Supervised Learning via Unsupervised Sparse Autoencoder
Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding low-dimensional feature can improve the efficiency of subsequent learning tasks. However, existing methods of dimensionality reduction mostly...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 6; S. 73802 - 73814 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding low-dimensional feature can improve the efficiency of subsequent learning tasks. However, existing methods of dimensionality reduction mostly involve datasets with sufficient labels and fail to achieve effective feature vectors for datasets with insufficient labels. In this paper, an unsupervised multiple layered sparse autoencoder model is studied. Its advantage is that it reduces the reconstruction error as its optimization goal, with the resulting low-dimensional feature being reconstructed to the original dataset as much as possible. Therefore, the reduction of high-dimensional datasets to low-dimensional datasets is effective. First, the relationship among the reconstructed data, the number of iterations, and the number of hidden variables is explored. Second, the dimensionality reduction ability of the sparse autoencoder is proven. Several classical feature representation methods are compared with the sparse autoencoder on publicly available datasets, and the corresponding low-dimensional representations are placed into different supervised classifiers and the classification performances reported. Finally, by adjusting the parameters that might influence the classification performance, the parametric sensitivity of the sparse autoencoder is shown. The extensively low-dimensional feature classification experimental results demonstrated that the sparse autoencoder is more efficient and reliable than the other selected classical dimensional reduction algorithms. |
|---|---|
| AbstractList | Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding low-dimensional feature can improve the efficiency of subsequent learning tasks. However, existing methods of dimensionality reduction mostly involve datasets with sufficient labels and fail to achieve effective feature vectors for datasets with insufficient labels. In this paper, an unsupervised multiple layered sparse autoencoder model is studied. Its advantage is that it reduces the reconstruction error as its optimization goal, with the resulting low-dimensional feature being reconstructed to the original dataset as much as possible. Therefore, the reduction of high-dimensional datasets to low-dimensional datasets is effective. First, the relationship among the reconstructed data, the number of iterations, and the number of hidden variables is explored. Second, the dimensionality reduction ability of the sparse autoencoder is proven. Several classical feature representation methods are compared with the sparse autoencoder on publicly available datasets, and the corresponding low-dimensional representations are placed into different supervised classifiers and the classification performances reported. Finally, by adjusting the parameters that might influence the classification performance, the parametric sensitivity of the sparse autoencoder is shown. The extensively low-dimensional feature classification experimental results demonstrated that the sparse autoencoder is more efficient and reliable than the other selected classical dimensional reduction algorithms. |
| Author | Li, Chan Yang, Wenyuan Liu, Jianran |
| Author_xml | – sequence: 1 givenname: Jianran orcidid: 0000-0002-5835-7913 surname: Liu fullname: Liu, Jianran organization: Fujian Key Laboratory of Granular Computing and Application, Minnan Normal University, Zhangzhou, China – sequence: 2 givenname: Chan surname: Li fullname: Li, Chan organization: Xiamen University Tan KahKee College, Xiamen, China – sequence: 3 givenname: Wenyuan surname: Yang fullname: Yang, Wenyuan email: yangwycn@gmail.com organization: Fujian Key Laboratory of Granular Computing and Application, Minnan Normal University, Zhangzhou, China |
| BookMark | eNqFkF1LwzAYhYNMcOp-wW4KXnfmox_J5ShTBwMv6q5D2r4ZGTOpSTvw39vZMcUbc5Nw8p5zXp5bNLHOAkJzgheEYPG4LIpVWS4oJnxBOU8ykV-hKSWZiFnKssmv9w2ahbDHw-GDlOZTlJd9C_5oAjTRBpS3xu6io1HR1oafn7JVPkC07DsHtnYN-Ht0rdUhwOx836Ht0-qteIk3r8_rYrmJ6wTzLqYCCGCSANFap3WmE55mAKTCGcGZGpScak24yBOuVKV1njNgvKqA4oYowe7QesxtnNrL1pt35T-lU0Z-C87vpPKdqQ8gK9YIxjPKG4ETAkLkumFDEzQ1qJqTIethzGq9--ghdHLvem-H9SVN0lRQkeBTIxunau9C8KAvrQTLE3A5Apcn4PIMfHCJP67adKozznZemcM_3vnoNQBwaeNpOrAS7Aui9o_z |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_TII_2021_3056993 crossref_primary_10_1016_j_cviu_2020_103154 crossref_primary_10_1016_j_jwpe_2024_105150 crossref_primary_10_1109_ACCESS_2019_2951596 crossref_primary_10_3390_electronics10192347 crossref_primary_10_1109_ACCESS_2019_2925093 crossref_primary_10_1109_TTE_2019_2946065 crossref_primary_10_32604_cmes_2022_020128 crossref_primary_10_1109_ACCESS_2020_2980757 crossref_primary_10_1109_ACCESS_2024_3355034 crossref_primary_10_3389_frsc_2025_1642184 crossref_primary_10_1016_j_neucom_2019_07_083 crossref_primary_10_1109_ACCESS_2022_3181194 crossref_primary_10_1049_smt2_12125 |
| Cites_doi | 10.1073/pnas.1031596100 10.1109/ACCESS.2018.2859299 10.1109/TVT.2015.2498281 10.1109/MIS.2017.38 10.1109/ACCESS.2018.2807700 10.1109/TNNLS.2016.2551724 10.1109/TMM.2017.2663324 10.1007/s11227-015-1421-0 10.1109/TIP.2015.2495116 10.1016/j.compbiomed.2018.05.027 10.1109/TNNLS.2016.2636325 10.1016/S0893-6080(99)00073-8 10.1109/TGRS.2016.2543748 10.1126/science.290.5500.2319 10.1103/PhysRevB.95.035105 10.1109/TKDE.2010.165 10.4049/jimmunol.1602077 10.1109/34.908974 10.1117/1.JRS.7.073478 10.1109/TNNLS.2017.2649101 10.1109/IJCNN.1990.137696 10.1109/TIP.2006.881945 10.1111/hcre.12114 10.1145/1458082.1458202 10.1109/TIE.2017.2739691 10.1126/science.1127647 10.1109/TSMC.2016.2605132 10.1103/PhysRevB.97.085104 10.1155/2018/3078374 10.1109/TMI.2015.2458702 10.1126/science.290.5500.2323 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2018.2884697 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 73814 |
| ExternalDocumentID | oai_doaj_org_article_b3d938628d9041e997fd31b0edceac81 10_1109_ACCESS_2018_2884697 8558569 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61703196 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Fujian Province grantid: 2018J01549 funderid: 10.13039/501100003392 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-29e1e014e1fff5c6f4856ee1b06106a5c672ff189748aabff773e38bbe20d1a93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454257600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:43:43 EDT 2025 Sun Nov 30 04:05:28 EST 2025 Sat Nov 29 03:33:33 EST 2025 Tue Nov 18 21:51:49 EST 2025 Wed Aug 27 03:03:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-29e1e014e1fff5c6f4856ee1b06106a5c672ff189748aabff773e38bbe20d1a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5835-7913 |
| OpenAccessLink | https://doaj.org/article/b3d938628d9041e997fd31b0edceac81 |
| PQID | 2455929409 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_8558569 doaj_primary_oai_doaj_org_article_b3d938628d9041e997fd31b0edceac81 crossref_citationtrail_10_1109_ACCESS_2018_2884697 crossref_primary_10_1109_ACCESS_2018_2884697 proquest_journals_2455929409 |
| PublicationCentury | 2000 |
| PublicationDate | 20180000 2018-00-00 20180101 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 20180000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | roweis (ref30) 2000; 290 ref13 fischer (ref37) 2012; 7441 ref12 ah-hin (ref28) 2016; 50 ref36 ref14 ref10 ref2 ref1 ref17 ref38 donoho (ref31) 2003; 100 ref18 belkin (ref33) 2009; 14 hu (ref19) 2009; 31 vapnik (ref23) 1996; 9 krizhevsky (ref40) 2009 yang (ref15) 2018; 6 ref24 ng (ref39) 2011 ref45 ref26 ref25 ref20 ref22 ref44 van der maaten (ref11) 2008; 9 ref21 tan (ref27) 2005 netzer (ref43) 2011 tenenbaum (ref32) 2000; 290 he (ref35) 2003; 16 ref29 ref8 ref7 ref9 ref4 ref3 hinton (ref16) 2006; 313 ref6 ref5 he (ref34) 2005; 2 de campos (ref41) 2009 marcel (ref42) 1999; 1739 |
| References_xml | – volume: 100 start-page: 5591 year: 2003 ident: ref31 article-title: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1031596100 – volume: 6 start-page: 40723 year: 2018 ident: ref15 article-title: $L_{2,1}$ -norm discriminant manifold learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2859299 – ident: ref5 doi: 10.1109/TVT.2015.2498281 – ident: ref3 doi: 10.1109/MIS.2017.38 – volume: 9 start-page: 281 year: 1996 ident: ref23 article-title: Support vector method for function approximation, regression estimation and signal processing publication-title: Proc Adv Neural Inf Process Syst – volume: 50 start-page: 79 year: 2016 ident: ref28 article-title: Modelling and forecasting with financial duration data using non-linear model publication-title: Econ Comput Econ Stud Res – ident: ref22 doi: 10.1109/ACCESS.2018.2807700 – ident: ref9 doi: 10.1109/TNNLS.2016.2551724 – ident: ref8 doi: 10.1109/TMM.2017.2663324 – ident: ref25 doi: 10.1007/s11227-015-1421-0 – year: 2011 ident: ref39 publication-title: Sparse Autoencoder – ident: ref4 doi: 10.1109/TIP.2015.2495116 – ident: ref21 doi: 10.1016/j.compbiomed.2018.05.027 – volume: 9 start-page: 2579 year: 2008 ident: ref11 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – volume: 7441 start-page: 14 year: 2012 ident: ref37 article-title: An introduction to restricted Boltzmann machines publication-title: Proc 17th Iberoamer Congr (CIARP) – ident: ref17 doi: 10.1109/TNNLS.2016.2636325 – ident: ref24 doi: 10.1016/S0893-6080(99)00073-8 – ident: ref6 doi: 10.1109/TGRS.2016.2543748 – volume: 290 start-page: 2319 year: 2000 ident: ref32 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 14 start-page: 585 year: 2009 ident: ref33 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Proc Adv Neural Inf Process Syst – volume: 1739 start-page: 302 year: 1999 ident: ref42 article-title: Hand posture recognition in a body-face centered space publication-title: Gesture-Based Communication in Human-Computer Interaction – ident: ref13 doi: 10.1103/PhysRevB.95.035105 – ident: ref45 doi: 10.1109/TKDE.2010.165 – volume: 16 start-page: 186 year: 2003 ident: ref35 article-title: Locality preserving projections publication-title: Proc Adv Neural Inf Process Syst – ident: ref12 doi: 10.4049/jimmunol.1602077 – ident: ref26 doi: 10.1109/34.908974 – start-page: 273 year: 2009 ident: ref41 article-title: Character recognition in natural images publication-title: Proc Int Conf Comput Vis Theory Appl (VISAPP) – ident: ref29 doi: 10.1117/1.JRS.7.073478 – ident: ref2 doi: 10.1109/TNNLS.2017.2649101 – ident: ref10 doi: 10.1109/IJCNN.1990.137696 – year: 2005 ident: ref27 publication-title: The theory and application of the dimension reduction on the high-dimentional data set – start-page: 5 year: 2011 ident: ref43 article-title: Reading digits in natural images with unsupervised feature learning publication-title: Proc NIPS Workshop on Deep Learning and Unsupervised Feature Learning – ident: ref36 doi: 10.1109/TIP.2006.881945 – volume: 2 start-page: 1208 year: 2005 ident: ref34 article-title: Neighborhood preserving embedding publication-title: Proc 10th IEEE Int Conf Comput Vis – ident: ref1 doi: 10.1111/hcre.12114 – ident: ref44 doi: 10.1145/1458082.1458202 – start-page: 1 year: 2009 ident: ref40 article-title: Learning multiple layers of features from tiny images publication-title: Proc Int Conf Comput Vis Theory Appl (VISAPP) – ident: ref18 doi: 10.1109/TIE.2017.2739691 – volume: 313 start-page: 504 year: 2006 ident: ref16 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 31 start-page: 1189 year: 2009 ident: ref19 article-title: Dimensionality reduction and reconstruction of data based on autoencoder network publication-title: J Electron Inf Technol – ident: ref7 doi: 10.1109/TSMC.2016.2605132 – ident: ref14 doi: 10.1103/PhysRevB.97.085104 – ident: ref20 doi: 10.1155/2018/3078374 – ident: ref38 doi: 10.1109/TMI.2015.2458702 – volume: 290 start-page: 2323 year: 2000 ident: ref30 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 |
| SSID | ssj0000816957 |
| Score | 2.233034 |
| Snippet | Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 73802 |
| SubjectTerms | Algorithms Classification Cognitive tasks Data mining Datasets Dimensionality reduction Feature extraction feature representation Labels Machine learning Optimization Parameter sensitivity Principal component analysis Reduction Representations sparse autoencoder Stress Supervised learning |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB50uQd9OE89cXVP-uCj1aRpm-RxXRSfRPAE30LSTESQ3WV_-PffpI1V8BB8K2lSkpkmM98k-QbglAUySoWVOXPe52XcJLQiEOZxlW7IngTmmzbZhLy9VY-P-m4Dzvq7MIjYHj7D8_jY7uX7WbOOobILVZFzW-tN2JRSdne1-nhKTCChK5mIhTjTF-PJhMYQT2-p80KRnY3ETh-MT8vRn5KqfFqJW_NyvfO9jv2Cn8mNzMad3ndhA6d7sP2BXHAf5P16HheCJfossag-Za_PNnuYLt_f3M8J2WI2Xq9mkdLS4-I3PFxf_Z3c5ClNQt6UTK3yQiNHQjrIQwhVU4eS-oLIHZlqVlsqkUUIXBFyUNa6EKQUKJRzWDDPrRYHMJjOpngImcI6SBZdMPJUaiZcZW0Q2jmmA6-ZGkLxJj_TJA7xmMrixbRYgmnTCd1EoZsk9CGc9Y3mHYXG19Uvo2L6qpH_ui0giZs0nYwTXgsCY8prVnLUWgYvaMTxTKttFB_CftRS_5GkoCGM3tRs0lxdmqIkVFVoArpH_291DFuxg13gZQSD1WKNf-BH87p6Xi5O2t_wH7jr2lM priority: 102 providerName: IEEE |
| Title | Supervised Learning via Unsupervised Sparse Autoencoder |
| URI | https://ieeexplore.ieee.org/document/8558569 https://www.proquest.com/docview/2455929409 https://doaj.org/article/b3d938628d9041e997fd31b0edceac81 |
| Volume | 6 |
| WOSCitedRecordID | wos000454257600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg6hTnL3rwaDU_2iY5zjHxogg68BaSJpGBzLF1O_q3-5JmcyDoxUsPadom32vy3tcm30PoEntwSlTzHBtr8yL8JNTMA-cxpazBn3hs65hsgj8-itdX-bSW6iusCWvlgVvgbgyzkkHYLazEBXFScm8ZMTisXtR13HRNIepZI1NxDhakkiVPMkMEy5tevw89Cmu5xDUV4HWDzNOaK4qK_SnFyo95OTqbuz20m6LErNe2bh9tuPEB2lnTDuwg_jyfhHE-czZLIqlv2WKks-F49n3meQLE1WW9efMRFCutmx6i4d3gpX-fpywIeV1g0eRUOuKAyDjivS_ryheirJwDCCDyqTSUcOo9EUAMhNbGe86ZY8IYR7ElWrIjtDn-GLtjlAlXeY5DhAWBSIWZKbX2TBqDpScVFl1El4CoOkmEh0wV7ypSBSxVi6IKKKqEYhddrS6atAoZv1e_DUivqgZ561gARlfJ6Oovo3dRJ9hpdRNRAuupZBedLe2m0lCcKVoAaaISeOzJfzz6FG2H7rRfYc7QZjOdu3O0VS-a0Wx6Ed9COD58Di7iXsIvIXnfyA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7StNDmkD7S0k3T1oce40QP25KO26UhpelSSAK5CckalUDZXfaR35-RrTiBlkJuRpaMNGNp5htJ3wB8YZGMknCqZD6EskqbhE5Gwjy-Ni3Zk8hC2yWbUNOpvroyv7bgcLgLg4jd4TM8So_dXn6Yt5sUKjvWNTm3jXkCT-uqEry_rTVEVFIKCVOrTC3EmTkeTyY0inR-Sx8JTZY2UTs9MD8dS39Oq_LXWtwZmJOXj-vaK9jNjmQx7jX_GrZw9gZ2HtAL7oE63yzSUrDCUGQe1d_FzbUrLmer-zfnC8K2WIw363kitQy4fAuXJ98uJqdlTpRQthXT61IY5EhYB3mMsW6bWFFfELknY80aRyVKxMg1YQftnI9RKYlSe4-CBe6MfAfbs_kM30OhsYmKJSeMfJWGSV87F6XxnpnIG6ZHIO7kZ9vMIp6SWfyxHZpgxvZCt0noNgt9BIdDo0VPovH_6l-TYoaqiQG7KyCJ2zyhrJfBSIJjOhhWcTRGxSBpxOlUq2s1H8Fe0tLwkaygERzcqdnm2bqyoiJcJQxB3f1_t_oMz08vfp7Zs-_THx_gRepsH4Y5gO31coMf4Vl7s75eLT91v-QtOsrdmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Learning+via+Unsupervised+Sparse+Autoencoder&rft.jtitle=IEEE+access&rft.au=Liu%2C+Jianran&rft.au=Li%2C+Chan&rft.au=Yang%2C+Wenyuan&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=73802&rft.epage=73814&rft_id=info:doi/10.1109%2FACCESS.2018.2884697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2884697 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |