Multi-Layer Basis Pursuit for Compressed Sensing MR Image Reconstruction

Compressive Sensing (CS) is a widely used technique in biomedical signal acquisition and reconstruction. The technique is especially useful for reducing acquisition time for magnetic resonance imaging (MRI) signal acquisitions and reconstruction, where effects of patient fatigue and Claustrophobia n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 8; s. 186222 - 186232
Hlavní autoři: Wahid, Abdul, Shah, Jawad Ali, Khan, Adnan Umar, Ahmed, Manzoor, Razali, Hanif
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Compressive Sensing (CS) is a widely used technique in biomedical signal acquisition and reconstruction. The technique is especially useful for reducing acquisition time for magnetic resonance imaging (MRI) signal acquisitions and reconstruction, where effects of patient fatigue and Claustrophobia need mitigation. In addition to improving patient experience, faster MRI scans are important for time sensitive imaging, such as functional or cardiac MRI, where target movement is unavoidable. Inspired from recent research works on multi-layer convolutional sparse coding (ML-CSC) theory to model deep neural networks, this work proposes a multi-layer basis pursuit framework which combines the benefit from objective-based CS reconstructions and deep learning-based reconstruction by employing iterative thresholding algorithms for successfully training a CS-MRI restoration framework on GPU and reconstruct test images using parameters of the trained model. Extensive experiments show the effectiveness of the proposed framework on four MRI datasets in terms of faster convergence, improved PSNR/SSIM, and better restoration efficiency as compared to the state of the art frameworks with different CS ratios.
AbstractList Compressive Sensing (CS) is a widely used technique in biomedical signal acquisition and reconstruction. The technique is especially useful for reducing acquisition time for magnetic resonance imaging (MRI) signal acquisitions and reconstruction, where effects of patient fatigue and Claustrophobia need mitigation. In addition to improving patient experience, faster MRI scans are important for time sensitive imaging, such as functional or cardiac MRI, where target movement is unavoidable. Inspired from recent research works on multi-layer convolutional sparse coding (ML-CSC) theory to model deep neural networks, this work proposes a multi-layer basis pursuit framework which combines the benefit from objective-based CS reconstructions and deep learning-based reconstruction by employing iterative thresholding algorithms for successfully training a CS-MRI restoration framework on GPU and reconstruct test images using parameters of the trained model. Extensive experiments show the effectiveness of the proposed framework on four MRI datasets in terms of faster convergence, improved PSNR/SSIM, and better restoration efficiency as compared to the state of the art frameworks with different CS ratios.
Author Shah, Jawad Ali
Khan, Adnan Umar
Wahid, Abdul
Ahmed, Manzoor
Razali, Hanif
Author_xml – sequence: 1
  givenname: Abdul
  orcidid: 0000-0003-3922-1591
  surname: Wahid
  fullname: Wahid, Abdul
  organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan
– sequence: 2
  givenname: Jawad Ali
  orcidid: 0000-0002-0339-4370
  surname: Shah
  fullname: Shah, Jawad Ali
  email: jawad@unikl.edu.my
  organization: Electronic Section, UniKL British Malaysian Institute, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Adnan Umar
  surname: Khan
  fullname: Khan, Adnan Umar
  organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan
– sequence: 4
  givenname: Manzoor
  orcidid: 0000-0002-0459-9845
  surname: Ahmed
  fullname: Ahmed, Manzoor
  organization: College of Computer Science and Technology, Qingdao University, Qingdao, China
– sequence: 5
  givenname: Hanif
  surname: Razali
  fullname: Razali, Hanif
  organization: Electronic Section, UniKL British Malaysian Institute, Kuala Lumpur, Malaysia
BookMark eNqFUcFO3DAQtSoqFShfwCVSz9l67CS2jzQCdqVFILY9W2PHWXm1Gy-2c-DvyTYIVVw6lxk9zXtvNO-CnA1hcIRcA10AUPXzpm1vN5sFo4wuOGVSCvGFnDNoVMlr3pz9M38jVynt6FRygmpxTpYP4z77co2vLha_MPlUPI0xjT4XfYhFGw7H6FJyXbFxQ_LDtnh4LlYH3Lri2dkwpBxHm30YvpOvPe6Tu3rvl-TP3e3vdlmuH-9X7c26tBWVuYSusyCkaWgvrTHCKTAWeCOZNMC5rTrZcSNqhlIhWiGhUlT0dd2Jhilq-CVZzbpdwJ0-Rn_A-KoDev0XCHGrMWZv907TXilUpmF101XAmEHkxlJA5RrT9zhp_Zi1jjG8jC5lvQtjHKbzNatqLkECU9MWn7dsDClF13-4AtWnBPScgD4loN8TmFjqE8v6jKdP5Yh-_x_u9cz1zrkPN8WgqinwN4xglPw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3142535
crossref_primary_10_3390_geomatics5010007
crossref_primary_10_1109_ACCESS_2023_3330645
crossref_primary_10_3390_app11219802
crossref_primary_10_1016_j_bspc_2024_106218
crossref_primary_10_1002_jmri_28689
crossref_primary_10_1007_s00530_023_01059_0
crossref_primary_10_1109_ACCESS_2024_3448612
crossref_primary_10_1109_TCI_2025_3573587
crossref_primary_10_1093_comjnl_bxac175
crossref_primary_10_1155_2021_6638588
crossref_primary_10_1007_s00034_024_02624_2
crossref_primary_10_1007_s11277_022_09971_w
Cites_doi 10.1109/TBME.2013.2294939
10.1137/18M1183352
10.1109/ALLERTON.2015.7447163
10.1109/ISBI45749.2020.9098514
10.1016/j.dsp.2017.09.010
10.1109/JSTSP.2010.2042333
10.1109/TMI.2018.2816739
10.1109/CVPR.2018.00196
10.1109/TMI.2018.2799231
10.1002/mrm.21391
10.1109/TMI.2018.2858752
10.1109/TMI.2010.2090538
10.1109/TIM.2020.2972172
10.1137/1.9781611974997
10.1109/ACCESS.2020.3004731
10.1007/s10851-016-0647-7
10.1109/ISBI.2016.7493320
10.1109/TIT.2016.2556683
10.1136/jnnp.74.3.288
10.1109/TPAMI.2018.2883941
10.1109/TGRS.2011.2177843
10.1007/978-1-4419-7011-4
10.1109/ACCESS.2019.2949917
10.1561/2200000016
10.1109/TPAMI.2019.2904255
10.1137/080716542
10.1109/TNSRE.2014.2319334
10.1109/TIP.2017.2713099
10.1109/CVPR42600.2020.01432
10.1016/j.bspc.2018.05.022
10.1016/j.mri.2012.02.019
10.1109/TMI.2018.2832656
10.1016/j.mri.2010.06.029
10.1002/mrm.28274
10.1109/TIP.2017.2662206
10.1002/cpa.20042
10.1109/MMSP.2017.8122281
10.1007/978-3-030-01267-0_50
10.1109/TMI.2017.2785879
10.1002/mrm.26977
10.1109/TMI.2017.2708987
10.1109/MSP.2016.2602099
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3028877
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 186232
ExternalDocumentID oai_doaj_org_article_0f99a9b6256d4122baa3bc01a9e6bffa
10_1109_ACCESS_2020_3028877
9214501
Genre orig-research
GrantInformation_xml – fundername: UniKL BMI, Kuala Lumpur
  grantid: FRGS/1/2019/TK04/UNIKL/02/6
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-1ddc178b60f8cbb7e91bc136828b133c4d8d3b752a89aac7814907f55d76290b3
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583565500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:46 EDT 2025
Sun Nov 30 04:55:09 EST 2025
Tue Nov 18 22:22:55 EST 2025
Sat Nov 29 04:14:16 EST 2025
Wed Aug 27 02:31:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1ddc178b60f8cbb7e91bc136828b133c4d8d3b752a89aac7814907f55d76290b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0459-9845
0000-0003-3922-1591
0000-0002-0339-4370
OpenAccessLink https://doaj.org/article/0f99a9b6256d4122baa3bc01a9e6bffa
PQID 2453818129
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_primary_10_1109_ACCESS_2020_3028877
crossref_citationtrail_10_1109_ACCESS_2020_3028877
proquest_journals_2453818129
doaj_primary_oai_doaj_org_article_0f99a9b6256d4122baa3bc01a9e6bffa
ieee_primary_9214501
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
sun (ref34) 2016
metzler (ref32) 2017
ref24
ref23
ref48
ref47
ref25
ref20
ref42
ref41
ref22
ref21
gregor (ref26) 2010
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
glorot (ref45) 2010
ref3
beck (ref44) 2017; 25
ref6
ref5
ref40
papyan (ref37) 2017; 18
kingma (ref46) 2014
References_xml – ident: ref11
  doi: 10.1109/TBME.2013.2294939
– ident: ref41
  doi: 10.1137/18M1183352
– start-page: 399
  year: 2010
  ident: ref26
  article-title: Learning fast approximations of sparse coding
  publication-title: Proc 27th Int Conf Int Conf Mach Learn
– volume: 18
  start-page: 2887
  year: 2017
  ident: ref37
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1109/ALLERTON.2015.7447163
– start-page: 249
  year: 2010
  ident: ref45
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref25
  doi: 10.1109/ISBI45749.2020.9098514
– ident: ref6
  doi: 10.1016/j.dsp.2017.09.010
– ident: ref8
  doi: 10.1109/JSTSP.2010.2042333
– start-page: 1772
  year: 2017
  ident: ref32
  article-title: Learned D-AMP: Principled neural network based compressive image recovery
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 10
  year: 2016
  ident: ref34
  article-title: Deep ADMM-Net for compressive sensing MRI
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1109/TMI.2018.2816739
– ident: ref27
  doi: 10.1109/CVPR.2018.00196
– ident: ref29
  doi: 10.1109/TMI.2018.2799231
– ident: ref4
  doi: 10.1002/mrm.21391
– ident: ref22
  doi: 10.1109/TMI.2018.2858752
– ident: ref10
  doi: 10.1109/TMI.2010.2090538
– ident: ref17
  doi: 10.1109/TIM.2020.2972172
– volume: 25
  year: 2017
  ident: ref44
  publication-title: First Order Optimization Method
  doi: 10.1137/1.9781611974997
– ident: ref48
  doi: 10.1109/ACCESS.2020.3004731
– ident: ref14
  doi: 10.1007/s10851-016-0647-7
– ident: ref7
  doi: 10.1109/ISBI.2016.7493320
– ident: ref33
  doi: 10.1109/TIT.2016.2556683
– ident: ref47
  doi: 10.1136/jnnp.74.3.288
– ident: ref35
  doi: 10.1109/TPAMI.2018.2883941
– ident: ref2
  doi: 10.1109/TGRS.2011.2177843
– ident: ref39
  doi: 10.1007/978-1-4419-7011-4
– ident: ref12
  doi: 10.1109/ACCESS.2019.2949917
– ident: ref38
  doi: 10.1561/2200000016
– ident: ref40
  doi: 10.1109/TPAMI.2019.2904255
– ident: ref42
  doi: 10.1137/080716542
– ident: ref15
  doi: 10.1109/TNSRE.2014.2319334
– ident: ref19
  doi: 10.1109/TIP.2017.2713099
– ident: ref36
  doi: 10.1109/CVPR42600.2020.01432
– ident: ref3
  doi: 10.1016/j.bspc.2018.05.022
– ident: ref9
  doi: 10.1016/j.mri.2012.02.019
– ident: ref30
  doi: 10.1109/TMI.2018.2832656
– ident: ref13
  doi: 10.1016/j.mri.2010.06.029
– ident: ref23
  doi: 10.1002/mrm.28274
– ident: ref18
  doi: 10.1109/TIP.2017.2662206
– ident: ref28
  doi: 10.1002/cpa.20042
– ident: ref24
  doi: 10.1109/MMSP.2017.8122281
– ident: ref43
  doi: 10.1007/978-3-030-01267-0_50
– year: 2014
  ident: ref46
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref21
  doi: 10.1109/TMI.2017.2785879
– ident: ref31
  doi: 10.1002/mrm.26977
– ident: ref20
  doi: 10.1109/TMI.2017.2708987
– ident: ref1
  doi: 10.1109/MSP.2016.2602099
SSID ssj0000816957
Score 2.281354
Snippet Compressive Sensing (CS) is a widely used technique in biomedical signal acquisition and reconstruction. The technique is especially useful for reducing...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 186222
SubjectTerms Algorithms
Artificial neural networks
Compressed sensing
Compressive sensing
Image acquisition
Image reconstruction
inverse problems in imaging
Iterative algorithms
Iterative methods
iterative thresholding algorithms
Machine learning
Magnetic resonance imaging
multi-layered convolutional sparse coding
Multilayers
Restoration
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMceBXEQkE-cGyo87Tn2K6oigRVxUPqzfITrVS2qNnl9zPjuAEEQuIWRXbk5Itn5rM93wC8wtii9eirjnxBRdbPVa6PqaJQQfdo21DLlItNqLMzfXGB5ztwMOfCxBjz4bP4mi_zXn648lteKjtEltXmZK1bSg1Trta8nsIFJLBXRViolnh4tFzSOxAFbIiZkhvVSv3mfLJGfymq8oclzu7l5P7_DewB3CthpDiacH8IO3H9CO7-Ii64B6c5t7Z6ZymoFsd2XI3ifHs9blcbQYGqYEOQhcOD-MiH2NdfxPsP4u1Xsi-COelPZdnH8PnkzaflaVXqJlS-k3pT1SH4Wmk3yKS9cypi7XzdDkSuHFFS3wUdWqf6xmq01rPoFVHk1PeBLCNK1z6B3fXVOj4FgUh0ApNOGIYuyojMsLxUbggEYxsX0Nx8UOOLqDjXtrg0mVxINBMKhlEwBYUFHMydvk2aGv9ufsxIzU1ZEDvfIAhMmV9GJkSLjtjcELq6aZy1rfOythgHl5JdwB7DNj-kILaA_RvcTZm8o2m6nuMYioSe_b3Xc7jDA5xWYvZhl_CIL-C2_75Zjdcv83_5A0Y_31U
  priority: 102
  providerName: IEEE
Title Multi-Layer Basis Pursuit for Compressed Sensing MR Image Reconstruction
URI https://ieeexplore.ieee.org/document/9214501
https://www.proquest.com/docview/2453818129
https://doaj.org/article/0f99a9b6256d4122baa3bc01a9e6bffa
Volume 8
WOSCitedRecordID wos000583565500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-yMGji8m-kjnWUlFQER_gLeQpBa1iq0d_u5PstlYEvXjZw7KvzExmvm9JviHkAHwB2oLNSqwFGWY_k5nKhwyhgqxAF46zkJpNiMtLeX8PVzOtvuKasEYeuDHcEQsAGgzC9NqVPM-N1oWxjGvwtQkhQSMmYIZMpRwseQ2VaGWGOIOjbq-HI0JCmCNPxaIqhfhWipJif9ti5UdeTsXmZIUstyiRdpuvWyVzfrhGlma0A9fJado6m51rxMz0WI8GI3qFzP9tMKaIQ2mc50kX3NGbuEZ9-EAvrunZE6YPGinnl3DsBrk76d_2TrO2LUJmSybHGXfOciFNzYK0xggP3Fhe1MidDDJOWzrpCiOqXEvQ2kZNK2TAoaocJj5gptgk88Pnod8iFADZAgQZwNWlZx4igbJMmNqhlwrfIfnEQsq2muGxdcWjStyBgWrMqqJZVWvWDjmc3vTSSGb8fvlxNP300qh3nU5gFKg2CtRfUdAh69Fx04dAFGBnvEN2J45U7dwcqbysIkxBoLP9H6_eIYtxOM1vmV0yj97ze2TBvo8Ho9f9FJZ4vPjo76fNhZ90YuWv
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hWqn00AcPdQttfeiRFOftOcKqaFGXFSpU4mb5iVaCpSK7_f0dOyaAWlXqLYrsyMkXz8xne74B-IyuRGXQZBX5goysn8507XxGoYKoUZU25z4Wm2hnM3F5iWdrsD_kwjjn4uEz9yVcxr18e2tWYansAIOsdkjWelZXVcH7bK1hRSWUkMC6TdJCOceDw_GY3oJIYEHclBypaNsn7ieq9KeyKn_Y4uhgjl__39DewKsUSLLDHvm3sOYWm_DykbzgFkxidm02VRRWsyPVzTt2trrrVvMlo1CVBVMQpcMtOw_H2BdX7PQ7O7khC8MCK33Qlt2GH8dfL8aTLFVOyEzFxTLLrTV5K3TDvTBatw5zbfKyIXqliZSaygpb6rYulEClTJC9IpLs69qSbUSuyx1YX9wu3DtgiEQo0AuPtqkcdxg4luGtbiwBWboRFPcfVJokKx6qW1zLSC84yh4FGVCQCYUR7A-dfvaqGv9ufhSQGpoGSex4gyCQaYZJ7hEVauJzja3yotBKldrwXKFrtPdqBFsBtuEhCbER7N3jLtP07WRR1SGSoVjo_d97fYIXk4vTqZyezL7twkYYbL8uswfrhI37AM_Nr-W8u_sY_9HfCmfinA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Layer+Basis+Pursuit+for+Compressed+Sensing+MR+Image+Reconstruction&rft.jtitle=IEEE+access&rft.au=Wahid%2C+Abdul&rft.au=Shah%2C+Jawad+Ali&rft.au=Khan%2C+Adnan+Umar&rft.au=Ahmed%2C+Manzoor&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=186222&rft.epage=186232&rft_id=info:doi/10.1109%2FACCESS.2020.3028877&rft.externalDocID=9214501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon