A New Midcourse Guidance Design for Near Space Target Interceptor

This study proposes a new midcourse guidance method, combining the trajectory optimization approach and the optimal sliding mode method, to decrease the larger relative velocity between the near space target and the interceptor. Firstly, the midcourse trajectory optimization model is established. Th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 17642 - 17651
Main Authors: Wu, Yanrui, Xiao, Mingqing, Zhang, Danxu, Peng, Weishi, Xu, Yang, Dong, Xinyu
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes a new midcourse guidance method, combining the trajectory optimization approach and the optimal sliding mode method, to decrease the larger relative velocity between the near space target and the interceptor. Firstly, the midcourse trajectory optimization model is established. Then, the trajectory optimization guidance law based on a sampling scheme is proposed to decrease the larger relative velocity and satisfy multiple constraints at the end time of the midcourse guidance phase. Thirdly, the optimal sliding mode guidance law is introduced to deal with the target maneuverability. Finally, numerical simulations were performed to verify the performance of the midcourse guidance law.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2966248