Supervised Learning via Unsupervised Sparse Autoencoder

Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding low-dimensional feature can improve the efficiency of subsequent learning tasks. However, existing methods of dimensionality reduction mostly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 6; S. 73802 - 73814
Hauptverfasser: Liu, Jianran, Li, Chan, Yang, Wenyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding low-dimensional feature can improve the efficiency of subsequent learning tasks. However, existing methods of dimensionality reduction mostly involve datasets with sufficient labels and fail to achieve effective feature vectors for datasets with insufficient labels. In this paper, an unsupervised multiple layered sparse autoencoder model is studied. Its advantage is that it reduces the reconstruction error as its optimization goal, with the resulting low-dimensional feature being reconstructed to the original dataset as much as possible. Therefore, the reduction of high-dimensional datasets to low-dimensional datasets is effective. First, the relationship among the reconstructed data, the number of iterations, and the number of hidden variables is explored. Second, the dimensionality reduction ability of the sparse autoencoder is proven. Several classical feature representation methods are compared with the sparse autoencoder on publicly available datasets, and the corresponding low-dimensional representations are placed into different supervised classifiers and the classification performances reported. Finally, by adjusting the parameters that might influence the classification performance, the parametric sensitivity of the sparse autoencoder is shown. The extensively low-dimensional feature classification experimental results demonstrated that the sparse autoencoder is more efficient and reliable than the other selected classical dimensional reduction algorithms.
AbstractList Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding low-dimensional feature can improve the efficiency of subsequent learning tasks. However, existing methods of dimensionality reduction mostly involve datasets with sufficient labels and fail to achieve effective feature vectors for datasets with insufficient labels. In this paper, an unsupervised multiple layered sparse autoencoder model is studied. Its advantage is that it reduces the reconstruction error as its optimization goal, with the resulting low-dimensional feature being reconstructed to the original dataset as much as possible. Therefore, the reduction of high-dimensional datasets to low-dimensional datasets is effective. First, the relationship among the reconstructed data, the number of iterations, and the number of hidden variables is explored. Second, the dimensionality reduction ability of the sparse autoencoder is proven. Several classical feature representation methods are compared with the sparse autoencoder on publicly available datasets, and the corresponding low-dimensional representations are placed into different supervised classifiers and the classification performances reported. Finally, by adjusting the parameters that might influence the classification performance, the parametric sensitivity of the sparse autoencoder is shown. The extensively low-dimensional feature classification experimental results demonstrated that the sparse autoencoder is more efficient and reliable than the other selected classical dimensional reduction algorithms.
Author Li, Chan
Yang, Wenyuan
Liu, Jianran
Author_xml – sequence: 1
  givenname: Jianran
  orcidid: 0000-0002-5835-7913
  surname: Liu
  fullname: Liu, Jianran
  organization: Fujian Key Laboratory of Granular Computing and Application, Minnan Normal University, Zhangzhou, China
– sequence: 2
  givenname: Chan
  surname: Li
  fullname: Li, Chan
  organization: Xiamen University Tan KahKee College, Xiamen, China
– sequence: 3
  givenname: Wenyuan
  surname: Yang
  fullname: Yang, Wenyuan
  email: yangwycn@gmail.com
  organization: Fujian Key Laboratory of Granular Computing and Application, Minnan Normal University, Zhangzhou, China
BookMark eNqFkF1LwzAYhYNMcOp-wW4KXnfmox_J5ShTBwMv6q5D2r4ZGTOpSTvw39vZMcUbc5Nw8p5zXp5bNLHOAkJzgheEYPG4LIpVWS4oJnxBOU8ykV-hKSWZiFnKssmv9w2ahbDHw-GDlOZTlJd9C_5oAjTRBpS3xu6io1HR1oafn7JVPkC07DsHtnYN-Ht0rdUhwOx836Ht0-qteIk3r8_rYrmJ6wTzLqYCCGCSANFap3WmE55mAKTCGcGZGpScak24yBOuVKV1njNgvKqA4oYowe7QesxtnNrL1pt35T-lU0Z-C87vpPKdqQ8gK9YIxjPKG4ETAkLkumFDEzQ1qJqTIethzGq9--ghdHLvem-H9SVN0lRQkeBTIxunau9C8KAvrQTLE3A5Apcn4PIMfHCJP67adKozznZemcM_3vnoNQBwaeNpOrAS7Aui9o_z
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TII_2021_3056993
crossref_primary_10_1016_j_cviu_2020_103154
crossref_primary_10_1016_j_jwpe_2024_105150
crossref_primary_10_1109_ACCESS_2019_2951596
crossref_primary_10_3390_electronics10192347
crossref_primary_10_1109_ACCESS_2019_2925093
crossref_primary_10_1109_TTE_2019_2946065
crossref_primary_10_32604_cmes_2022_020128
crossref_primary_10_1109_ACCESS_2020_2980757
crossref_primary_10_1109_ACCESS_2024_3355034
crossref_primary_10_3389_frsc_2025_1642184
crossref_primary_10_1016_j_neucom_2019_07_083
crossref_primary_10_1109_ACCESS_2022_3181194
crossref_primary_10_1049_smt2_12125
Cites_doi 10.1073/pnas.1031596100
10.1109/ACCESS.2018.2859299
10.1109/TVT.2015.2498281
10.1109/MIS.2017.38
10.1109/ACCESS.2018.2807700
10.1109/TNNLS.2016.2551724
10.1109/TMM.2017.2663324
10.1007/s11227-015-1421-0
10.1109/TIP.2015.2495116
10.1016/j.compbiomed.2018.05.027
10.1109/TNNLS.2016.2636325
10.1016/S0893-6080(99)00073-8
10.1109/TGRS.2016.2543748
10.1126/science.290.5500.2319
10.1103/PhysRevB.95.035105
10.1109/TKDE.2010.165
10.4049/jimmunol.1602077
10.1109/34.908974
10.1117/1.JRS.7.073478
10.1109/TNNLS.2017.2649101
10.1109/IJCNN.1990.137696
10.1109/TIP.2006.881945
10.1111/hcre.12114
10.1145/1458082.1458202
10.1109/TIE.2017.2739691
10.1126/science.1127647
10.1109/TSMC.2016.2605132
10.1103/PhysRevB.97.085104
10.1155/2018/3078374
10.1109/TMI.2015.2458702
10.1126/science.290.5500.2323
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2884697
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 73814
ExternalDocumentID oai_doaj_org_article_b3d938628d9041e997fd31b0edceac81
10_1109_ACCESS_2018_2884697
8558569
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61703196
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2018J01549
  funderid: 10.13039/501100003392
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-29e1e014e1fff5c6f4856ee1b06106a5c672ff189748aabff773e38bbe20d1a93
IEDL.DBID DOA
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454257600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:43:43 EDT 2025
Sun Nov 30 04:05:28 EST 2025
Sat Nov 29 03:33:33 EST 2025
Tue Nov 18 21:51:49 EST 2025
Wed Aug 27 03:03:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-29e1e014e1fff5c6f4856ee1b06106a5c672ff189748aabff773e38bbe20d1a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5835-7913
OpenAccessLink https://doaj.org/article/b3d938628d9041e997fd31b0edceac81
PQID 2455929409
PQPubID 4845423
PageCount 13
ParticipantIDs ieee_primary_8558569
doaj_primary_oai_doaj_org_article_b3d938628d9041e997fd31b0edceac81
crossref_citationtrail_10_1109_ACCESS_2018_2884697
crossref_primary_10_1109_ACCESS_2018_2884697
proquest_journals_2455929409
PublicationCentury 2000
PublicationDate 20180000
2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References roweis (ref30) 2000; 290
ref13
fischer (ref37) 2012; 7441
ref12
ah-hin (ref28) 2016; 50
ref36
ref14
ref10
ref2
ref1
ref17
ref38
donoho (ref31) 2003; 100
ref18
belkin (ref33) 2009; 14
hu (ref19) 2009; 31
vapnik (ref23) 1996; 9
krizhevsky (ref40) 2009
yang (ref15) 2018; 6
ref24
ng (ref39) 2011
ref45
ref26
ref25
ref20
ref22
ref44
van der maaten (ref11) 2008; 9
ref21
tan (ref27) 2005
netzer (ref43) 2011
tenenbaum (ref32) 2000; 290
he (ref35) 2003; 16
ref29
ref8
ref7
ref9
ref4
ref3
hinton (ref16) 2006; 313
ref6
ref5
he (ref34) 2005; 2
de campos (ref41) 2009
marcel (ref42) 1999; 1739
References_xml – volume: 100
  start-page: 5591
  year: 2003
  ident: ref31
  article-title: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.1031596100
– volume: 6
  start-page: 40723
  year: 2018
  ident: ref15
  article-title: $L_{2,1}$ -norm discriminant manifold learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2859299
– ident: ref5
  doi: 10.1109/TVT.2015.2498281
– ident: ref3
  doi: 10.1109/MIS.2017.38
– volume: 9
  start-page: 281
  year: 1996
  ident: ref23
  article-title: Support vector method for function approximation, regression estimation and signal processing
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 50
  start-page: 79
  year: 2016
  ident: ref28
  article-title: Modelling and forecasting with financial duration data using non-linear model
  publication-title: Econ Comput Econ Stud Res
– ident: ref22
  doi: 10.1109/ACCESS.2018.2807700
– ident: ref9
  doi: 10.1109/TNNLS.2016.2551724
– ident: ref8
  doi: 10.1109/TMM.2017.2663324
– ident: ref25
  doi: 10.1007/s11227-015-1421-0
– year: 2011
  ident: ref39
  publication-title: Sparse Autoencoder
– ident: ref4
  doi: 10.1109/TIP.2015.2495116
– ident: ref21
  doi: 10.1016/j.compbiomed.2018.05.027
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref11
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 7441
  start-page: 14
  year: 2012
  ident: ref37
  article-title: An introduction to restricted Boltzmann machines
  publication-title: Proc 17th Iberoamer Congr (CIARP)
– ident: ref17
  doi: 10.1109/TNNLS.2016.2636325
– ident: ref24
  doi: 10.1016/S0893-6080(99)00073-8
– ident: ref6
  doi: 10.1109/TGRS.2016.2543748
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref32
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 14
  start-page: 585
  year: 2009
  ident: ref33
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 1739
  start-page: 302
  year: 1999
  ident: ref42
  article-title: Hand posture recognition in a body-face centered space
  publication-title: Gesture-Based Communication in Human-Computer Interaction
– ident: ref13
  doi: 10.1103/PhysRevB.95.035105
– ident: ref45
  doi: 10.1109/TKDE.2010.165
– volume: 16
  start-page: 186
  year: 2003
  ident: ref35
  article-title: Locality preserving projections
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref12
  doi: 10.4049/jimmunol.1602077
– ident: ref26
  doi: 10.1109/34.908974
– start-page: 273
  year: 2009
  ident: ref41
  article-title: Character recognition in natural images
  publication-title: Proc Int Conf Comput Vis Theory Appl (VISAPP)
– ident: ref29
  doi: 10.1117/1.JRS.7.073478
– ident: ref2
  doi: 10.1109/TNNLS.2017.2649101
– ident: ref10
  doi: 10.1109/IJCNN.1990.137696
– year: 2005
  ident: ref27
  publication-title: The theory and application of the dimension reduction on the high-dimentional data set
– start-page: 5
  year: 2011
  ident: ref43
  article-title: Reading digits in natural images with unsupervised feature learning
  publication-title: Proc NIPS Workshop on Deep Learning and Unsupervised Feature Learning
– ident: ref36
  doi: 10.1109/TIP.2006.881945
– volume: 2
  start-page: 1208
  year: 2005
  ident: ref34
  article-title: Neighborhood preserving embedding
  publication-title: Proc 10th IEEE Int Conf Comput Vis
– ident: ref1
  doi: 10.1111/hcre.12114
– ident: ref44
  doi: 10.1145/1458082.1458202
– start-page: 1
  year: 2009
  ident: ref40
  article-title: Learning multiple layers of features from tiny images
  publication-title: Proc Int Conf Comput Vis Theory Appl (VISAPP)
– ident: ref18
  doi: 10.1109/TIE.2017.2739691
– volume: 313
  start-page: 504
  year: 2006
  ident: ref16
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 31
  start-page: 1189
  year: 2009
  ident: ref19
  article-title: Dimensionality reduction and reconstruction of data based on autoencoder network
  publication-title: J Electron Inf Technol
– ident: ref7
  doi: 10.1109/TSMC.2016.2605132
– ident: ref14
  doi: 10.1103/PhysRevB.97.085104
– ident: ref20
  doi: 10.1155/2018/3078374
– ident: ref38
  doi: 10.1109/TMI.2015.2458702
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref30
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
SSID ssj0000816957
Score 2.233034
Snippet Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73802
SubjectTerms Algorithms
Classification
Cognitive tasks
Data mining
Datasets
Dimensionality reduction
Feature extraction
feature representation
Labels
Machine learning
Optimization
Parameter sensitivity
Principal component analysis
Reduction
Representations
sparse autoencoder
Stress
Supervised learning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB50uQd9OE89cXVP-uCj1aRpm-RxXRSfRPAE30LSTESQ3WV_-PffpI1V8BB8K2lSkpkmM98k-QbglAUySoWVOXPe52XcJLQiEOZxlW7IngTmmzbZhLy9VY-P-m4Dzvq7MIjYHj7D8_jY7uX7WbOOobILVZFzW-tN2JRSdne1-nhKTCChK5mIhTjTF-PJhMYQT2-p80KRnY3ETh-MT8vRn5KqfFqJW_NyvfO9jv2Cn8mNzMad3ndhA6d7sP2BXHAf5P16HheCJfossag-Za_PNnuYLt_f3M8J2WI2Xq9mkdLS4-I3PFxf_Z3c5ClNQt6UTK3yQiNHQjrIQwhVU4eS-oLIHZlqVlsqkUUIXBFyUNa6EKQUKJRzWDDPrRYHMJjOpngImcI6SBZdMPJUaiZcZW0Q2jmmA6-ZGkLxJj_TJA7xmMrixbRYgmnTCd1EoZsk9CGc9Y3mHYXG19Uvo2L6qpH_ui0giZs0nYwTXgsCY8prVnLUWgYvaMTxTKttFB_CftRS_5GkoCGM3tRs0lxdmqIkVFVoArpH_291DFuxg13gZQSD1WKNf-BH87p6Xi5O2t_wH7jr2lM
  priority: 102
  providerName: IEEE
Title Supervised Learning via Unsupervised Sparse Autoencoder
URI https://ieeexplore.ieee.org/document/8558569
https://www.proquest.com/docview/2455929409
https://doaj.org/article/b3d938628d9041e997fd31b0edceac81
Volume 6
WOSCitedRecordID wos000454257600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg6hTnL3rwaDU_2iY5zjHxogg68BaSJpGBzLF1O_q3-5JmcyDoxUsPadom32vy3tcm30PoEntwSlTzHBtr8yL8JNTMA-cxpazBn3hs65hsgj8-itdX-bSW6iusCWvlgVvgbgyzkkHYLazEBXFScm8ZMTisXtR13HRNIepZI1NxDhakkiVPMkMEy5tevw89Cmu5xDUV4HWDzNOaK4qK_SnFyo95OTqbuz20m6LErNe2bh9tuPEB2lnTDuwg_jyfhHE-czZLIqlv2WKks-F49n3meQLE1WW9efMRFCutmx6i4d3gpX-fpywIeV1g0eRUOuKAyDjivS_ryheirJwDCCDyqTSUcOo9EUAMhNbGe86ZY8IYR7ElWrIjtDn-GLtjlAlXeY5DhAWBSIWZKbX2TBqDpScVFl1El4CoOkmEh0wV7ypSBSxVi6IKKKqEYhddrS6atAoZv1e_DUivqgZ561gARlfJ6Oovo3dRJ9hpdRNRAuupZBedLe2m0lCcKVoAaaISeOzJfzz6FG2H7rRfYc7QZjOdu3O0VS-a0Wx6Ed9COD58Di7iXsIvIXnfyA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7StNDmkD7S0k3T1oce40QP25KO26UhpelSSAK5CckalUDZXfaR35-RrTiBlkJuRpaMNGNp5htJ3wB8YZGMknCqZD6EskqbhE5Gwjy-Ni3Zk8hC2yWbUNOpvroyv7bgcLgLg4jd4TM8So_dXn6Yt5sUKjvWNTm3jXkCT-uqEry_rTVEVFIKCVOrTC3EmTkeTyY0inR-Sx8JTZY2UTs9MD8dS39Oq_LXWtwZmJOXj-vaK9jNjmQx7jX_GrZw9gZ2HtAL7oE63yzSUrDCUGQe1d_FzbUrLmer-zfnC8K2WIw363kitQy4fAuXJ98uJqdlTpRQthXT61IY5EhYB3mMsW6bWFFfELknY80aRyVKxMg1YQftnI9RKYlSe4-CBe6MfAfbs_kM30OhsYmKJSeMfJWGSV87F6XxnpnIG6ZHIO7kZ9vMIp6SWfyxHZpgxvZCt0noNgt9BIdDo0VPovH_6l-TYoaqiQG7KyCJ2zyhrJfBSIJjOhhWcTRGxSBpxOlUq2s1H8Fe0tLwkaygERzcqdnm2bqyoiJcJQxB3f1_t_oMz08vfp7Zs-_THx_gRepsH4Y5gO31coMf4Vl7s75eLT91v-QtOsrdmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Learning+via+Unsupervised+Sparse+Autoencoder&rft.jtitle=IEEE+access&rft.au=Liu%2C+Jianran&rft.au=Li%2C+Chan&rft.au=Yang%2C+Wenyuan&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=73802&rft.epage=73814&rft_id=info:doi/10.1109%2FACCESS.2018.2884697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2884697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon