Methodology based on spiking neural networks for univariate time-series forecasting
Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training m...
Uloženo v:
| Vydáno v: | Neural networks Ročník 173; s. 106171 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.05.2024
|
| Témata: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding–decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN.
•New supervised training methodology for univariate time-series forecasting with SNN.•A PWM based encoding–decoding algorithm and a Surrogate Gradient method are combined.•The methodology is characterised by ultra-low latency and high robustness.•3 UCI datasets and air pollution data for Greater London Area are used for validation.•Satisfactory forecasting results regardless of the characteristics of the dataset. |
|---|---|
| AbstractList | Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding-decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN. Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding–decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN. •New supervised training methodology for univariate time-series forecasting with SNN.•A PWM based encoding–decoding algorithm and a Surrogate Gradient method are combined.•The methodology is characterised by ultra-low latency and high robustness.•3 UCI datasets and air pollution data for Greater London Area are used for validation.•Satisfactory forecasting results regardless of the characteristics of the dataset. Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding-decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN.Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than for forecasting problems. In this sense, this paper presents a new general training methodology for univariate time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and combines a PulseWidth Modulation based encoding-decoding algorithm with a Surrogate Gradient method as supervised training algorithm. In order to validate the generality of the presented methodology sine-wave, 3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results (MAE∈[0.0094,0.2891]) regardless of the characteristics of the dataset or the application field. In addition, weights can be initialised just once to achieve robust results, boosting the advantages of computational and energy cost of SNN. |
| ArticleNumber | 106171 |
| Author | Lucas, Sergio Portillo, Eva |
| Author_xml | – sequence: 1 givenname: Sergio orcidid: 0000-0002-3557-0316 surname: Lucas fullname: Lucas, Sergio email: sergio.lucas@ehu.eus – sequence: 2 givenname: Eva orcidid: 0000-0002-1026-3248 surname: Portillo fullname: Portillo, Eva email: eva.portillo@ehu.eus |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38382399$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1PFTEUQBuDkQf6DwiZpZt53rbz0WFhYoioCcQFuG7azi32Ma99th0M_57igAsWsLrJ7Tm3yTkgez54JOSIwpoC7T5t1h5nj3nNgDVl1dGeviErKvqhZr1ge2QFYuB1BwL2yUFKGwDoRMPfkX0uuGB8GFbk8gLz7zCGKVzfVVolHKvgq7RzN85fV-WHqKYy8t8Qb1JlQ6xm725VdCpjld0W64TR4b8nNCrlor0nb62aEn54nIfk19nXq9Pv9fnPbz9Ov5zXpgGRa9ah7ZnRyLWlHVjgQuPQWqYBBs0VMq67FhkCswXQ3La0FVSPzPTGmJ4fko_L3V0Mf2ZMWW5dMjhNymOYk2QDh6ZvOtYW9PgRnfUWR7mLbqvinXwKUYBmAUwMKUW0_xEK8qG33Milt3zoLZfeRTt5phmXVXbB56jc9Jr8eZGxRLp1GGUyDr3B0ZWWWY7BvXzgHu31n0g |
| CitedBy_id | crossref_primary_10_3390_s24072210 crossref_primary_10_1007_s00521_025_11045_4 crossref_primary_10_1016_j_apm_2025_116288 crossref_primary_10_1109_TNSRE_2025_3545206 crossref_primary_10_3390_math12162600 crossref_primary_10_1109_JIOT_2024_3476034 crossref_primary_10_1007_s11063_025_11791_5 crossref_primary_10_1109_TIM_2025_3541779 crossref_primary_10_1007_s12021_025_09717_6 crossref_primary_10_1088_1361_6501_ae05b9 |
| Cites_doi | 10.3390/brainsci12070863 10.1007/s00521-022-07541-6 10.1016/j.envsoft.2019.04.012 10.1109/TNNLS.2019.2947380 10.1016/j.neunet.2022.12.008 10.1016/j.neunet.2020.02.011 10.5391/IJFIS.2021.21.4.317 10.1016/j.neucom.2015.08.078 10.3390/pr11092772 10.1016/j.jpdc.2019.07.007 10.1109/MSP.2019.2931595 10.1016/j.bspc.2022.103749 10.1007/s10278-023-00776-2 10.1038/s41598-021-90029-5 10.1016/j.energy.2020.117072 10.1016/j.neunet.2019.09.005 10.1016/j.asoc.2013.04.007 10.1109/ICCV48922.2021.00266 10.1109/TCSI.2022.3149006 10.1109/ACCESS.2020.3039885 10.1162/089976606775093882 10.1002/jnm.2267 10.1371/journal.pone.0103656 10.1016/j.apenergy.2021.116842 10.1016/j.neunet.2020.06.001 10.3390/s21072430 10.3390/en15197256 10.1016/j.procs.2021.09.280 10.1007/s11042-023-16344-3 10.1016/j.procs.2016.11.023 10.3389/fnins.2020.00104 10.1016/j.ijforecast.2021.11.003 10.1016/j.neunet.2022.10.006 10.1016/j.joule.2023.09.004 10.1152/jn.00380.2014 10.1016/j.neuroimage.2023.119980 10.1126/sciadv.adi1480 10.3390/en9010054 10.21474/IJAR01/1132 10.4209/aaqr.2020.05.0247 10.1016/j.neunet.2023.07.008 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.neunet.2024.106171 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| ExternalDocumentID | 38382399 10_1016_j_neunet_2024_106171 S0893608024000959 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AGCQF AGRNS BNPGV NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c408t-26ef72cbe3bf160f038be95f2b009b3ae23b65e2e02ff16b3f51581bd2c7ccc73 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001188432600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Sun Sep 28 00:27:17 EDT 2025 Mon Jul 21 05:45:36 EDT 2025 Sat Nov 29 05:33:07 EST 2025 Tue Nov 18 19:44:09 EST 2025 Sat Jul 13 15:33:02 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PWM based encoding–decoding algorithm Surrogate gradient Spiking Neural Network Supervised learning Forecasting |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c408t-26ef72cbe3bf160f038be95f2b009b3ae23b65e2e02ff16b3f51581bd2c7ccc73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3557-0316 0000-0002-1026-3248 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neunet.2024.106171 |
| PMID | 38382399 |
| PQID | 2930474625 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2930474625 pubmed_primary_38382399 crossref_primary_10_1016_j_neunet_2024_106171 crossref_citationtrail_10_1016_j_neunet_2024_106171 elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106171 |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 2024-May 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Guo, Adjouadi (b57) 2016; 173 Black (b3) 2003 Bu, Ding, Yu, Huang (b6) 2022 Wei, Wang, Niu, Li (b60) 2021; 292 Capizzi, Sciuto, Napoli, Woźniak, Susi (b7) 2020; 129 Saeedinia, Jahed-Motlagh, Tafakhori, Kasabov (b45) 2021; 11 Suetake, ichi Ikegawa, Saiin, Sawada (b53) 2023; 159 Rançon, Cuadrado-Anibarro, Cottereau, Masquelier (b42) 2021 Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., & Tian, Y. (2021). Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks. In Dudek, Baczy’nski, Baczy’nski, Manuel González Sopeña, Pakrashi, Ghosh (b15) 2022; 15 Wang, Xue, Liu, Peng, Jiang (b59) 2020; 196 Arriandiaga, Portillo, Espinosa-Ramos, Kasabov (b2) 2020; 31 García-Martín, Rodrigues, Riley, Grahn (b20) 2019; 134 Sharma, Srinivasan (b51) 2010 Macia̧g, Kasabov, Kryszkiewicz, Bembenik (b33) 2019; 118 Department for Environment Food & Rural Affairs (b14) 2023 Gerstner, Kistler, Naud, Paninski (b21) 2014 Yao, Zhang, Zhao, Zhang, Wang, Cao (b64) 2023; 166 Lopes-dos Santos, Panzeri, Kayser, Diamond, Quian Quiroga (b47) 2015; 113 Liu, Lu, Wang, Kasabov (b32) 2021; 21 Neftci, Mostafa, Zenke (b39) 2019; 36 MacIag, Kryszkiewicz, Bembenik (b34) 2020 Izhikevich (b24) 2006; 18 Schuman, Potok, Patton, Birdwell, Dean, Rose (b49) 2017 Laña, Capecci, Del Ser, Lobo, Kasabov (b29) 2018 Bojer (b4) 2022; 38 Gan, Learmonth (b19) 2015 Aghabarar, Kiani, Keshavarzi (b1) 2023 Chen, Sun, Wei, Li, Cheung, Sun (b8) 2016 Nakai, Nishimoto (b38) 2023; 270 Qasim Gilani, Syed, Umair, Marques (b41) 2023; 36 Lee, Delbruck, Pfeiffer (b30) 2016; 10 Chowdhury, Rathi, Roy (b10) 2022; vol. 13671 Suradhaniwar, Kar, Durbha, Jagarlapudi (b55) 2021; 21 (pp. 2661–2671). Kominek, Black (b26) 2003 O’Connor, Neil, Liu, Delbruck, Pfeiffer (b40) 2013; 7 Sboev, Litvinova, Vlasov, Serenko, Moloshnikov (b48) 2016; 101 Feng, Geng, Chu, Fu, Hong (b18) 2022; 77 Reid, Hussain, Tawfik (b44) 2014; 9 Brusca, Capizzi, Lo Sciuto, Susi (b5) 2019; 32 Deng, Wu, Hu, Liang, Ding, Li (b13) 2020; 121 Han, Li, Qian (b23) 2018 Salam, Hibaoui (b46) 2021 Yang, Zhongjian (b63) 2011 Zamri, Azhar, Sidik, Mansor, Kasihmuddin, Pakruddin (b65) 2022; 34 Semenoglou, Spiliotis, Assimakopoulos (b50) 2023; 157 Wang, Lin, Dang (b58) 2020; 125 de Vries (b12) 2023; 7 de Abreu, Silva, Nunes, Moioli, Guedes (b11) 2023; 11 Lien, Chang (b31) 2022; 69 Reid, Hussain, Tawfik (b43) 2013 Fang, Chen, Ding, Yu, Masquelier, Chen (b16) 2023; 9 Matenczuk, Kozina, Markowska, Czerniachowska, Kaczmarczyk, Golec (b36) 2021; 192 Shi, Wank, Chen, Wang, Liu, Hector (b52) 2022 Madhiarasan, Deepa. (b35) 2016; 4 Han, Lee (b22) 2021; 21 Waheeb (b56) 2016 Mesanza, Lucas, Zubizarreta, Cabanes, Portillo, Rodriguez-Larrad (b37) 2020; 8 Kim (b25) 2020 Sun, Chen, Wei, Sun, Zang, Chen (b54) 2016; 9 Xu, Zhang, Liu, Li (b61) 2020; 14 Yamazaki, Vo-Ho, Bulsara, Le (b62) 2022; 12 Kulkarni, Simon, Sundareswaran (b28) 2013; 13 Chowdhury, Rathi, Roy (b9) 2021 Kshirsagar, Balakrishnan, Yadav (b27) 2020; 8 Suetake (10.1016/j.neunet.2024.106171_b53) 2023; 159 Department for Environment Food & Rural Affairs (10.1016/j.neunet.2024.106171_b14) 2023 Yang (10.1016/j.neunet.2024.106171_b63) 2011 Kulkarni (10.1016/j.neunet.2024.106171_b28) 2013; 13 O’Connor (10.1016/j.neunet.2024.106171_b40) 2013; 7 Chowdhury (10.1016/j.neunet.2024.106171_b10) 2022; vol. 13671 Han (10.1016/j.neunet.2024.106171_b23) 2018 Saeedinia (10.1016/j.neunet.2024.106171_b45) 2021; 11 Wang (10.1016/j.neunet.2024.106171_b57) 2016; 173 10.1016/j.neunet.2024.106171_b17 Chowdhury (10.1016/j.neunet.2024.106171_b9) 2021 Semenoglou (10.1016/j.neunet.2024.106171_b50) 2023; 157 Dudek (10.1016/j.neunet.2024.106171_b15) 2022; 15 Sboev (10.1016/j.neunet.2024.106171_b48) 2016; 101 Brusca (10.1016/j.neunet.2024.106171_b5) 2019; 32 MacIag (10.1016/j.neunet.2024.106171_b34) 2020 Zamri (10.1016/j.neunet.2024.106171_b65) 2022; 34 Laña (10.1016/j.neunet.2024.106171_b29) 2018 Lien (10.1016/j.neunet.2024.106171_b31) 2022; 69 Bojer (10.1016/j.neunet.2024.106171_b4) 2022; 38 Reid (10.1016/j.neunet.2024.106171_b43) 2013 Shi (10.1016/j.neunet.2024.106171_b52) 2022 Feng (10.1016/j.neunet.2024.106171_b18) 2022; 77 Wang (10.1016/j.neunet.2024.106171_b58) 2020; 125 Mesanza (10.1016/j.neunet.2024.106171_b37) 2020; 8 Yao (10.1016/j.neunet.2024.106171_b64) 2023; 166 Kominek (10.1016/j.neunet.2024.106171_b26) 2003 Fang (10.1016/j.neunet.2024.106171_b16) 2023; 9 Gerstner (10.1016/j.neunet.2024.106171_b21) 2014 Schuman (10.1016/j.neunet.2024.106171_b49) 2017 Reid (10.1016/j.neunet.2024.106171_b44) 2014; 9 Wang (10.1016/j.neunet.2024.106171_b59) 2020; 196 Lee (10.1016/j.neunet.2024.106171_b30) 2016; 10 Bu (10.1016/j.neunet.2024.106171_b6) 2022 de Abreu (10.1016/j.neunet.2024.106171_b11) 2023; 11 Deng (10.1016/j.neunet.2024.106171_b13) 2020; 121 Yamazaki (10.1016/j.neunet.2024.106171_b62) 2022; 12 Suradhaniwar (10.1016/j.neunet.2024.106171_b55) 2021; 21 García-Martín (10.1016/j.neunet.2024.106171_b20) 2019; 134 Salam (10.1016/j.neunet.2024.106171_b46) 2021 Macia̧g (10.1016/j.neunet.2024.106171_b33) 2019; 118 Arriandiaga (10.1016/j.neunet.2024.106171_b2) 2020; 31 Kim (10.1016/j.neunet.2024.106171_b25) 2020 Sun (10.1016/j.neunet.2024.106171_b54) 2016; 9 Liu (10.1016/j.neunet.2024.106171_b32) 2021; 21 Sharma (10.1016/j.neunet.2024.106171_b51) 2010 Qasim Gilani (10.1016/j.neunet.2024.106171_b41) 2023; 36 Chen (10.1016/j.neunet.2024.106171_b8) 2016 Wei (10.1016/j.neunet.2024.106171_b60) 2021; 292 Gan (10.1016/j.neunet.2024.106171_b19) 2015 Lopes-dos Santos (10.1016/j.neunet.2024.106171_b47) 2015; 113 Nakai (10.1016/j.neunet.2024.106171_b38) 2023; 270 Capizzi (10.1016/j.neunet.2024.106171_b7) 2020; 129 Han (10.1016/j.neunet.2024.106171_b22) 2021; 21 Xu (10.1016/j.neunet.2024.106171_b61) 2020; 14 Izhikevich (10.1016/j.neunet.2024.106171_b24) 2006; 18 Kshirsagar (10.1016/j.neunet.2024.106171_b27) 2020; 8 de Vries (10.1016/j.neunet.2024.106171_b12) 2023; 7 Matenczuk (10.1016/j.neunet.2024.106171_b36) 2021; 192 Rançon (10.1016/j.neunet.2024.106171_b42) 2021 Waheeb (10.1016/j.neunet.2024.106171_b56) 2016 Aghabarar (10.1016/j.neunet.2024.106171_b1) 2023 Neftci (10.1016/j.neunet.2024.106171_b39) 2019; 36 Madhiarasan (10.1016/j.neunet.2024.106171_b35) 2016; 4 Black (10.1016/j.neunet.2024.106171_b3) 2003 |
| References_xml | – year: 2010 ident: b51 article-title: A spiking neural network based on temporal encoding for electricity price time series forecasting in deregulated markets publication-title: Proceedings of the international joint conference on neural networks – volume: 129 start-page: 271 year: 2020 end-page: 279 ident: b7 article-title: A spiking neural network-based long-term prediction system for biogas production publication-title: Neural Networks – volume: 9 year: 2014 ident: b44 article-title: Financial time series prediction using spiking neural networks publication-title: PLoS One – volume: 121 start-page: 294 year: 2020 end-page: 307 ident: b13 article-title: Rethinking the performance comparison between SNNS and ANNS publication-title: Neural Networks – volume: 173 start-page: 1203 year: 2016 end-page: 1210 ident: b57 article-title: Wavelet decomposition and phase encoding of temporal signals using spiking neurons publication-title: Neurocomputing – year: 2023 ident: b1 article-title: Improvement of pattern recognition in spiking neural networks by modifying threshold parameter and using image inversion publication-title: Multimedia Tools and Applications – volume: 192 start-page: 5023 year: 2021 end-page: 5029 ident: b36 article-title: Financial time series forecasting: Comparison of traditional and spiking neural networks publication-title: Procedia Computer Science – volume: 38 start-page: 1555 year: 2022 end-page: 1561 ident: b4 article-title: Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities publication-title: International Journal of Forecasting – volume: 21 start-page: 2430 year: 2021 ident: b55 article-title: Time series forecasting of univariate agrometeorological data: A comparative performance evaluation via one-step and multi-step ahead forecasting strategies publication-title: Sensors – volume: 11 start-page: 2772 year: 2023 ident: b11 article-title: Advancing fault prediction: A comparative study between LSTM and spiking neural networks publication-title: Processes – volume: 8 start-page: 210023 year: 2020 end-page: 210034 ident: b37 article-title: A machine learning approach to perform physical activity classification using a sensorized crutch tip publication-title: IEEE Access – volume: 18 start-page: 245 year: 2006 end-page: 282 ident: b24 article-title: Polychronization: Computation with spikes publication-title: Neural Computation – year: 2003 ident: b3 article-title: CMU_ARCTIC speech synthesis databases – year: 2017 ident: b49 article-title: A survey of neuromorphic computing and neural networks in hardware – year: 2020 ident: b25 article-title: Design and optimization for 5G wireless communications — IEEE eBooks — IEEE xplore – year: 2022 ident: b52 article-title: Sleep classification with artificial synthetic imaging data using convolutional neural networks publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 77 year: 2022 ident: b18 article-title: Building and training a deep spiking neural network for ecg classification publication-title: Biomedical Signal Processing and Control – volume: 125 start-page: 258 year: 2020 end-page: 280 ident: b58 article-title: Supervised learning in spiking neural networks: A review of algorithms and evaluations publication-title: Neural Networks – start-page: 171 year: 2011 end-page: 174 ident: b63 article-title: Prediction of grain yield based on spiking neural networks model publication-title: 2011 IEEE 3rd international conference on communication software and networks – start-page: 192 year: 2018 end-page: 203 ident: b29 article-title: Road traffic forecasting using neucube and dynamic evolving spiking neural networks publication-title: International symposium on intelligent and distributed computing, vol. 798 – year: 2003 ident: b26 article-title: CMU ARCTIC databases for speech synthesis – volume: 159 start-page: 208 year: 2023 end-page: 219 ident: b53 article-title: S3NN: Time step reduction of spiking surrogate gradients for training energy efficient single-step spiking neural networks publication-title: Neural Networks – volume: 8 start-page: 426 year: 2020 end-page: 435 ident: b27 article-title: Modelling of optimised neural network for classification and prediction of benchmark datasets publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization – volume: 157 start-page: 39 year: 2023 end-page: 53 ident: b50 article-title: Image-based time series forecasting: A deep convolutional neural network approach publication-title: Neural Networks – volume: 134 start-page: 75 year: 2019 end-page: 88 ident: b20 article-title: Estimation of energy consumption in machine learning publication-title: Journal of Parallel and Distributed Computing – volume: 4 start-page: 356 year: 2016 end-page: 368 ident: b35 article-title: Long-term wind speed forecasting using spiking neural network optimized by improved modified grey wolf optimization algorithm publication-title: International Journal of Advanced Research – year: 2023 ident: b14 article-title: UK air information resource – year: 2021 ident: b46 article-title: Power consumption of Tetouan city Data Set – volume: 7 start-page: 2191 year: 2023 end-page: 2194 ident: b12 article-title: The growing energy footprint of artificial intelligence publication-title: Joule – volume: 69 start-page: 2060 year: 2022 end-page: 2069 ident: b31 article-title: Sparse compressed spiking neural network accelerator for object detection publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers – start-page: 11 year: 2022 end-page: 20 ident: b6 article-title: Optimized potential initialization for low-latency spiking neural networks publication-title: Proceedings of the AAAI conference on artificial intelligence, vol. 36, no. 1 – start-page: 359 year: 2018 end-page: 363 ident: b23 article-title: Short-term wind speed forecasting model based on spiking neural network publication-title: 2018 International conference on advanced mechatronic systems – year: 2021 ident: b42 article-title: StereoSpike: Depth learning with a spiking neural network – volume: 34 start-page: 19283 year: 2022 end-page: 19311 ident: b65 article-title: Multi-discrete genetic algorithm in hopfield neural network with weighted random k satisfiability publication-title: Neural Computing and Applications – reference: (pp. 2661–2671). – volume: 113 start-page: 1015 year: 2015 end-page: 1033 ident: b47 article-title: Extracting information in spike time patterns with wavelets and information theory publication-title: Journal of Neurophysiology – start-page: 573 year: 2016 end-page: 581 ident: b8 article-title: Photovoltaic system power generation forecasting based on spiking neural network publication-title: Proceedings of the 2015 Chinese intelligent systems conference, vol. 359 – volume: 11 start-page: 1 year: 2021 end-page: 14 ident: b45 article-title: Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals publication-title: Scientific Reports – volume: 166 start-page: 410 year: 2023 end-page: 423 ident: b64 article-title: Sparser spiking activity can be better: Feature refine-and-mask spiking neural network for event-based visual recognition publication-title: Neural Networks – year: 2016 ident: b56 article-title: Mackey-glass time series dataset – volume: 31 start-page: 3920 year: 2020 end-page: 3931 ident: b2 article-title: Pulsewidth modulation-based algorithm for spike phase encoding and decoding of time-dependent analog data publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 13 start-page: 3628 year: 2013 end-page: 3635 ident: b28 article-title: A spiking neural network (SNN) forecast engine for short-term electrical load forecasting publication-title: Applied Soft Computing – volume: 118 start-page: 262 year: 2019 end-page: 280 ident: b33 article-title: Air pollution prediction with clustering-based ensemble of evolving spiking neural networks and a case study for London area publication-title: Environmental Modelling & Software – year: 2013 ident: b43 article-title: Spiking neural networks for financial data prediction publication-title: Proceedings of the international joint conference on neural networks – volume: 21 start-page: 317 year: 2021 end-page: 337 ident: b22 article-title: A survey on spiking neural networks publication-title: International Journal of Fuzzy Logic and Intelligent Systems – year: 2020 ident: b34 article-title: Online evolving spiking neural networks for incremental air pollution prediction publication-title: Proceedings of the international joint conference on neural networks – volume: 292 year: 2021 ident: b60 article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks publication-title: Applied Energy – volume: 15 start-page: 7256 year: 2022 ident: b15 article-title: A spiking neural network based wind power forecasting model for neuromorphic devices publication-title: Energies – year: 2015 ident: b19 article-title: Comparing entropy with tests for randomness as a measure of complexity in time series – volume: 9 start-page: 54 year: 2016 ident: b54 article-title: A carbon price forecasting model based on variational mode decomposition and spiking neural networks publication-title: Energies – volume: 32 year: 2019 ident: b5 article-title: A new design methodology to predict wind farm energy production by means of a spiking neural network–based system publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields – volume: 270 year: 2023 ident: b38 article-title: Artificial neural network modelling of the neural population code underlying mathematical operations publication-title: NeuroImage – start-page: 1 year: 2014 end-page: 577 ident: b21 article-title: Neuronal dynamics: From single neurons to networks and models of cognition publication-title: Neuronal dynamics: From single neurons to networks and models of cognition – volume: 10 year: 2016 ident: b30 article-title: Training deep spiking neural networks using backpropagation publication-title: Frontiers in Neuroscience – volume: 21 year: 2021 ident: b32 article-title: Evolving spiking neural network model for PM2.5 hourly concentration prediction based on seasonal differences: A case study on data from Beijing and Shanghai publication-title: Aerosol and Air Quality Research – volume: 7 start-page: 178 year: 2013 ident: b40 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Frontiers in Neuroscience – volume: 101 start-page: 187 year: 2016 end-page: 196 ident: b48 article-title: On the applicability of spiking neural network models to solve the task of recognizing gender hidden in texts publication-title: Procedia Computer Science – year: 2021 ident: b9 article-title: One timestep is all you need: Training spiking neural networks with ultra low latency – volume: vol. 13671 start-page: 709 year: 2022 end-page: 726 ident: b10 article-title: Towards ultra low latency spiking neural networks for vision and sequential tasks using temporal pruning publication-title: Computer vision - ECCV 2022. Lecture notes in computer science – volume: 36 start-page: 1137 year: 2023 end-page: 1147 ident: b41 article-title: Skin cancer classification using deep spiking neural network publication-title: Journal of Digital Imaging – reference: Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., & Tian, Y. (2021). Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks. In – volume: 196 year: 2020 ident: b59 article-title: Probabilistic wind power forecasting based on spiking neural network publication-title: Energy – volume: 36 start-page: 51 year: 2019 end-page: 63 ident: b39 article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks publication-title: IEEE Signal Processing Magazine – volume: 14 year: 2020 ident: b61 article-title: Boosting throughput and efficiency of hardware spiking neural accelerators using time compression supporting multiple spike codes publication-title: Frontiers in Neuroscience – volume: 9 year: 2023 ident: b16 article-title: SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence publication-title: Science Advances – volume: 12 start-page: 863 year: 2022 ident: b62 article-title: Spiking neural networks and their applications: A review publication-title: Brain Sciences – year: 2003 ident: 10.1016/j.neunet.2024.106171_b26 – volume: 8 start-page: 426 issue: 4 year: 2020 ident: 10.1016/j.neunet.2024.106171_b27 article-title: Modelling of optimised neural network for classification and prediction of benchmark datasets publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization – volume: 12 start-page: 863 issue: 7 year: 2022 ident: 10.1016/j.neunet.2024.106171_b62 article-title: Spiking neural networks and their applications: A review publication-title: Brain Sciences doi: 10.3390/brainsci12070863 – volume: 34 start-page: 19283 issue: 21 year: 2022 ident: 10.1016/j.neunet.2024.106171_b65 article-title: Multi-discrete genetic algorithm in hopfield neural network with weighted random k satisfiability publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-07541-6 – volume: 118 start-page: 262 year: 2019 ident: 10.1016/j.neunet.2024.106171_b33 article-title: Air pollution prediction with clustering-based ensemble of evolving spiking neural networks and a case study for London area publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2019.04.012 – volume: 31 start-page: 3920 issue: 10 year: 2020 ident: 10.1016/j.neunet.2024.106171_b2 article-title: Pulsewidth modulation-based algorithm for spike phase encoding and decoding of time-dependent analog data publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2947380 – volume: 159 start-page: 208 year: 2023 ident: 10.1016/j.neunet.2024.106171_b53 article-title: S3NN: Time step reduction of spiking surrogate gradients for training energy efficient single-step spiking neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2022.12.008 – year: 2016 ident: 10.1016/j.neunet.2024.106171_b56 – volume: 125 start-page: 258 year: 2020 ident: 10.1016/j.neunet.2024.106171_b58 article-title: Supervised learning in spiking neural networks: A review of algorithms and evaluations publication-title: Neural Networks doi: 10.1016/j.neunet.2020.02.011 – volume: 7 start-page: 178 issue: 7 year: 2013 ident: 10.1016/j.neunet.2024.106171_b40 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Frontiers in Neuroscience – volume: 21 start-page: 317 issue: 4 year: 2021 ident: 10.1016/j.neunet.2024.106171_b22 article-title: A survey on spiking neural networks publication-title: International Journal of Fuzzy Logic and Intelligent Systems doi: 10.5391/IJFIS.2021.21.4.317 – volume: 173 start-page: 1203 year: 2016 ident: 10.1016/j.neunet.2024.106171_b57 article-title: Wavelet decomposition and phase encoding of temporal signals using spiking neurons publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.078 – volume: 10 issue: NOV year: 2016 ident: 10.1016/j.neunet.2024.106171_b30 article-title: Training deep spiking neural networks using backpropagation publication-title: Frontiers in Neuroscience – volume: 11 start-page: 2772 issue: 9 year: 2023 ident: 10.1016/j.neunet.2024.106171_b11 article-title: Advancing fault prediction: A comparative study between LSTM and spiking neural networks publication-title: Processes doi: 10.3390/pr11092772 – volume: 134 start-page: 75 year: 2019 ident: 10.1016/j.neunet.2024.106171_b20 article-title: Estimation of energy consumption in machine learning publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2019.07.007 – volume: 36 start-page: 51 issue: 6 year: 2019 ident: 10.1016/j.neunet.2024.106171_b39 article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2019.2931595 – volume: 77 year: 2022 ident: 10.1016/j.neunet.2024.106171_b18 article-title: Building and training a deep spiking neural network for ecg classification publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.103749 – start-page: 11 year: 2022 ident: 10.1016/j.neunet.2024.106171_b6 article-title: Optimized potential initialization for low-latency spiking neural networks – volume: 36 start-page: 1137 issue: 3 year: 2023 ident: 10.1016/j.neunet.2024.106171_b41 article-title: Skin cancer classification using deep spiking neural network publication-title: Journal of Digital Imaging doi: 10.1007/s10278-023-00776-2 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.neunet.2024.106171_b45 article-title: Design of MRI structured spiking neural networks and learning algorithms for personalized modelling, analysis, and prediction of EEG signals publication-title: Scientific Reports doi: 10.1038/s41598-021-90029-5 – volume: 196 year: 2020 ident: 10.1016/j.neunet.2024.106171_b59 article-title: Probabilistic wind power forecasting based on spiking neural network publication-title: Energy doi: 10.1016/j.energy.2020.117072 – volume: 121 start-page: 294 year: 2020 ident: 10.1016/j.neunet.2024.106171_b13 article-title: Rethinking the performance comparison between SNNS and ANNS publication-title: Neural Networks doi: 10.1016/j.neunet.2019.09.005 – volume: vol. 13671 start-page: 709 year: 2022 ident: 10.1016/j.neunet.2024.106171_b10 article-title: Towards ultra low latency spiking neural networks for vision and sequential tasks using temporal pruning – year: 2022 ident: 10.1016/j.neunet.2024.106171_b52 article-title: Sleep classification with artificial synthetic imaging data using convolutional neural networks publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 13 start-page: 3628 issue: 8 year: 2013 ident: 10.1016/j.neunet.2024.106171_b28 article-title: A spiking neural network (SNN) forecast engine for short-term electrical load forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.04.007 – start-page: 573 year: 2016 ident: 10.1016/j.neunet.2024.106171_b8 article-title: Photovoltaic system power generation forecasting based on spiking neural network – year: 2021 ident: 10.1016/j.neunet.2024.106171_b42 – ident: 10.1016/j.neunet.2024.106171_b17 doi: 10.1109/ICCV48922.2021.00266 – volume: 69 start-page: 2060 issue: 5 year: 2022 ident: 10.1016/j.neunet.2024.106171_b31 article-title: Sparse compressed spiking neural network accelerator for object detection publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers doi: 10.1109/TCSI.2022.3149006 – volume: 8 start-page: 210023 year: 2020 ident: 10.1016/j.neunet.2024.106171_b37 article-title: A machine learning approach to perform physical activity classification using a sensorized crutch tip publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039885 – volume: 18 start-page: 245 issue: 2 year: 2006 ident: 10.1016/j.neunet.2024.106171_b24 article-title: Polychronization: Computation with spikes publication-title: Neural Computation doi: 10.1162/089976606775093882 – start-page: 192 year: 2018 ident: 10.1016/j.neunet.2024.106171_b29 article-title: Road traffic forecasting using neucube and dynamic evolving spiking neural networks – year: 2023 ident: 10.1016/j.neunet.2024.106171_b14 – volume: 32 issue: 4 year: 2019 ident: 10.1016/j.neunet.2024.106171_b5 article-title: A new design methodology to predict wind farm energy production by means of a spiking neural network–based system publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields doi: 10.1002/jnm.2267 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.neunet.2024.106171_b44 article-title: Financial time series prediction using spiking neural networks publication-title: PLoS One doi: 10.1371/journal.pone.0103656 – volume: 292 year: 2021 ident: 10.1016/j.neunet.2024.106171_b60 article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks publication-title: Applied Energy doi: 10.1016/j.apenergy.2021.116842 – volume: 129 start-page: 271 year: 2020 ident: 10.1016/j.neunet.2024.106171_b7 article-title: A spiking neural network-based long-term prediction system for biogas production publication-title: Neural Networks doi: 10.1016/j.neunet.2020.06.001 – volume: 21 start-page: 2430 issue: 7 year: 2021 ident: 10.1016/j.neunet.2024.106171_b55 article-title: Time series forecasting of univariate agrometeorological data: A comparative performance evaluation via one-step and multi-step ahead forecasting strategies publication-title: Sensors doi: 10.3390/s21072430 – start-page: 171 year: 2011 ident: 10.1016/j.neunet.2024.106171_b63 article-title: Prediction of grain yield based on spiking neural networks model – volume: 15 start-page: 7256 issue: 19 year: 2022 ident: 10.1016/j.neunet.2024.106171_b15 article-title: A spiking neural network based wind power forecasting model for neuromorphic devices publication-title: Energies doi: 10.3390/en15197256 – start-page: 1 year: 2014 ident: 10.1016/j.neunet.2024.106171_b21 article-title: Neuronal dynamics: From single neurons to networks and models of cognition – volume: 192 start-page: 5023 year: 2021 ident: 10.1016/j.neunet.2024.106171_b36 article-title: Financial time series forecasting: Comparison of traditional and spiking neural networks publication-title: Procedia Computer Science doi: 10.1016/j.procs.2021.09.280 – year: 2023 ident: 10.1016/j.neunet.2024.106171_b1 article-title: Improvement of pattern recognition in spiking neural networks by modifying threshold parameter and using image inversion publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-16344-3 – start-page: 359 year: 2018 ident: 10.1016/j.neunet.2024.106171_b23 article-title: Short-term wind speed forecasting model based on spiking neural network – volume: 101 start-page: 187 year: 2016 ident: 10.1016/j.neunet.2024.106171_b48 article-title: On the applicability of spiking neural network models to solve the task of recognizing gender hidden in texts publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.11.023 – year: 2017 ident: 10.1016/j.neunet.2024.106171_b49 – year: 2003 ident: 10.1016/j.neunet.2024.106171_b3 – year: 2021 ident: 10.1016/j.neunet.2024.106171_b46 – volume: 14 year: 2020 ident: 10.1016/j.neunet.2024.106171_b61 article-title: Boosting throughput and efficiency of hardware spiking neural accelerators using time compression supporting multiple spike codes publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2020.00104 – year: 2020 ident: 10.1016/j.neunet.2024.106171_b34 article-title: Online evolving spiking neural networks for incremental air pollution prediction – year: 2015 ident: 10.1016/j.neunet.2024.106171_b19 – year: 2020 ident: 10.1016/j.neunet.2024.106171_b25 – volume: 38 start-page: 1555 issue: 4 year: 2022 ident: 10.1016/j.neunet.2024.106171_b4 article-title: Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2021.11.003 – volume: 157 start-page: 39 year: 2023 ident: 10.1016/j.neunet.2024.106171_b50 article-title: Image-based time series forecasting: A deep convolutional neural network approach publication-title: Neural Networks doi: 10.1016/j.neunet.2022.10.006 – volume: 7 start-page: 2191 issue: 10 year: 2023 ident: 10.1016/j.neunet.2024.106171_b12 article-title: The growing energy footprint of artificial intelligence publication-title: Joule doi: 10.1016/j.joule.2023.09.004 – year: 2013 ident: 10.1016/j.neunet.2024.106171_b43 article-title: Spiking neural networks for financial data prediction – volume: 113 start-page: 1015 issue: 3 year: 2015 ident: 10.1016/j.neunet.2024.106171_b47 article-title: Extracting information in spike time patterns with wavelets and information theory publication-title: Journal of Neurophysiology doi: 10.1152/jn.00380.2014 – volume: 270 year: 2023 ident: 10.1016/j.neunet.2024.106171_b38 article-title: Artificial neural network modelling of the neural population code underlying mathematical operations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2023.119980 – volume: 9 issue: 40 year: 2023 ident: 10.1016/j.neunet.2024.106171_b16 article-title: SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence publication-title: Science Advances doi: 10.1126/sciadv.adi1480 – year: 2010 ident: 10.1016/j.neunet.2024.106171_b51 article-title: A spiking neural network based on temporal encoding for electricity price time series forecasting in deregulated markets – volume: 9 start-page: 54 issue: 1 year: 2016 ident: 10.1016/j.neunet.2024.106171_b54 article-title: A carbon price forecasting model based on variational mode decomposition and spiking neural networks publication-title: Energies doi: 10.3390/en9010054 – year: 2021 ident: 10.1016/j.neunet.2024.106171_b9 – volume: 4 start-page: 356 issue: 7 year: 2016 ident: 10.1016/j.neunet.2024.106171_b35 article-title: Long-term wind speed forecasting using spiking neural network optimized by improved modified grey wolf optimization algorithm publication-title: International Journal of Advanced Research doi: 10.21474/IJAR01/1132 – volume: 21 issue: 2 year: 2021 ident: 10.1016/j.neunet.2024.106171_b32 article-title: Evolving spiking neural network model for PM2.5 hourly concentration prediction based on seasonal differences: A case study on data from Beijing and Shanghai publication-title: Aerosol and Air Quality Research doi: 10.4209/aaqr.2020.05.0247 – volume: 166 start-page: 410 year: 2023 ident: 10.1016/j.neunet.2024.106171_b64 article-title: Sparser spiking activity can be better: Feature refine-and-mask spiking neural network for event-based visual recognition publication-title: Neural Networks doi: 10.1016/j.neunet.2023.07.008 |
| SSID | ssj0006843 |
| Score | 2.5232747 |
| Snippet | Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with ultra-low energy consumption. However, proposals... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106171 |
| SubjectTerms | Forecasting PWM based encoding–decoding algorithm Spiking Neural Network Supervised learning Surrogate gradient |
| Title | Methodology based on spiking neural networks for univariate time-series forecasting |
| URI | https://dx.doi.org/10.1016/j.neunet.2024.106171 https://www.ncbi.nlm.nih.gov/pubmed/38382399 https://www.proquest.com/docview/2930474625 |
| Volume | 173 |
| WOSCitedRecordID | wos001188432600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdYx4HL-IbyMRkJcZlSZbYT28cJdQJUChId6s1KXAe1QmnXtNP-fJ6_0kxj2jhwiSLXTlz_Xp7fs5_fD6H3YiaLLJ0VSakNSxiTNJGVkQnJdM50lc2o40_5OeLjsZhO5fdAc9c4OgFe1-LyUq7-K9RQBmDbo7P_AHf7UCiAewAdrgA7XO8E_FfHCe1TK9k5amb3A5rV3K6JH9n0lQBK7YO_XS6Go209vwCPGYxOxzSf2F4a95PRRbOJc9si5nm68oQ2oMeSp7mlVLP-5WO7nMYF634etnfAaO-uMRC2i-gLalFwgI97mqCB-UtZ1KWcdrShdTc9wco1Re3XDBYD-NvQ4YF96WBX_Wpe7PE3dXo2GqnJcDr5sDpPLGWY3VoP_Cl7aJ_wTIoe2j_5PJx-aSfiXPjzFbGj8eSkC--7_uKbLJObPA9ngUweoYPgOuATD_ljdM_UT9DDSMuBg5Z-in50JAA7CcDLGgcJwF4CcMQPA8x4JwG4IwG4IwHP0NnpcPLxUxK4MxLNUrFJSG4qTnRpaFkd52mVUlEamVUE1KwsaWEILfPMEJOSCiqUtALDFlyYGdFca83pc9Srl7V5iTAzRhQlJYVghPGqklmRMUNgzNLjIpNlH9E4bkqHxPKW3-S3ihGEC-VHW9nRVn60-yhpW618YpVb6vMIiQrGoTf6FIjULS3fRQQV6E67IVbUZrltFJi6KeMsJ1kfvfDQtn2hwu6QS_nqDq1fowe7r-YN6m3WW_MW3dcXm3mzPkR7fCoOg3D-AQNRnSc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+based+on+spiking+neural+networks+for+univariate+time-series+forecasting&rft.jtitle=Neural+networks&rft.au=Lucas%2C+Sergio&rft.au=Portillo%2C+Eva&rft.date=2024-05-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=173&rft.spage=106171&rft_id=info:doi/10.1016%2Fj.neunet.2024.106171&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |