertain Data Objects Using Jeffreys-Divergence and Maximum Bipartite Matching Based Similarity Measure

In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 79505 - 79519
Main Authors: Sharma, Krishna Kumar, Seal, Ayan, Yazidi, Anis, Selamat, Ali, Krejcar, Ondrej
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms.
AbstractList In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms.
In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and [Formula Omitted]-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms.
In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and <tex-math notation="LaTeX">$k$ </tex-math>-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms.
Author Yazidi, Anis
Sharma, Krishna Kumar
Seal, Ayan
Selamat, Ali
Krejcar, Ondrej
Author_xml – sequence: 1
  givenname: Krishna Kumar
  surname: Sharma
  fullname: Sharma, Krishna Kumar
  organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, Jabalpur, India
– sequence: 2
  givenname: Ayan
  orcidid: 0000-0002-9939-2926
  surname: Seal
  fullname: Seal, Ayan
  email: ayanseal30@ieee.org
  organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur, Jabalpur, India
– sequence: 3
  givenname: Anis
  orcidid: 0000-0001-7591-1659
  surname: Yazidi
  fullname: Yazidi, Anis
  organization: Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
– sequence: 4
  givenname: Ali
  orcidid: 0000-0001-9746-8459
  surname: Selamat
  fullname: Selamat, Ali
  organization: Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
– sequence: 5
  givenname: Ondrej
  orcidid: 0000-0002-5992-2574
  surname: Krejcar
  fullname: Krejcar, Ondrej
  organization: Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
BookMark eNp9UcFu1DAUtFCRKKVf0Islzlns2HHsY5sWKGrVw7Jn663zsniVTRbbqdi_xyEFIQ74Yms8M2_05i05G8YBCbnibMU5Mx-um-ZuvV6VrOQrwbQwyrwi5yVXphCVUGd_vd-Qyxj3LB-doao-J7Hpp5gw-GFHN4PDkMAP9BYS0KftHl2KdBPnzy_YdQFPsbj1zxh2mLkUhpY-wg9_mA70xh8hJJ8wI8l9myU3ELGla3_wPQSfTvQRIU4B35HXHfQRL1_uC7L5ePe1-Vw8PH26b64fCieZTkUJuO2w40x0qKSutdBSA0pwgLVCV7el1k5K01bMVaBVpwFa46BWstWlFBfkfvFtR9jbY_AHCCc7gre_gDHs7BzZ9Whd5USeZKptXUlduTxHaMUyUIuWK5G93i9exzB-nzAmux-nMOT4tsyL1UpxrjPLLCwXxhgDdtb5BMmPQwrge8uZnSuzS2V2rsy-VJa14h_t78T_V10tKo-IfxRGSmby4n4CT6yk_A
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s10586_024_04664_4
crossref_primary_10_1016_j_inffus_2024_102630
crossref_primary_10_1016_j_dsp_2023_104118
crossref_primary_10_1109_ACCESS_2021_3130066
crossref_primary_10_1109_ACCESS_2024_3461798
crossref_primary_10_1016_j_compeleceng_2022_108066
crossref_primary_10_1016_j_eswa_2023_121518
crossref_primary_10_1109_ACCESS_2022_3216705
crossref_primary_10_3390_sym16020212
crossref_primary_10_1016_j_neucom_2024_128884
crossref_primary_10_1109_ACCESS_2023_3322929
crossref_primary_10_1007_s10044_024_01261_4
crossref_primary_10_3390_math11184008
Cites_doi 10.1109/ICDE.1992.213147
10.1007/11731139_24
10.1016/j.mcm.2006.07.007
10.1007/978-3-642-35326-0_44
10.1088/1755-1315/31/1/012012
10.1016/j.eswa.2019.06.050
10.1016/j.ins.2019.11.022
10.1007/978-3-540-44792-4_3
10.1109/TKDE.2011.121
10.1109/TPAMI.1984.4767478
10.1109/TKDE.2016.2563436
10.1145/3068335
10.1109/TKDE.2011.221
10.5194/se-9-385-2018
10.14778/2180912.2180914
10.1145/1081870.1081955
10.1016/j.compag.2020.105342
10.1145/272991.272995
10.1109/ACCESS.2019.2910195
10.3390/sym13040596
10.1007/978-3-540-87993-0_19
10.1016/j.tecto.2018.09.005
10.1016/j.engappai.2020.103928
10.1109/ICDM.2005.75
10.1016/j.ins.2020.08.080
10.1109/TNNLS.2016.2580570
10.1016/j.patcog.2020.107627
10.5194/se-10-193-2019
10.1016/j.knosys.2017.05.008
10.1109/ISIT.2008.4595271
10.1127/0941-2948/2006/0130
10.1109/ICDM.2010.134
10.1145/1376916.1376944
10.1016/j.eswa.2020.114326
10.1109/ICDMW.2007.40
10.1016/j.asoc.2019.106016
10.1016/j.patrec.2005.10.010
10.1109/ICS.2016.0067
10.1109/TCBB.2007.70245
10.1016/j.knosys.2020.106567
10.1016/j.inffus.2018.04.003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3083969
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2169-3536
EndPage 79519
ExternalDocumentID oai_doaj_org_article_c5c3f1095b75485c8ae386009573d163
10_1109_ACCESS_2021_3083969
9440910
Genre orig-research
GrantInformation_xml – fundername: “Smart Solutions in Ubiquitous Computing Environments”, Grant Agency of Excellence, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic
  grantid: UHK-FIM-GE-2204/2021
– fundername: Malaysia Research University Network (MRUN)
  grantid: Vot 4L876
– fundername: Fundamental Research Grant Scheme (FRGS)
  grantid: Vot5F073
– fundername: Ministry of Higher Education, Malaysia; Ministry of Education Malaysia
  funderid: 10.13039/501100003093
– fundername: Ministry of Education, Youth and Sports of Czech Republic
  grantid: ERDF no. CZ.02.1.01/0.0/0.0/18_069/0010054
– fundername: Universiti Teknologi Malaysia (UTM) under Research University
  grantid: Vot-20H04
  funderid: 10.13039/501100005417
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-2aebfef103fe648783848ae4acae76ec7d288c449d50c5a86f8aad9ca764d8243
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:46 EDT 2025
Sun Jun 29 12:44:59 EDT 2025
Tue Nov 18 22:32:15 EST 2025
Sat Nov 29 06:12:18 EST 2025
Wed Aug 27 02:50:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2aebfef103fe648783848ae4acae76ec7d288c449d50c5a86f8aad9ca764d8243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9746-8459
0000-0001-7591-1659
0000-0002-9939-2926
0000-0002-5992-2574
OpenAccessLink https://doaj.org/article/c5c3f1095b75485c8ae386009573d163
PQID 2536866118
PQPubID 4845423
PageCount 15
ParticipantIDs proquest_journals_2536866118
crossref_citationtrail_10_1109_ACCESS_2021_3083969
ieee_primary_9440910
crossref_primary_10_1109_ACCESS_2021_3083969
doaj_primary_oai_doaj_org_article_c5c3f1095b75485c8ae386009573d163
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
seal (ref4) 2021
ref11
ref10
ref17
ref16
ref19
kaufman (ref40) 1987
ref50
ref46
ref48
ref47
ref41
ref44
ref43
karami (ref42) 2014; 91
ref49
papadimitriou (ref33) 1998
ref8
ref3
ref6
ref5
galindo (ref18) 2005
silverman (ref15) 1986; 26
ref34
ref37
ref36
ref31
ref30
ref32
gullo (ref9) 2008
ref2
ref1
ref39
ref38
chau (ref7) 2006
ref24
ref23
ref26
ref25
ref20
(ref45) 1987
ref22
ref21
ref28
ref27
ref29
bhattacharyya (ref35) 1943; 35
References_xml – ident: ref20
  doi: 10.1109/ICDE.1992.213147
– start-page: 199
  year: 2006
  ident: ref7
  article-title: Uncertain data mining: An example in clustering location data
  publication-title: Proc Pacific-Asia Conf Knowl Discovery Data Mining
  doi: 10.1007/11731139_24
– volume: 35
  start-page: 99
  year: 1943
  ident: ref35
  article-title: On a measure of divergence between two statistical populations defined by their probability distributions
  publication-title: Bull Calcutta Math Soc
– ident: ref37
  doi: 10.1016/j.mcm.2006.07.007
– ident: ref36
  doi: 10.1007/978-3-642-35326-0_44
– ident: ref44
  doi: 10.1088/1755-1315/31/1/012012
– ident: ref24
  doi: 10.1016/j.eswa.2019.06.050
– ident: ref27
  doi: 10.1016/j.ins.2019.11.022
– ident: ref19
  doi: 10.1007/978-3-540-44792-4_3
– start-page: 405
  year: 1987
  ident: ref40
  publication-title: Clustering by means of medoids in statistical data analysis based on the
– ident: ref3
  doi: 10.1109/TKDE.2011.121
– ident: ref41
  doi: 10.1109/TPAMI.1984.4767478
– ident: ref34
  doi: 10.1109/TKDE.2016.2563436
– ident: ref43
  doi: 10.1145/3068335
– ident: ref13
  doi: 10.1109/TKDE.2011.221
– ident: ref23
  doi: 10.5194/se-9-385-2018
– year: 2005
  ident: ref18
  publication-title: Fuzzy Databases Modeling Design and Implementation Modeling Design and Implementation
– ident: ref12
  doi: 10.14778/2180912.2180914
– ident: ref17
  doi: 10.1145/1081870.1081955
– ident: ref48
  doi: 10.1016/j.compag.2020.105342
– ident: ref39
  doi: 10.1145/272991.272995
– year: 1998
  ident: ref33
  publication-title: Combinatorial Optimization Algorithms and Complexity
– ident: ref14
  doi: 10.1109/TKDE.2011.221
– volume: 26
  year: 1986
  ident: ref15
  publication-title: Density Estimation for Statistics and Data Analysis
– ident: ref50
  doi: 10.1109/ACCESS.2019.2910195
– ident: ref2
  doi: 10.3390/sym13040596
– start-page: 229
  year: 2008
  ident: ref9
  article-title: Clustering uncertain data via k-medoids
  publication-title: Proc Int Conf Scalable Uncertainty Manage
  doi: 10.1007/978-3-540-87993-0_19
– ident: ref22
  doi: 10.1016/j.tecto.2018.09.005
– ident: ref6
  doi: 10.1016/j.engappai.2020.103928
– ident: ref16
  doi: 10.1109/ICDM.2005.75
– ident: ref31
  doi: 10.1016/j.ins.2020.08.080
– volume: 91
  start-page: 1
  year: 2014
  ident: ref42
  article-title: Choosing DBSCAN parameters automatically using differential evolution
  publication-title: Int J Comput Appl
– start-page: 1
  year: 2021
  ident: ref4
  article-title: Performance and convergence analysis of modified C-means using Jeffreys-divergence for clustering
  publication-title: Int J Artif Intell Interact Multimedia
– ident: ref5
  doi: 10.1109/TNNLS.2016.2580570
– ident: ref29
  doi: 10.1016/j.patcog.2020.107627
– ident: ref21
  doi: 10.5194/se-10-193-2019
– ident: ref28
  doi: 10.1016/j.knosys.2017.05.008
– ident: ref30
  doi: 10.1109/ISIT.2008.4595271
– ident: ref46
  doi: 10.1127/0941-2948/2006/0130
– ident: ref11
  doi: 10.1109/ICDM.2010.134
– ident: ref10
  doi: 10.1145/1376916.1376944
– ident: ref1
  doi: 10.1016/j.eswa.2020.114326
– ident: ref8
  doi: 10.1109/ICDMW.2007.40
– ident: ref49
  doi: 10.1016/j.asoc.2019.106016
– ident: ref47
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref25
  doi: 10.1109/ICS.2016.0067
– ident: ref38
  doi: 10.1109/TCBB.2007.70245
– ident: ref32
  doi: 10.1016/j.knosys.2020.106567
– ident: ref26
  doi: 10.1016/j.inffus.2018.04.003
– year: 1987
  ident: ref45
  publication-title: National Weather Service
SSID ssj0000816957
Score 2.2914693
Snippet In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79505
SubjectTerms Algorithms
bipartite matching
Clustering
Clustering algorithms
Computational modeling
Computer science
Estimation
Machine learning
Machine learning algorithms
Measurement uncertainty
Monte Carlo simulation
Pattern recognition
probability density estimation
Sensors
Similarity
Similarity measures
Statistical analysis
Uncertain data clustering
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB0B4tAeSoFWbEuRDz0SSGI7to_sUsQFWqlF4hY59kSKxC6IZKt-fseON0JqVam3xLEjW2-ceTMZzwB8Jq1TqaLFjHuJmcBGZAZlkXkkrt2iw9z7WGxC3d7q-3vzbQtOp7MwiBiDz_AsXMZ_-f7RrYOr7NwIEdTbNmwrVY1ntSZ_SiggYaRKiYWK3JxfLBa0BjIBy-KME9MwIaj5hfKJOfpTUZU_vsRRvVzt_d_E3sKbRCPZxYj7Pmzh6gD2NiUaWNqxB_D6Rb7BQ-gXD-uQGIFu2B09j9EA7NIOln1tgkOmZzGEgKXzXX12GcI2Yr5OZlee3dhf3XK9ZPPuKYjcgNQyxGhMNid16Nn3btmRrUzUnt2M3sd3cHf15cfiOktVFzIncj1kpcWmxbbIeYsVmTOaa6EtCussqgqd8qXWTgjjZe6k1VWrrfXGWVUJr0vB38PO6nGFR8Ac99wQ49O2IaKW86ayBcdSSBICgxpnUG7gqF1KSR4qYzzU0TTJTT1iWAcM64ThDE6nQU9jRo5_d58HnKeuIZ12bCAA67Q7aycdpxUb2Siy4KSj9XJdBfqpuCfGOoPDAPr0koT3DI43UlOnrd_XpeSVJtZT6A9_H_URXoUJjn6cY9gZntf4CXbdz6Hrn0-iVP8Gt6z2rQ
  priority: 102
  providerName: IEEE
Title Clustering Uncertain Data Objects Using Jeffreys-Divergence and Maximum Bipartite Matching Based Similarity Measure
URI https://ieeexplore.ieee.org/document/9440910
https://www.proquest.com/docview/2536866118
https://doaj.org/article/c5c3f1095b75485c8ae386009573d163
Volume 9
WOSCitedRecordID wos000673853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh5JAcSpO0ZPNYdMgx7tqWLEvHfST0smkhXchNyNIYDNltiL0hp_z2jmTtshBoL70YbCTbmhlrvpFH3xByjV5HlFkNCXMFJBwqnigossQBYu0aLKTOhWIT5f29fHxUP3dKffmcsJ4euBfcyBaW1RkCgapEcF1YaYBJ4ZFByRyCCT_7pqXaCabCHCwzgS0izRB2H42nUxwRBoR59o0h7lA-xXnHFQXG_lhi5cO8HJzN3WfyKaJEOu7f7pjsweqEHO1wB56Sdvq09iQHeEIXqLnwZ5_OTGfoj8ovrrQ0pAPQuFerTWY-BSNwb1KzcnRu3prlekknzbOXQgd4pQuZlXSCrs3Rh2bZYNyLMJ3O-5XEL2Rxd_tr-j2JFRQSy1PZJbmBqgYUH6tBYGgimeQoQG6sgVKALV0upeVcuSK1hZGilsY4ZU0puJM5Z1_J_ur3Cs4ItcwxhehNmgpBV8oqYTIGOS9QoQokDEi-Eaa2kV7cV7l40iHMSJXuNaC9BnTUwIDcbDs99-waf28-8VraNvXU2OECGoyOBqP_ZTADcup1vL2J4txjpgG53Ohcx8-41XnBhEQEk8nz__HoC3Loh9Ov4FyS_e5lDVfkwL52TfsyDBaMx_n77TDsQ_wDq7v0Ng
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbGQAIeGGxDHAzIA4_r1jZJmzzubkxD7A4kNmlvVZq4UqXdbVp7iJ-Pk-aqSSAk3to0qRJ9Tv3ZdWyAT6R1ijJrMOFOYiKwFolGmSUOiWs3aDF1LhSbKBcLdX2tv2_B4XgWBhFD8Bke-cvwL9_d2rV3lR1rIbx6ewSPpRB5OpzWGj0qvoSElmVMLZSl-vhkNqNVkBGYZ0ecuIb2Yc0P1E_I0h_LqvzxLQ4K5mzn_6b2El5EIslOBuRfwRaudmFnU6SBxT27C88fZBzcg252s_apEeiGXdHzEA_ATk1v2Lfau2Q6FoIIWDzh1SWnPnAjZOxkZuXY3Pxql-slm7Z3Xuh6pJY-xGOyKSlEx360y5asZSL3bD74H_fh6uzz5ew8iXUXEitS1Se5wbrBJkt5gwUZNIoroQwKYw2WBdrS5UpZIbSTqZVGFY0yxmlrykI4lQv-GrZXtyt8A8xyxzVxPmVqomoprwuTccyFJDHQqHAC-QaOysak5L42xk0VjJNUVwOGlcewihhO4HAcdDfk5Ph396nHeezqE2qHBgKwivuzstJyWrGWdUk2nLS0Xq4KT0BL7oizTmDPgz6-JOI9gYON1FRx83dVLnmhiPdk6u3fR32Ep-eX84vq4svi6zt45ic7eHUOYLu_X-N7eGJ_9m13_yFI-G-sBfn0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Uncertain+Data+Objects+Using+Jeffreys-Divergence+and+Maximum+Bipartite+Matching+Based+Similarity+Measure&rft.jtitle=IEEE+access&rft.au=Sharma%2C+Krishna+Kumar&rft.au=Seal%2C+Ayan&rft.au=Yazidi%2C+Anis&rft.au=Selamat%2C+Ali&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=79505&rft.epage=79519&rft_id=info:doi/10.1109%2FACCESS.2021.3083969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3083969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon