Methodology based on spiking neural networks for univariate time-series forecasting

Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training m...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks Vol. 173; p. 106171
Main Authors: Lucas, Sergio, Portillo, Eva
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.05.2024
Subjects:
ISSN:0893-6080, 1879-2782, 1879-2782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding–decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN. •New supervised training methodology for univariate time-series forecasting with SNN.•A PWM based encoding–decoding algorithm and a Surrogate Gradient method are combined.•The methodology is characterised by ultra-low latency and high robustness.•3 UCI datasets and air pollution data for Greater London Area are used for validation.•Satisfactory forecasting results regardless of the characteristics of the dataset.
AbstractList Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding-decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN.
Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding–decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN. •New supervised training methodology for univariate time-series forecasting with SNN.•A PWM based encoding–decoding algorithm and a Surrogate Gradient method are combined.•The methodology is characterised by ultra-low latency and high robustness.•3 UCI datasets and air pollution data for Greater London Area are used for validation.•Satisfactory forecasting results regardless of the characteristics of the dataset.
Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding-decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN.Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding-decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN.
ArticleNumber 106171
Author Lucas, Sergio
Portillo, Eva
Author_xml – sequence: 1
  givenname: Sergio
  orcidid: 0000-0002-3557-0316
  surname: Lucas
  fullname: Lucas, Sergio
  email: sergio.lucas@ehu.eus
– sequence: 2
  givenname: Eva
  orcidid: 0000-0002-1026-3248
  surname: Portillo
  fullname: Portillo, Eva
  email: eva.portillo@ehu.eus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38382399$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PFTEUQBuDkQf6DwiZpZt53rbz0WFhYoioCcQFuG7azi32Ma99th0M_57igAsWsLrJ7Tm3yTkgez54JOSIwpoC7T5t1h5nj3nNgDVl1dGeviErKvqhZr1ge2QFYuB1BwL2yUFKGwDoRMPfkX0uuGB8GFbk8gLz7zCGKVzfVVolHKvgq7RzN85fV-WHqKYy8t8Qb1JlQ6xm725VdCpjld0W64TR4b8nNCrlor0nb62aEn54nIfk19nXq9Pv9fnPbz9Ov5zXpgGRa9ah7ZnRyLWlHVjgQuPQWqYBBs0VMq67FhkCswXQ3La0FVSPzPTGmJ4fko_L3V0Mf2ZMWW5dMjhNymOYk2QDh6ZvOtYW9PgRnfUWR7mLbqvinXwKUYBmAUwMKUW0_xEK8qG33Milt3zoLZfeRTt5phmXVXbB56jc9Jr8eZGxRLp1GGUyDr3B0ZWWWY7BvXzgHu31n0g
CitedBy_id crossref_primary_10_3390_s24072210
crossref_primary_10_1007_s00521_025_11045_4
crossref_primary_10_1016_j_apm_2025_116288
crossref_primary_10_1109_TNSRE_2025_3545206
crossref_primary_10_3390_math12162600
crossref_primary_10_1109_JIOT_2024_3476034
crossref_primary_10_1007_s11063_025_11791_5
crossref_primary_10_1109_TIM_2025_3541779
crossref_primary_10_1007_s12021_025_09717_6
crossref_primary_10_1088_1361_6501_ae05b9
Cites_doi 10.3390/brainsci12070863
10.1007/s00521-022-07541-6
10.1016/j.envsoft.2019.04.012
10.1109/TNNLS.2019.2947380
10.1016/j.neunet.2022.12.008
10.1016/j.neunet.2020.02.011
10.5391/IJFIS.2021.21.4.317
10.1016/j.neucom.2015.08.078
10.3390/pr11092772
10.1016/j.jpdc.2019.07.007
10.1109/MSP.2019.2931595
10.1016/j.bspc.2022.103749
10.1007/s10278-023-00776-2
10.1038/s41598-021-90029-5
10.1016/j.energy.2020.117072
10.1016/j.neunet.2019.09.005
10.1016/j.asoc.2013.04.007
10.1109/ICCV48922.2021.00266
10.1109/TCSI.2022.3149006
10.1109/ACCESS.2020.3039885
10.1162/089976606775093882
10.1002/jnm.2267
10.1371/journal.pone.0103656
10.1016/j.apenergy.2021.116842
10.1016/j.neunet.2020.06.001
10.3390/s21072430
10.3390/en15197256
10.1016/j.procs.2021.09.280
10.1007/s11042-023-16344-3
10.1016/j.procs.2016.11.023
10.3389/fnins.2020.00104
10.1016/j.ijforecast.2021.11.003
10.1016/j.neunet.2022.10.006
10.1016/j.joule.2023.09.004
10.1152/jn.00380.2014
10.1016/j.neuroimage.2023.119980
10.1126/sciadv.adi1480
10.3390/en9010054
10.21474/IJAR01/1132
10.4209/aaqr.2020.05.0247
10.1016/j.neunet.2023.07.008
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2024.106171
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 38382399
10_1016_j_neunet_2024_106171
S0893608024000959
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c408t-26ef72cbe3bf160f038be95f2b009b3ae23b65e2e02ff16b3f51581bd2c7ccc73
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001188432600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 00:27:17 EDT 2025
Mon Jul 21 05:45:36 EDT 2025
Sat Nov 29 05:33:07 EST 2025
Tue Nov 18 19:44:09 EST 2025
Sat Jul 13 15:33:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PWM based encoding–decoding algorithm
Surrogate gradient
Spiking Neural Network
Supervised learning
Forecasting
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-26ef72cbe3bf160f038be95f2b009b3ae23b65e2e02ff16b3f51581bd2c7ccc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3557-0316
0000-0002-1026-3248
OpenAccessLink https://dx.doi.org/10.1016/j.neunet.2024.106171
PMID 38382399
PQID 2930474625
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2930474625
pubmed_primary_38382399
crossref_primary_10_1016_j_neunet_2024_106171
crossref_citationtrail_10_1016_j_neunet_2024_106171
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106171
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
2024-May
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Guo, Adjouadi (b57) 2016; 173
Black (b3) 2003
Bu, Ding, Yu, Huang (b6) 2022
Wei, Wang, Niu, Li (b60) 2021; 292
Capizzi, Sciuto, Napoli, Woźniak, Susi (b7) 2020; 129
Saeedinia, Jahed-Motlagh, Tafakhori, Kasabov (b45) 2021; 11
Suetake, ichi Ikegawa, Saiin, Sawada (b53) 2023; 159
Rançon, Cuadrado-Anibarro, Cottereau, Masquelier (b42) 2021
Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., & Tian, Y. (2021). Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks. In
Dudek, Baczy’nski, Baczy’nski, Manuel González Sopeña, Pakrashi, Ghosh (b15) 2022; 15
Wang, Xue, Liu, Peng, Jiang (b59) 2020; 196
Arriandiaga, Portillo, Espinosa-Ramos, Kasabov (b2) 2020; 31
García-Martín, Rodrigues, Riley, Grahn (b20) 2019; 134
Sharma, Srinivasan (b51) 2010
Macia̧g, Kasabov, Kryszkiewicz, Bembenik (b33) 2019; 118
Department for Environment Food & Rural Affairs (b14) 2023
Gerstner, Kistler, Naud, Paninski (b21) 2014
Yao, Zhang, Zhao, Zhang, Wang, Cao (b64) 2023; 166
Lopes-dos Santos, Panzeri, Kayser, Diamond, Quian Quiroga (b47) 2015; 113
Liu, Lu, Wang, Kasabov (b32) 2021; 21
Neftci, Mostafa, Zenke (b39) 2019; 36
MacIag, Kryszkiewicz, Bembenik (b34) 2020
Izhikevich (b24) 2006; 18
Schuman, Potok, Patton, Birdwell, Dean, Rose (b49) 2017
Laña, Capecci, Del Ser, Lobo, Kasabov (b29) 2018
Bojer (b4) 2022; 38
Gan, Learmonth (b19) 2015
Aghabarar, Kiani, Keshavarzi (b1) 2023
Chen, Sun, Wei, Li, Cheung, Sun (b8) 2016
Nakai, Nishimoto (b38) 2023; 270
Qasim Gilani, Syed, Umair, Marques (b41) 2023; 36
Lee, Delbruck, Pfeiffer (b30) 2016; 10
Chowdhury, Rathi, Roy (b10) 2022; vol. 13671
Suradhaniwar, Kar, Durbha, Jagarlapudi (b55) 2021; 21
(pp. 2661–2671).
Kominek, Black (b26) 2003
O’Connor, Neil, Liu, Delbruck, Pfeiffer (b40) 2013; 7
Sboev, Litvinova, Vlasov, Serenko, Moloshnikov (b48) 2016; 101
Feng, Geng, Chu, Fu, Hong (b18) 2022; 77
Reid, Hussain, Tawfik (b44) 2014; 9
Brusca, Capizzi, Lo Sciuto, Susi (b5) 2019; 32
Deng, Wu, Hu, Liang, Ding, Li (b13) 2020; 121
Han, Li, Qian (b23) 2018
Salam, Hibaoui (b46) 2021
Yang, Zhongjian (b63) 2011
Zamri, Azhar, Sidik, Mansor, Kasihmuddin, Pakruddin (b65) 2022; 34
Semenoglou, Spiliotis, Assimakopoulos (b50) 2023; 157
Wang, Lin, Dang (b58) 2020; 125
de Vries (b12) 2023; 7
de Abreu, Silva, Nunes, Moioli, Guedes (b11) 2023; 11
Lien, Chang (b31) 2022; 69
Reid, Hussain, Tawfik (b43) 2013
Fang, Chen, Ding, Yu, Masquelier, Chen (b16) 2023; 9
Matenczuk, Kozina, Markowska, Czerniachowska, Kaczmarczyk, Golec (b36) 2021; 192
Shi, Wank, Chen, Wang, Liu, Hector (b52) 2022
Madhiarasan, Deepa. (b35) 2016; 4
Han, Lee (b22) 2021; 21
Waheeb (b56) 2016
Mesanza, Lucas, Zubizarreta, Cabanes, Portillo, Rodriguez-Larrad (b37) 2020; 8
Kim (b25) 2020
Sun, Chen, Wei, Sun, Zang, Chen (b54) 2016; 9
Xu, Zhang, Liu, Li (b61) 2020; 14
Yamazaki, Vo-Ho, Bulsara, Le (b62) 2022; 12
Kulkarni, Simon, Sundareswaran (b28) 2013; 13
Chowdhury, Rathi, Roy (b9) 2021
Kshirsagar, Balakrishnan, Yadav (b27) 2020; 8
Suetake (10.1016/j.neunet.2024.106171_b53) 2023; 159
Department for Environment Food & Rural Affairs (10.1016/j.neunet.2024.106171_b14) 2023
Yang (10.1016/j.neunet.2024.106171_b63) 2011
Kulkarni (10.1016/j.neunet.2024.106171_b28) 2013; 13
O’Connor (10.1016/j.neunet.2024.106171_b40) 2013; 7
Chowdhury (10.1016/j.neunet.2024.106171_b10) 2022; vol. 13671
Han (10.1016/j.neunet.2024.106171_b23) 2018
Saeedinia (10.1016/j.neunet.2024.106171_b45) 2021; 11
Wang (10.1016/j.neunet.2024.106171_b57) 2016; 173
10.1016/j.neunet.2024.106171_b17
Chowdhury (10.1016/j.neunet.2024.106171_b9) 2021
Semenoglou (10.1016/j.neunet.2024.106171_b50) 2023; 157
Dudek (10.1016/j.neunet.2024.106171_b15) 2022; 15
Sboev (10.1016/j.neunet.2024.106171_b48) 2016; 101
Brusca (10.1016/j.neunet.2024.106171_b5) 2019; 32
MacIag (10.1016/j.neunet.2024.106171_b34) 2020
Zamri (10.1016/j.neunet.2024.106171_b65) 2022; 34
Laña (10.1016/j.neunet.2024.106171_b29) 2018
Lien (10.1016/j.neunet.2024.106171_b31) 2022; 69
Bojer (10.1016/j.neunet.2024.106171_b4) 2022; 38
Reid (10.1016/j.neunet.2024.106171_b43) 2013
Shi (10.1016/j.neunet.2024.106171_b52) 2022
Feng (10.1016/j.neunet.2024.106171_b18) 2022; 77
Wang (10.1016/j.neunet.2024.106171_b58) 2020; 125
Mesanza (10.1016/j.neunet.2024.106171_b37) 2020; 8
Yao (10.1016/j.neunet.2024.106171_b64) 2023; 166
Kominek (10.1016/j.neunet.2024.106171_b26) 2003
Fang (10.1016/j.neunet.2024.106171_b16) 2023; 9
Gerstner (10.1016/j.neunet.2024.106171_b21) 2014
Schuman (10.1016/j.neunet.2024.106171_b49) 2017
Reid (10.1016/j.neunet.2024.106171_b44) 2014; 9
Wang (10.1016/j.neunet.2024.106171_b59) 2020; 196
Lee (10.1016/j.neunet.2024.106171_b30) 2016; 10
Bu (10.1016/j.neunet.2024.106171_b6) 2022
de Abreu (10.1016/j.neunet.2024.106171_b11) 2023; 11
Deng (10.1016/j.neunet.2024.106171_b13) 2020; 121
Yamazaki (10.1016/j.neunet.2024.106171_b62) 2022; 12
Suradhaniwar (10.1016/j.neunet.2024.106171_b55) 2021; 21
García-Martín (10.1016/j.neunet.2024.106171_b20) 2019; 134
Salam (10.1016/j.neunet.2024.106171_b46) 2021
Macia̧g (10.1016/j.neunet.2024.106171_b33) 2019; 118
Arriandiaga (10.1016/j.neunet.2024.106171_b2) 2020; 31
Kim (10.1016/j.neunet.2024.106171_b25) 2020
Sun (10.1016/j.neunet.2024.106171_b54) 2016; 9
Liu (10.1016/j.neunet.2024.106171_b32) 2021; 21
Sharma (10.1016/j.neunet.2024.106171_b51) 2010
Qasim Gilani (10.1016/j.neunet.2024.106171_b41) 2023; 36
Chen (10.1016/j.neunet.2024.106171_b8) 2016
Wei (10.1016/j.neunet.2024.106171_b60) 2021; 292
Gan (10.1016/j.neunet.2024.106171_b19) 2015
Lopes-dos Santos (10.1016/j.neunet.2024.106171_b47) 2015; 113
Nakai (10.1016/j.neunet.2024.106171_b38) 2023; 270
Capizzi (10.1016/j.neunet.2024.106171_b7) 2020; 129
Han (10.1016/j.neunet.2024.106171_b22) 2021; 21
Xu (10.1016/j.neunet.2024.106171_b61) 2020; 14
Izhikevich (10.1016/j.neunet.2024.106171_b24) 2006; 18
Kshirsagar (10.1016/j.neunet.2024.106171_b27) 2020; 8
de Vries (10.1016/j.neunet.2024.106171_b12) 2023; 7
Matenczuk (10.1016/j.neunet.2024.106171_b36) 2021; 192
Rançon (10.1016/j.neunet.2024.106171_b42) 2021
Waheeb (10.1016/j.neunet.2024.106171_b56) 2016
Aghabarar (10.1016/j.neunet.2024.106171_b1) 2023
Neftci (10.1016/j.neunet.2024.106171_b39) 2019; 36
Madhiarasan (10.1016/j.neunet.2024.106171_b35) 2016; 4
Black (10.1016/j.neunet.2024.106171_b3) 2003
References_xml – year: 2010
  ident: b51
  article-title: A spiking neural network based on temporal encoding for electricity price time series forecasting in deregulated markets
  publication-title: Proceedings of the international joint conference on neural networks
– volume: 129
  start-page: 271
  year: 2020
  end-page: 279
  ident: b7
  article-title: A spiking neural network-based long-term prediction system for biogas production
  publication-title: Neural Networks
– volume: 9
  year: 2014
  ident: b44
  article-title: Financial time series prediction using spiking neural networks
  publication-title: PLoS One
– volume: 121
  start-page: 294
  year: 2020
  end-page: 307
  ident: b13
  article-title: Rethinking the performance comparison between SNNS and ANNS
  publication-title: Neural Networks
– volume: 173
  start-page: 1203
  year: 2016
  end-page: 1210
  ident: b57
  article-title: Wavelet decomposition and phase encoding of temporal signals using spiking neurons
  publication-title: Neurocomputing
– year: 2023
  ident: b1
  article-title: Improvement of pattern recognition in spiking neural networks by modifying threshold parameter and using image inversion
  publication-title: Multimedia Tools and Applications
– volume: 192
  start-page: 5023
  year: 2021
  end-page: 5029
  ident: b36
  article-title: Financial time series forecasting: Comparison of traditional and spiking neural networks
  publication-title: Procedia Computer Science
– volume: 38
  start-page: 1555
  year: 2022
  end-page: 1561
  ident: b4
  article-title: Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities
  publication-title: International Journal of Forecasting
– volume: 21
  start-page: 2430
  year: 2021
  ident: b55
  article-title: Time series forecasting of univariate agrometeorological data: A comparative performance evaluation via one-step and multi-step ahead forecasting strategies
  publication-title: Sensors
– volume: 11
  start-page: 2772
  year: 2023
  ident: b11
  article-title: Advancing fault prediction: A comparative study between LSTM and spiking neural networks
  publication-title: Processes
– volume: 8
  start-page: 210023
  year: 2020
  end-page: 210034
  ident: b37
  article-title: A machine learning approach to perform physical activity classification using a sensorized crutch tip
  publication-title: IEEE Access
– volume: 18
  start-page: 245
  year: 2006
  end-page: 282
  ident: b24
  article-title: Polychronization: Computation with spikes
  publication-title: Neural Computation
– year: 2003
  ident: b3
  article-title: CMU_ARCTIC speech synthesis databases
– year: 2017
  ident: b49
  article-title: A survey of neuromorphic computing and neural networks in hardware
– year: 2020
  ident: b25
  article-title: Design and optimization for 5G wireless communications — IEEE eBooks — IEEE xplore
– year: 2022
  ident: b52
  article-title: Sleep classification with artificial synthetic imaging data using convolutional neural networks
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 77
  year: 2022
  ident: b18
  article-title: Building and training a deep spiking neural network for ecg classification
  publication-title: Biomedical Signal Processing and Control
– volume: 125
  start-page: 258
  year: 2020
  end-page: 280
  ident: b58
  article-title: Supervised learning in spiking neural networks: A review of algorithms and evaluations
  publication-title: Neural Networks
– start-page: 171
  year: 2011
  end-page: 174
  ident: b63
  article-title: Prediction of grain yield based on spiking neural networks model
  publication-title: 2011 IEEE 3rd international conference on communication software and networks
– start-page: 192
  year: 2018
  end-page: 203
  ident: b29
  article-title: Road traffic forecasting using neucube and dynamic evolving spiking neural networks
  publication-title: International symposium on intelligent and distributed computing, vol. 798
– year: 2003
  ident: b26
  article-title: CMU ARCTIC databases for speech synthesis
– volume: 159
  start-page: 208
  year: 2023
  end-page: 219
  ident: b53
  article-title: S3NN: Time step reduction of spiking surrogate gradients for training energy efficient single-step spiking neural networks
  publication-title: Neural Networks
– volume: 8
  start-page: 426
  year: 2020
  end-page: 435
  ident: b27
  article-title: Modelling of optimised neural network for classification and prediction of benchmark datasets
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
– volume: 157
  start-page: 39
  year: 2023
  end-page: 53
  ident: b50
  article-title: Image-based time series forecasting: A deep convolutional neural network approach
  publication-title: Neural Networks
– volume: 134
  start-page: 75
  year: 2019
  end-page: 88
  ident: b20
  article-title: Estimation of energy consumption in machine learning
  publication-title: Journal of Parallel and Distributed Computing
– volume: 4
  start-page: 356
  year: 2016
  end-page: 368
  ident: b35
  article-title: Long-term wind speed forecasting using spiking neural network optimized by improved modified grey wolf optimization algorithm
  publication-title: International Journal of Advanced Research
– year: 2023
  ident: b14
  article-title: UK air information resource
– year: 2021
  ident: b46
  article-title: Power consumption of Tetouan city Data Set
– volume: 7
  start-page: 2191
  year: 2023
  end-page: 2194
  ident: b12
  article-title: The growing energy footprint of artificial intelligence
  publication-title: Joule
– volume: 69
  start-page: 2060
  year: 2022
  end-page: 2069
  ident: b31
  article-title: Sparse compressed spiking neural network accelerator for object detection
  publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers
– start-page: 11
  year: 2022
  end-page: 20
  ident: b6
  article-title: Optimized potential initialization for low-latency spiking neural networks
  publication-title: Proceedings of the AAAI conference on artificial intelligence, vol. 36, no. 1
– start-page: 359
  year: 2018
  end-page: 363
  ident: b23
  article-title: Short-term wind speed forecasting model based on spiking neural network
  publication-title: 2018 International conference on advanced mechatronic systems
– year: 2021
  ident: b42
  article-title: StereoSpike: Depth learning with a spiking neural network
– volume: 34
  start-page: 19283
  year: 2022
  end-page: 19311
  ident: b65
  article-title: Multi-discrete genetic algorithm in hopfield neural network with weighted random k satisfiability
  publication-title: Neural Computing and Applications
– reference: (pp. 2661–2671).
– volume: 113
  start-page: 1015
  year: 2015
  end-page: 1033
  ident: b47
  article-title: Extracting information in spike time patterns with wavelets and information theory
  publication-title: Journal of Neurophysiology
– start-page: 573
  year: 2016
  end-page: 581
  ident: b8
  article-title: Photovoltaic system power generation forecasting based on spiking neural network
  publication-title: Proceedings of the 2015 Chinese intelligent systems conference, vol. 359
– volume: 11
  start-page: 1
  year: 2021
  end-page: 14
  ident: b45
  article-title: Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
  publication-title: Scientific Reports
– volume: 166
  start-page: 410
  year: 2023
  end-page: 423
  ident: b64
  article-title: Sparser spiking activity can be better: Feature refine-and-mask spiking neural network for event-based visual recognition
  publication-title: Neural Networks
– year: 2016
  ident: b56
  article-title: Mackey-glass time series dataset
– volume: 31
  start-page: 3920
  year: 2020
  end-page: 3931
  ident: b2
  article-title: Pulsewidth modulation-based algorithm for spike phase encoding and decoding of time-dependent analog data
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 13
  start-page: 3628
  year: 2013
  end-page: 3635
  ident: b28
  article-title: A spiking neural network (SNN) forecast engine for short-term electrical load forecasting
  publication-title: Applied Soft Computing
– volume: 118
  start-page: 262
  year: 2019
  end-page: 280
  ident: b33
  article-title: Air pollution prediction with clustering-based ensemble of evolving spiking neural networks and a case study for London area
  publication-title: Environmental Modelling & Software
– year: 2013
  ident: b43
  article-title: Spiking neural networks for financial data prediction
  publication-title: Proceedings of the international joint conference on neural networks
– volume: 21
  start-page: 317
  year: 2021
  end-page: 337
  ident: b22
  article-title: A survey on spiking neural networks
  publication-title: International Journal of Fuzzy Logic and Intelligent Systems
– year: 2020
  ident: b34
  article-title: Online evolving spiking neural networks for incremental air pollution prediction
  publication-title: Proceedings of the international joint conference on neural networks
– volume: 292
  year: 2021
  ident: b60
  article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks
  publication-title: Applied Energy
– volume: 15
  start-page: 7256
  year: 2022
  ident: b15
  article-title: A spiking neural network based wind power forecasting model for neuromorphic devices
  publication-title: Energies
– year: 2015
  ident: b19
  article-title: Comparing entropy with tests for randomness as a measure of complexity in time series
– volume: 9
  start-page: 54
  year: 2016
  ident: b54
  article-title: A carbon price forecasting model based on variational mode decomposition and spiking neural networks
  publication-title: Energies
– volume: 32
  year: 2019
  ident: b5
  article-title: A new design methodology to predict wind farm energy production by means of a spiking neural network–based system
  publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
– volume: 270
  year: 2023
  ident: b38
  article-title: Artificial neural network modelling of the neural population code underlying mathematical operations
  publication-title: NeuroImage
– start-page: 1
  year: 2014
  end-page: 577
  ident: b21
  article-title: Neuronal dynamics: From single neurons to networks and models of cognition
  publication-title: Neuronal dynamics: From single neurons to networks and models of cognition
– volume: 10
  year: 2016
  ident: b30
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Frontiers in Neuroscience
– volume: 21
  year: 2021
  ident: b32
  article-title: Evolving spiking neural network model for PM2.5 hourly concentration prediction based on seasonal differences: A case study on data from Beijing and Shanghai
  publication-title: Aerosol and Air Quality Research
– volume: 7
  start-page: 178
  year: 2013
  ident: b40
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Frontiers in Neuroscience
– volume: 101
  start-page: 187
  year: 2016
  end-page: 196
  ident: b48
  article-title: On the applicability of spiking neural network models to solve the task of recognizing gender hidden in texts
  publication-title: Procedia Computer Science
– year: 2021
  ident: b9
  article-title: One timestep is all you need: Training spiking neural networks with ultra low latency
– volume: vol. 13671
  start-page: 709
  year: 2022
  end-page: 726
  ident: b10
  article-title: Towards ultra low latency spiking neural networks for vision and sequential tasks using temporal pruning
  publication-title: Computer vision - ECCV 2022. Lecture notes in computer science
– volume: 36
  start-page: 1137
  year: 2023
  end-page: 1147
  ident: b41
  article-title: Skin cancer classification using deep spiking neural network
  publication-title: Journal of Digital Imaging
– reference: Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., & Tian, Y. (2021). Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks. In
– volume: 196
  year: 2020
  ident: b59
  article-title: Probabilistic wind power forecasting based on spiking neural network
  publication-title: Energy
– volume: 36
  start-page: 51
  year: 2019
  end-page: 63
  ident: b39
  article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Processing Magazine
– volume: 14
  year: 2020
  ident: b61
  article-title: Boosting throughput and efficiency of hardware spiking neural accelerators using time compression supporting multiple spike codes
  publication-title: Frontiers in Neuroscience
– volume: 9
  year: 2023
  ident: b16
  article-title: SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence
  publication-title: Science Advances
– volume: 12
  start-page: 863
  year: 2022
  ident: b62
  article-title: Spiking neural networks and their applications: A review
  publication-title: Brain Sciences
– year: 2003
  ident: 10.1016/j.neunet.2024.106171_b26
– volume: 8
  start-page: 426
  issue: 4
  year: 2020
  ident: 10.1016/j.neunet.2024.106171_b27
  article-title: Modelling of optimised neural network for classification and prediction of benchmark datasets
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
– volume: 12
  start-page: 863
  issue: 7
  year: 2022
  ident: 10.1016/j.neunet.2024.106171_b62
  article-title: Spiking neural networks and their applications: A review
  publication-title: Brain Sciences
  doi: 10.3390/brainsci12070863
– volume: 34
  start-page: 19283
  issue: 21
  year: 2022
  ident: 10.1016/j.neunet.2024.106171_b65
  article-title: Multi-discrete genetic algorithm in hopfield neural network with weighted random k satisfiability
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07541-6
– volume: 118
  start-page: 262
  year: 2019
  ident: 10.1016/j.neunet.2024.106171_b33
  article-title: Air pollution prediction with clustering-based ensemble of evolving spiking neural networks and a case study for London area
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2019.04.012
– volume: 31
  start-page: 3920
  issue: 10
  year: 2020
  ident: 10.1016/j.neunet.2024.106171_b2
  article-title: Pulsewidth modulation-based algorithm for spike phase encoding and decoding of time-dependent analog data
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2947380
– volume: 159
  start-page: 208
  year: 2023
  ident: 10.1016/j.neunet.2024.106171_b53
  article-title: S3NN: Time step reduction of spiking surrogate gradients for training energy efficient single-step spiking neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.12.008
– year: 2016
  ident: 10.1016/j.neunet.2024.106171_b56
– volume: 125
  start-page: 258
  year: 2020
  ident: 10.1016/j.neunet.2024.106171_b58
  article-title: Supervised learning in spiking neural networks: A review of algorithms and evaluations
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.02.011
– volume: 7
  start-page: 178
  issue: 7
  year: 2013
  ident: 10.1016/j.neunet.2024.106171_b40
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Frontiers in Neuroscience
– volume: 21
  start-page: 317
  issue: 4
  year: 2021
  ident: 10.1016/j.neunet.2024.106171_b22
  article-title: A survey on spiking neural networks
  publication-title: International Journal of Fuzzy Logic and Intelligent Systems
  doi: 10.5391/IJFIS.2021.21.4.317
– volume: 173
  start-page: 1203
  year: 2016
  ident: 10.1016/j.neunet.2024.106171_b57
  article-title: Wavelet decomposition and phase encoding of temporal signals using spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.078
– volume: 10
  issue: NOV
  year: 2016
  ident: 10.1016/j.neunet.2024.106171_b30
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Frontiers in Neuroscience
– volume: 11
  start-page: 2772
  issue: 9
  year: 2023
  ident: 10.1016/j.neunet.2024.106171_b11
  article-title: Advancing fault prediction: A comparative study between LSTM and spiking neural networks
  publication-title: Processes
  doi: 10.3390/pr11092772
– volume: 134
  start-page: 75
  year: 2019
  ident: 10.1016/j.neunet.2024.106171_b20
  article-title: Estimation of energy consumption in machine learning
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2019.07.007
– volume: 36
  start-page: 51
  issue: 6
  year: 2019
  ident: 10.1016/j.neunet.2024.106171_b39
  article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2019.2931595
– volume: 77
  year: 2022
  ident: 10.1016/j.neunet.2024.106171_b18
  article-title: Building and training a deep spiking neural network for ecg classification
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103749
– start-page: 11
  year: 2022
  ident: 10.1016/j.neunet.2024.106171_b6
  article-title: Optimized potential initialization for low-latency spiking neural networks
– volume: 36
  start-page: 1137
  issue: 3
  year: 2023
  ident: 10.1016/j.neunet.2024.106171_b41
  article-title: Skin cancer classification using deep spiking neural network
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-023-00776-2
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106171_b45
  article-title: Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-90029-5
– volume: 196
  year: 2020
  ident: 10.1016/j.neunet.2024.106171_b59
  article-title: Probabilistic wind power forecasting based on spiking neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117072
– volume: 121
  start-page: 294
  year: 2020
  ident: 10.1016/j.neunet.2024.106171_b13
  article-title: Rethinking the performance comparison between SNNS and ANNS
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.09.005
– volume: vol. 13671
  start-page: 709
  year: 2022
  ident: 10.1016/j.neunet.2024.106171_b10
  article-title: Towards ultra low latency spiking neural networks for vision and sequential tasks using temporal pruning
– year: 2022
  ident: 10.1016/j.neunet.2024.106171_b52
  article-title: Sleep classification with artificial synthetic imaging data using convolutional neural networks
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 13
  start-page: 3628
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2024.106171_b28
  article-title: A spiking neural network (SNN) forecast engine for short-term electrical load forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.04.007
– start-page: 573
  year: 2016
  ident: 10.1016/j.neunet.2024.106171_b8
  article-title: Photovoltaic system power generation forecasting based on spiking neural network
– year: 2021
  ident: 10.1016/j.neunet.2024.106171_b42
– ident: 10.1016/j.neunet.2024.106171_b17
  doi: 10.1109/ICCV48922.2021.00266
– volume: 69
  start-page: 2060
  issue: 5
  year: 2022
  ident: 10.1016/j.neunet.2024.106171_b31
  article-title: Sparse compressed spiking neural network accelerator for object detection
  publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers
  doi: 10.1109/TCSI.2022.3149006
– volume: 8
  start-page: 210023
  year: 2020
  ident: 10.1016/j.neunet.2024.106171_b37
  article-title: A machine learning approach to perform physical activity classification using a sensorized crutch tip
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039885
– volume: 18
  start-page: 245
  issue: 2
  year: 2006
  ident: 10.1016/j.neunet.2024.106171_b24
  article-title: Polychronization: Computation with spikes
  publication-title: Neural Computation
  doi: 10.1162/089976606775093882
– start-page: 192
  year: 2018
  ident: 10.1016/j.neunet.2024.106171_b29
  article-title: Road traffic forecasting using neucube and dynamic evolving spiking neural networks
– year: 2023
  ident: 10.1016/j.neunet.2024.106171_b14
– volume: 32
  issue: 4
  year: 2019
  ident: 10.1016/j.neunet.2024.106171_b5
  article-title: A new design methodology to predict wind farm energy production by means of a spiking neural network–based system
  publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
  doi: 10.1002/jnm.2267
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.neunet.2024.106171_b44
  article-title: Financial time series prediction using spiking neural networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0103656
– volume: 292
  year: 2021
  ident: 10.1016/j.neunet.2024.106171_b60
  article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2021.116842
– volume: 129
  start-page: 271
  year: 2020
  ident: 10.1016/j.neunet.2024.106171_b7
  article-title: A spiking neural network-based long-term prediction system for biogas production
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.06.001
– volume: 21
  start-page: 2430
  issue: 7
  year: 2021
  ident: 10.1016/j.neunet.2024.106171_b55
  article-title: Time series forecasting of univariate agrometeorological data: A comparative performance evaluation via one-step and multi-step ahead forecasting strategies
  publication-title: Sensors
  doi: 10.3390/s21072430
– start-page: 171
  year: 2011
  ident: 10.1016/j.neunet.2024.106171_b63
  article-title: Prediction of grain yield based on spiking neural networks model
– volume: 15
  start-page: 7256
  issue: 19
  year: 2022
  ident: 10.1016/j.neunet.2024.106171_b15
  article-title: A spiking neural network based wind power forecasting model for neuromorphic devices
  publication-title: Energies
  doi: 10.3390/en15197256
– start-page: 1
  year: 2014
  ident: 10.1016/j.neunet.2024.106171_b21
  article-title: Neuronal dynamics: From single neurons to networks and models of cognition
– volume: 192
  start-page: 5023
  year: 2021
  ident: 10.1016/j.neunet.2024.106171_b36
  article-title: Financial time series forecasting: Comparison of traditional and spiking neural networks
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2021.09.280
– year: 2023
  ident: 10.1016/j.neunet.2024.106171_b1
  article-title: Improvement of pattern recognition in spiking neural networks by modifying threshold parameter and using image inversion
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-023-16344-3
– start-page: 359
  year: 2018
  ident: 10.1016/j.neunet.2024.106171_b23
  article-title: Short-term wind speed forecasting model based on spiking neural network
– volume: 101
  start-page: 187
  year: 2016
  ident: 10.1016/j.neunet.2024.106171_b48
  article-title: On the applicability of spiking neural network models to solve the task of recognizing gender hidden in texts
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.11.023
– year: 2017
  ident: 10.1016/j.neunet.2024.106171_b49
– year: 2003
  ident: 10.1016/j.neunet.2024.106171_b3
– year: 2021
  ident: 10.1016/j.neunet.2024.106171_b46
– volume: 14
  year: 2020
  ident: 10.1016/j.neunet.2024.106171_b61
  article-title: Boosting throughput and efficiency of hardware spiking neural accelerators using time compression supporting multiple spike codes
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2020.00104
– year: 2020
  ident: 10.1016/j.neunet.2024.106171_b34
  article-title: Online evolving spiking neural networks for incremental air pollution prediction
– year: 2015
  ident: 10.1016/j.neunet.2024.106171_b19
– year: 2020
  ident: 10.1016/j.neunet.2024.106171_b25
– volume: 38
  start-page: 1555
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2024.106171_b4
  article-title: Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2021.11.003
– volume: 157
  start-page: 39
  year: 2023
  ident: 10.1016/j.neunet.2024.106171_b50
  article-title: Image-based time series forecasting: A deep convolutional neural network approach
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.10.006
– volume: 7
  start-page: 2191
  issue: 10
  year: 2023
  ident: 10.1016/j.neunet.2024.106171_b12
  article-title: The growing energy footprint of artificial intelligence
  publication-title: Joule
  doi: 10.1016/j.joule.2023.09.004
– year: 2013
  ident: 10.1016/j.neunet.2024.106171_b43
  article-title: Spiking neural networks for financial data prediction
– volume: 113
  start-page: 1015
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2024.106171_b47
  article-title: Extracting information in spike time patterns with wavelets and information theory
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00380.2014
– volume: 270
  year: 2023
  ident: 10.1016/j.neunet.2024.106171_b38
  article-title: Artificial neural network modelling of the neural population code underlying mathematical operations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.119980
– volume: 9
  issue: 40
  year: 2023
  ident: 10.1016/j.neunet.2024.106171_b16
  article-title: SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence
  publication-title: Science Advances
  doi: 10.1126/sciadv.adi1480
– year: 2010
  ident: 10.1016/j.neunet.2024.106171_b51
  article-title: A spiking neural network based on temporal encoding for electricity price time series forecasting in deregulated markets
– volume: 9
  start-page: 54
  issue: 1
  year: 2016
  ident: 10.1016/j.neunet.2024.106171_b54
  article-title: A carbon price forecasting model based on variational mode decomposition and spiking neural networks
  publication-title: Energies
  doi: 10.3390/en9010054
– year: 2021
  ident: 10.1016/j.neunet.2024.106171_b9
– volume: 4
  start-page: 356
  issue: 7
  year: 2016
  ident: 10.1016/j.neunet.2024.106171_b35
  article-title: Long-term wind speed forecasting using spiking neural network optimized by improved modified grey wolf optimization algorithm
  publication-title: International Journal of Advanced Research
  doi: 10.21474/IJAR01/1132
– volume: 21
  issue: 2
  year: 2021
  ident: 10.1016/j.neunet.2024.106171_b32
  article-title: Evolving spiking neural network model for PM2.5 hourly concentration prediction based on seasonal differences: A case study on data from Beijing and Shanghai
  publication-title: Aerosol and Air Quality Research
  doi: 10.4209/aaqr.2020.05.0247
– volume: 166
  start-page: 410
  year: 2023
  ident: 10.1016/j.neunet.2024.106171_b64
  article-title: Sparser spiking activity can be better: Feature refine-and-mask spiking neural network for event-based visual recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.07.008
SSID ssj0006843
Score 2.5232747
Snippet Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106171
SubjectTerms Forecasting
PWM based encoding–decoding algorithm
Spiking Neural Network
Supervised learning
Surrogate gradient
Title Methodology based on spiking neural networks for univariate time-series forecasting
URI https://dx.doi.org/10.1016/j.neunet.2024.106171
https://www.ncbi.nlm.nih.gov/pubmed/38382399
https://www.proquest.com/docview/2930474625
Volume 173
WOSCitedRecordID wos001188432600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZruoe9dPc13VY02FtRsCXHkh_L6GjHVgbtIG_ClqWRMJQQJ6U_v0c3J10p3QZ7McGxfRR9zrnp6HwIfRwXWhWtagirSwhQdKYImAVDmrJpnUXStPV9Zr_y83MxmVTfI_Ff5-kEuLXi-rpa_Feo4RyA7bbO_gXc_UPhBHwG0OEIsMPxj4D_5jmhQ2slZ6Natx7QLaYuJ37k2lcCKDYUf_teDEdrO72CiBmcTs80T9wotf9Kq7pbJds2S32ebj2hL-hx5Gk-laqXP0Ntl9e44N1P4_IOOO3bOQZabCr6QuIrbX7ZVBp5_VQxUmaBiGmkg_4UvCKUi9sKNpCV3FHWIW8wG8FPh0GPnOCRi1ADJ8tvbbAvnDgnzRW9uuTlDtqlfFyJAdo9PjuZfOntbylCrWQaXtow6av67sq6zyG5L-DwjsflM7QXIwZ8HJB-jh5p-wI9TWwcOCrnl-hiC3jsgcdziyPwOACPE2wY0MUb4PEW8HgL-Ffox-eTy0-nJFJmEFVkYkVoqQ2nqtGsMXmZmYyJRldjQ0G7Vg2rNWVNOdZUZ9TABQ0z4M9C5NJSxZVSnL1GAzu3eh9hrmjb1sYYZuoih0CBUV3npTBcGZrn9RCxNG9SxX7yjtbkl0yFgzMZZlu62ZZhtoeI9HctQj-VB67nCRIZfcLg60l4ix6480NCUILKdOtgtdXzdSfBw80KXkDkP0RvArT9WJhwC-NVdfDPct-iJ5u_0Ds0WC3X-j16rK5W0255iHb4RBzGV_YGMiagpw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+based+on+spiking+neural+networks+for+univariate+time-series+forecasting&rft.jtitle=Neural+networks&rft.au=Lucas%2C+Sergio&rft.au=Portillo%2C+Eva&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=173&rft_id=info:doi/10.1016%2Fj.neunet.2024.106171&rft.externalDocID=S0893608024000959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon