Multi-Layer Basis Pursuit for Compressed Sensing MR Image Reconstruction
Compressive Sensing (CS) is a widely used technique in biomedical signal acquisition and reconstruction. The technique is especially useful for reducing acquisition time for magnetic resonance imaging (MRI) signal acquisitions and reconstruction, where effects of patient fatigue and Claustrophobia n...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 186222 - 186232 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Compressive Sensing (CS) is a widely used technique in biomedical signal acquisition and reconstruction. The technique is especially useful for reducing acquisition time for magnetic resonance imaging (MRI) signal acquisitions and reconstruction, where effects of patient fatigue and Claustrophobia need mitigation. In addition to improving patient experience, faster MRI scans are important for time sensitive imaging, such as functional or cardiac MRI, where target movement is unavoidable. Inspired from recent research works on multi-layer convolutional sparse coding (ML-CSC) theory to model deep neural networks, this work proposes a multi-layer basis pursuit framework which combines the benefit from objective-based CS reconstructions and deep learning-based reconstruction by employing iterative thresholding algorithms for successfully training a CS-MRI restoration framework on GPU and reconstruct test images using parameters of the trained model. Extensive experiments show the effectiveness of the proposed framework on four MRI datasets in terms of faster convergence, improved PSNR/SSIM, and better restoration efficiency as compared to the state of the art frameworks with different CS ratios. |
|---|---|
| AbstractList | Compressive Sensing (CS) is a widely used technique in biomedical signal acquisition and reconstruction. The technique is especially useful for reducing acquisition time for magnetic resonance imaging (MRI) signal acquisitions and reconstruction, where effects of patient fatigue and Claustrophobia need mitigation. In addition to improving patient experience, faster MRI scans are important for time sensitive imaging, such as functional or cardiac MRI, where target movement is unavoidable. Inspired from recent research works on multi-layer convolutional sparse coding (ML-CSC) theory to model deep neural networks, this work proposes a multi-layer basis pursuit framework which combines the benefit from objective-based CS reconstructions and deep learning-based reconstruction by employing iterative thresholding algorithms for successfully training a CS-MRI restoration framework on GPU and reconstruct test images using parameters of the trained model. Extensive experiments show the effectiveness of the proposed framework on four MRI datasets in terms of faster convergence, improved PSNR/SSIM, and better restoration efficiency as compared to the state of the art frameworks with different CS ratios. |
| Author | Shah, Jawad Ali Khan, Adnan Umar Wahid, Abdul Ahmed, Manzoor Razali, Hanif |
| Author_xml | – sequence: 1 givenname: Abdul orcidid: 0000-0003-3922-1591 surname: Wahid fullname: Wahid, Abdul organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan – sequence: 2 givenname: Jawad Ali orcidid: 0000-0002-0339-4370 surname: Shah fullname: Shah, Jawad Ali email: jawad@unikl.edu.my organization: Electronic Section, UniKL British Malaysian Institute, Kuala Lumpur, Malaysia – sequence: 3 givenname: Adnan Umar surname: Khan fullname: Khan, Adnan Umar organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan – sequence: 4 givenname: Manzoor orcidid: 0000-0002-0459-9845 surname: Ahmed fullname: Ahmed, Manzoor organization: College of Computer Science and Technology, Qingdao University, Qingdao, China – sequence: 5 givenname: Hanif surname: Razali fullname: Razali, Hanif organization: Electronic Section, UniKL British Malaysian Institute, Kuala Lumpur, Malaysia |
| BookMark | eNqFUcFO3DAQtSoqFShfwCVSz9l67CS2jzQCdqVFILY9W2PHWXm1Gy-2c-DvyTYIVVw6lxk9zXtvNO-CnA1hcIRcA10AUPXzpm1vN5sFo4wuOGVSCvGFnDNoVMlr3pz9M38jVynt6FRygmpxTpYP4z77co2vLha_MPlUPI0xjT4XfYhFGw7H6FJyXbFxQ_LDtnh4LlYH3Lri2dkwpBxHm30YvpOvPe6Tu3rvl-TP3e3vdlmuH-9X7c26tBWVuYSusyCkaWgvrTHCKTAWeCOZNMC5rTrZcSNqhlIhWiGhUlT0dd2Jhilq-CVZzbpdwJ0-Rn_A-KoDev0XCHGrMWZv907TXilUpmF101XAmEHkxlJA5RrT9zhp_Zi1jjG8jC5lvQtjHKbzNatqLkECU9MWn7dsDClF13-4AtWnBPScgD4loN8TmFjqE8v6jKdP5Yh-_x_u9cz1zrkPN8WgqinwN4xglPw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3142535 crossref_primary_10_3390_geomatics5010007 crossref_primary_10_1109_ACCESS_2023_3330645 crossref_primary_10_3390_app11219802 crossref_primary_10_1016_j_bspc_2024_106218 crossref_primary_10_1002_jmri_28689 crossref_primary_10_1007_s00530_023_01059_0 crossref_primary_10_1109_ACCESS_2024_3448612 crossref_primary_10_1109_TCI_2025_3573587 crossref_primary_10_1093_comjnl_bxac175 crossref_primary_10_1155_2021_6638588 crossref_primary_10_1007_s00034_024_02624_2 crossref_primary_10_1007_s11277_022_09971_w |
| Cites_doi | 10.1109/TBME.2013.2294939 10.1137/18M1183352 10.1109/ALLERTON.2015.7447163 10.1109/ISBI45749.2020.9098514 10.1016/j.dsp.2017.09.010 10.1109/JSTSP.2010.2042333 10.1109/TMI.2018.2816739 10.1109/CVPR.2018.00196 10.1109/TMI.2018.2799231 10.1002/mrm.21391 10.1109/TMI.2018.2858752 10.1109/TMI.2010.2090538 10.1109/TIM.2020.2972172 10.1137/1.9781611974997 10.1109/ACCESS.2020.3004731 10.1007/s10851-016-0647-7 10.1109/ISBI.2016.7493320 10.1109/TIT.2016.2556683 10.1136/jnnp.74.3.288 10.1109/TPAMI.2018.2883941 10.1109/TGRS.2011.2177843 10.1007/978-1-4419-7011-4 10.1109/ACCESS.2019.2949917 10.1561/2200000016 10.1109/TPAMI.2019.2904255 10.1137/080716542 10.1109/TNSRE.2014.2319334 10.1109/TIP.2017.2713099 10.1109/CVPR42600.2020.01432 10.1016/j.bspc.2018.05.022 10.1016/j.mri.2012.02.019 10.1109/TMI.2018.2832656 10.1016/j.mri.2010.06.029 10.1002/mrm.28274 10.1109/TIP.2017.2662206 10.1002/cpa.20042 10.1109/MMSP.2017.8122281 10.1007/978-3-030-01267-0_50 10.1109/TMI.2017.2785879 10.1002/mrm.26977 10.1109/TMI.2017.2708987 10.1109/MSP.2016.2602099 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.3028877 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 186232 |
| ExternalDocumentID | oai_doaj_org_article_0f99a9b6256d4122baa3bc01a9e6bffa 10_1109_ACCESS_2020_3028877 9214501 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: UniKL BMI, Kuala Lumpur grantid: FRGS/1/2019/TK04/UNIKL/02/6 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-1ddc178b60f8cbb7e91bc136828b133c4d8d3b752a89aac7814907f55d76290b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583565500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:42:46 EDT 2025 Sun Nov 30 04:55:09 EST 2025 Tue Nov 18 22:22:55 EST 2025 Sat Nov 29 04:14:16 EST 2025 Wed Aug 27 02:31:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-1ddc178b60f8cbb7e91bc136828b133c4d8d3b752a89aac7814907f55d76290b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0459-9845 0000-0003-3922-1591 0000-0002-0339-4370 |
| OpenAccessLink | https://doaj.org/article/0f99a9b6256d4122baa3bc01a9e6bffa |
| PQID | 2453818129 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2020_3028877 crossref_citationtrail_10_1109_ACCESS_2020_3028877 proquest_journals_2453818129 doaj_primary_oai_doaj_org_article_0f99a9b6256d4122baa3bc01a9e6bffa ieee_primary_9214501 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 sun (ref34) 2016 metzler (ref32) 2017 ref24 ref23 ref48 ref47 ref25 ref20 ref42 ref41 ref22 ref21 gregor (ref26) 2010 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 glorot (ref45) 2010 ref3 beck (ref44) 2017; 25 ref6 ref5 ref40 papyan (ref37) 2017; 18 kingma (ref46) 2014 |
| References_xml | – ident: ref11 doi: 10.1109/TBME.2013.2294939 – ident: ref41 doi: 10.1137/18M1183352 – start-page: 399 year: 2010 ident: ref26 article-title: Learning fast approximations of sparse coding publication-title: Proc 27th Int Conf Int Conf Mach Learn – volume: 18 start-page: 2887 year: 2017 ident: ref37 article-title: Convolutional neural networks analyzed via convolutional sparse coding publication-title: J Mach Learn Res – ident: ref5 doi: 10.1109/ALLERTON.2015.7447163 – start-page: 249 year: 2010 ident: ref45 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref25 doi: 10.1109/ISBI45749.2020.9098514 – ident: ref6 doi: 10.1016/j.dsp.2017.09.010 – ident: ref8 doi: 10.1109/JSTSP.2010.2042333 – start-page: 1772 year: 2017 ident: ref32 article-title: Learned D-AMP: Principled neural network based compressive image recovery publication-title: Proc Adv Neural Inf Process Syst – start-page: 10 year: 2016 ident: ref34 article-title: Deep ADMM-Net for compressive sensing MRI publication-title: Proc Adv Neural Inf Process Syst – ident: ref16 doi: 10.1109/TMI.2018.2816739 – ident: ref27 doi: 10.1109/CVPR.2018.00196 – ident: ref29 doi: 10.1109/TMI.2018.2799231 – ident: ref4 doi: 10.1002/mrm.21391 – ident: ref22 doi: 10.1109/TMI.2018.2858752 – ident: ref10 doi: 10.1109/TMI.2010.2090538 – ident: ref17 doi: 10.1109/TIM.2020.2972172 – volume: 25 year: 2017 ident: ref44 publication-title: First Order Optimization Method doi: 10.1137/1.9781611974997 – ident: ref48 doi: 10.1109/ACCESS.2020.3004731 – ident: ref14 doi: 10.1007/s10851-016-0647-7 – ident: ref7 doi: 10.1109/ISBI.2016.7493320 – ident: ref33 doi: 10.1109/TIT.2016.2556683 – ident: ref47 doi: 10.1136/jnnp.74.3.288 – ident: ref35 doi: 10.1109/TPAMI.2018.2883941 – ident: ref2 doi: 10.1109/TGRS.2011.2177843 – ident: ref39 doi: 10.1007/978-1-4419-7011-4 – ident: ref12 doi: 10.1109/ACCESS.2019.2949917 – ident: ref38 doi: 10.1561/2200000016 – ident: ref40 doi: 10.1109/TPAMI.2019.2904255 – ident: ref42 doi: 10.1137/080716542 – ident: ref15 doi: 10.1109/TNSRE.2014.2319334 – ident: ref19 doi: 10.1109/TIP.2017.2713099 – ident: ref36 doi: 10.1109/CVPR42600.2020.01432 – ident: ref3 doi: 10.1016/j.bspc.2018.05.022 – ident: ref9 doi: 10.1016/j.mri.2012.02.019 – ident: ref30 doi: 10.1109/TMI.2018.2832656 – ident: ref13 doi: 10.1016/j.mri.2010.06.029 – ident: ref23 doi: 10.1002/mrm.28274 – ident: ref18 doi: 10.1109/TIP.2017.2662206 – ident: ref28 doi: 10.1002/cpa.20042 – ident: ref24 doi: 10.1109/MMSP.2017.8122281 – ident: ref43 doi: 10.1007/978-3-030-01267-0_50 – year: 2014 ident: ref46 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref21 doi: 10.1109/TMI.2017.2785879 – ident: ref31 doi: 10.1002/mrm.26977 – ident: ref20 doi: 10.1109/TMI.2017.2708987 – ident: ref1 doi: 10.1109/MSP.2016.2602099 |
| SSID | ssj0000816957 |
| Score | 2.281354 |
| Snippet | Compressive Sensing (CS) is a widely used technique in biomedical signal acquisition and reconstruction. The technique is especially useful for reducing... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 186222 |
| SubjectTerms | Algorithms Artificial neural networks Compressed sensing Compressive sensing Image acquisition Image reconstruction inverse problems in imaging Iterative algorithms Iterative methods iterative thresholding algorithms Machine learning Magnetic resonance imaging multi-layered convolutional sparse coding Multilayers Restoration Training |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMceBXEQkE-cGyo87Tn2K6oigRVxUPqzfITrVS2qNnl9zPjuAEEQuIWRXbk5Itn5rM93wC8wtii9eirjnxBRdbPVa6PqaJQQfdo21DLlItNqLMzfXGB5ztwMOfCxBjz4bP4mi_zXn648lteKjtEltXmZK1bSg1Trta8nsIFJLBXRViolnh4tFzSOxAFbIiZkhvVSv3mfLJGfymq8oclzu7l5P7_DewB3CthpDiacH8IO3H9CO7-Ii64B6c5t7Z6ZymoFsd2XI3ifHs9blcbQYGqYEOQhcOD-MiH2NdfxPsP4u1Xsi-COelPZdnH8PnkzaflaVXqJlS-k3pT1SH4Wmk3yKS9cypi7XzdDkSuHFFS3wUdWqf6xmq01rPoFVHk1PeBLCNK1z6B3fXVOj4FgUh0ApNOGIYuyojMsLxUbggEYxsX0Nx8UOOLqDjXtrg0mVxINBMKhlEwBYUFHMydvk2aGv9ufsxIzU1ZEDvfIAhMmV9GJkSLjtjcELq6aZy1rfOythgHl5JdwB7DNj-kILaA_RvcTZm8o2m6nuMYioSe_b3Xc7jDA5xWYvZhl_CIL-C2_75Zjdcv83_5A0Y_31U priority: 102 providerName: IEEE |
| Title | Multi-Layer Basis Pursuit for Compressed Sensing MR Image Reconstruction |
| URI | https://ieeexplore.ieee.org/document/9214501 https://www.proquest.com/docview/2453818129 https://doaj.org/article/0f99a9b6256d4122baa3bc01a9e6bffa |
| Volume | 8 |
| WOSCitedRecordID | wos000583565500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-yMGji8m-kjnWUlFQER_gLeQpBa1iq0d_u5PstlYEvXjZw7KvzExmvm9JviHkAHwB2oLNSqwFGWY_k5nKhwyhgqxAF46zkJpNiMtLeX8PVzOtvuKasEYeuDHcEQsAGgzC9NqVPM-N1oWxjGvwtQkhQSMmYIZMpRwseQ2VaGWGOIOjbq-HI0JCmCNPxaIqhfhWipJif9ti5UdeTsXmZIUstyiRdpuvWyVzfrhGlma0A9fJado6m51rxMz0WI8GI3qFzP9tMKaIQ2mc50kX3NGbuEZ9-EAvrunZE6YPGinnl3DsBrk76d_2TrO2LUJmSybHGXfOciFNzYK0xggP3Fhe1MidDDJOWzrpCiOqXEvQ2kZNK2TAoaocJj5gptgk88Pnod8iFADZAgQZwNWlZx4igbJMmNqhlwrfIfnEQsq2muGxdcWjStyBgWrMqqJZVWvWDjmc3vTSSGb8fvlxNP300qh3nU5gFKg2CtRfUdAh69Fx04dAFGBnvEN2J45U7dwcqbysIkxBoLP9H6_eIYtxOM1vmV0yj97ze2TBvo8Ho9f9FJZ4vPjo76fNhZ90YuWv |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hWqn00AcPdQttfeiRFOftOcKqaFGXFSpU4mb5iVaCpSK7_f0dOyaAWlXqLYrsyMkXz8xne74B-IyuRGXQZBX5goysn8507XxGoYKoUZU25z4Wm2hnM3F5iWdrsD_kwjjn4uEz9yVcxr18e2tWYansAIOsdkjWelZXVcH7bK1hRSWUkMC6TdJCOceDw_GY3oJIYEHclBypaNsn7ieq9KeyKn_Y4uhgjl__39DewKsUSLLDHvm3sOYWm_DykbzgFkxidm02VRRWsyPVzTt2trrrVvMlo1CVBVMQpcMtOw_H2BdX7PQ7O7khC8MCK33Qlt2GH8dfL8aTLFVOyEzFxTLLrTV5K3TDvTBatw5zbfKyIXqliZSaygpb6rYulEClTJC9IpLs69qSbUSuyx1YX9wu3DtgiEQo0AuPtqkcdxg4luGtbiwBWboRFPcfVJokKx6qW1zLSC84yh4FGVCQCYUR7A-dfvaqGv9ufhSQGpoGSex4gyCQaYZJ7hEVauJzja3yotBKldrwXKFrtPdqBFsBtuEhCbER7N3jLtP07WRR1SGSoVjo_d97fYIXk4vTqZyezL7twkYYbL8uswfrhI37AM_Nr-W8u_sY_9HfCmfinA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Layer+Basis+Pursuit+for+Compressed+Sensing+MR+Image+Reconstruction&rft.jtitle=IEEE+access&rft.au=Wahid%2C+Abdul&rft.au=Shah%2C+Jawad+Ali&rft.au=Khan%2C+Adnan+Umar&rft.au=Ahmed%2C+Manzoor&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=186222&rft.epage=186232&rft_id=info:doi/10.1109%2FACCESS.2020.3028877&rft.externalDocID=9214501 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |