A New One-Layer Neural Network for Linear and Quadratic Programming

In this paper, we present a new neural network for solving linear and quadratic programming problems in real time by introducing some new vectors. The proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem when the objective f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on neural networks Ročník 21; číslo 6; s. 918 - 929
Hlavní autori: XINGBAO GAO, LIAO, Li-Zhi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.06.2010
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1045-9227, 1941-0093, 1941-0093
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present a new neural network for solving linear and quadratic programming problems in real time by introducing some new vectors. The proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem when the objective function is convex on the set defined by equality constraints. Compared with existing one-layer neural networks for quadratic programming problems, the proposed neural network has the least neurons and requires weak stability conditions. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
1941-0093
1941-0093
DOI:10.1109/TNN.2010.2045129