Panda: Reinforcement Learning-Based Priority Assignment for Multi-Processor Real-Time Scheduling
Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and engineering areas. Motivated by this recent success of RL-based approaches, in this paper, we focus on how to utilize RL technologies in the...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 185570 - 185583 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and engineering areas. Motivated by this recent success of RL-based approaches, in this paper, we focus on how to utilize RL technologies in the context of real-time system research. Specifically, we first formulate the problem of fixed-priority assignments for multi-processor real-time scheduling, which has long been considered challenging in the real-time system community, as a combinatorial problem. We then propose the RL-based priority assignment model Panda that employs (i) a taskset embedding mechanism driven by attention-based encoder-decoder deep neural networks, hence enabling to efficiently extract useful features from the dynamic relation of periodic tasks. We also present two optimization schemes tailored to adopt RL for real-time task scheduling problems: (ii) the response time analysis (RTA)-based policy gradient RL and guided learning schemes, which facilitate the training processes of the Panda model. To the best of our knowledge, our approach is the first to employ RL for real-time task scheduling. Through various experiments, we show that Panda is competitive with well-known heuristic algorithms for real-time task scheduling upon a multi-processor platform, and it often outperforms them in large-scale non-trivial settings, e.g., achieving an average 7.7% enhancement in schedulability ratio for a testing system configuration of 64-sized tasksets and an 8-processor platform. |
|---|---|
| AbstractList | Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and engineering areas. Motivated by this recent success of RL-based approaches, in this paper, we focus on how to utilize RL technologies in the context of real-time system research. Specifically, we first formulate the problem of fixed-priority assignments for multi-processor real-time scheduling, which has long been considered challenging in the real-time system community, as a combinatorial problem. We then propose the RL-based priority assignment model Panda that employs (i) a taskset embedding mechanism driven by attention-based encoder-decoder deep neural networks, hence enabling to efficiently extract useful features from the dynamic relation of periodic tasks. We also present two optimization schemes tailored to adopt RL for real-time task scheduling problems: (ii) the response time analysis (RTA)-based policy gradient RL and guided learning schemes, which facilitate the training processes of the Panda model. To the best of our knowledge, our approach is the first to employ RL for real-time task scheduling. Through various experiments, we show that Panda is competitive with well-known heuristic algorithms for real-time task scheduling upon a multi-processor platform, and it often outperforms them in large-scale non-trivial settings, e.g., achieving an average 7.7% enhancement in schedulability ratio for a testing system configuration of 64-sized tasksets and an 8-processor platform. |
| Author | Lee, Hyunsung Lee, Jinkyu Woo, Honguk Yeom, Ikjun |
| Author_xml | – sequence: 1 givenname: Hyunsung orcidid: 0000-0001-9814-9548 surname: Lee fullname: Lee, Hyunsung organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 2 givenname: Jinkyu orcidid: 0000-0002-2332-1996 surname: Lee fullname: Lee, Jinkyu organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 3 givenname: Ikjun surname: Yeom fullname: Yeom, Ikjun organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 4 givenname: Honguk orcidid: 0000-0001-6948-3440 surname: Woo fullname: Woo, Honguk email: hwoo@skku.edu organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea |
| BookMark | eNqFUU1vEzEQtVCRKKG_oJeVOG-w1x9rcwtRoZWCiJpyNl57Njja2MV2Dv33uN2qQr0wl_nQe29G896jsxADIHRJ8JIQrD6t1uur3W7Z4Q4vKe4UZvgNOu-IUC3lVJz9U79DFzkfcA1ZR7w_R7-2JjjzubkFH8aYLBwhlGYDJgUf9u0Xk8E12-Rj8uWhWeXs9-EJUsHN99NUfLtN0ULOtb8FM7V3_gjNzv4Gd5qqxAf0djRThovnvEA_v17dra_bzY9vN-vVprUMy9ISZwYh6eDkyEBYIzn0sscYugEcM8rBMNqe9mKUnEhKMe-t4s4RMwo7GEsX6GbWddEc9H3yR5MedDRePw1i2muTircTaCUIlRKE7LliveEK4w4EHp1gRNbvVa2Ps9Z9in9OkIs-xFMK9XzdMU4l6Vk9YYHojLIp5pxgfNlKsH50Rs_O6Edn9LMzlaVesawvpvgYSjJ--g_3cuZ6AHjZpjrCmOT0L7BanXI |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_TPDS_2023_3313779 crossref_primary_10_1007_s11241_025_09440_0 crossref_primary_10_3390_electronics12061358 crossref_primary_10_1109_ACCESS_2021_3130407 crossref_primary_10_1016_j_micpro_2022_104685 crossref_primary_10_1145_3573009 crossref_primary_10_1007_s00521_023_08778_5 crossref_primary_10_1007_s10664_022_10170_1 |
| Cites_doi | 10.1007/978-3-540-92221-6_7 10.1145/3341302.3342080 10.1109/SIES.2013.6601470 10.1109/RTSS.2016.019 10.1007/BF00992696 10.1109/INFOCOM.2019.8737460 10.1109/TPDS.2008.129 10.1145/321738.321743 10.1145/3005745.3005750 10.1007/s11241-010-9106-5 10.1016/j.sysarc.2016.04.002 10.1109/INFOCOM.2019.8737488 10.1109/RTSS.2009.31 10.1007/s11241-014-9205-9 10.1016/j.mcm.2013.02.003 10.1145/1978802.1978814 10.1109/TNN.1998.712192 10.1016/S0020-0190(00)00165-4 10.1109/CCGRID.2010.46 10.1007/BF00339943 10.1109/MCSE.2010.118 10.1109/RTSS.2007.31 10.1109/RTSS.2009.11 10.1109/ACCESS.2019.2948150 10.1109/REAL.2001.990610 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.3029040 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 185583 |
| ExternalDocumentID | oai_doaj_org_article_961388e6875947a59002e60fd6418040 10_1109_ACCESS_2020_3029040 9214485 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Kakao I Research Supporting Program – fundername: Institute for Information and Communications Technology Planning and Evaluation (IITP) – fundername: Ministry of Science and ICT (MSIT), South Korea, through the ICT Creative Consilience Program grantid: IITP-2020-0-01821 funderid: 10.13039/501100014188 – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 – fundername: Samsung Electronics funderid: 10.13039/100004358 – fundername: Ministry of Science, ICT, and Future Planning, through the Basic Science Research Program grantid: 2020R1A2C2009809; 2019R1A2B5B02001794 funderid: 10.13039/501100003621 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-1dab683bd8f4e6ca85e78700e2bed4a9debfc7376f851833057c95dd1af6cbac3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583553900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:39:35 EDT 2025 Mon Jun 30 04:28:37 EDT 2025 Sat Nov 29 04:14:16 EST 2025 Tue Nov 18 21:08:02 EST 2025 Wed Aug 27 02:32:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-1dab683bd8f4e6ca85e78700e2bed4a9debfc7376f851833057c95dd1af6cbac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2332-1996 0000-0001-9814-9548 0000-0001-6948-3440 |
| OpenAccessLink | https://doaj.org/article/961388e6875947a59002e60fd6418040 |
| PQID | 2453817483 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9214485 crossref_citationtrail_10_1109_ACCESS_2020_3029040 proquest_journals_2453817483 doaj_primary_oai_doaj_org_article_961388e6875947a59002e60fd6418040 crossref_primary_10_1109_ACCESS_2020_3029040 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref34 ref12 ref15 paszke (ref32) 2019 ref14 ref31 ref30 foo (ref36) 1988 ref11 audsley (ref18) 1991 ref10 ref39 ref17 ref38 ref16 ref19 kool (ref3) 2019 mahmood (ref27) 2014 jang (ref25) 2016 emberson (ref28) 2010 ref26 ref20 ref41 bello (ref2) 2016 ref43 kingma (ref33) 2014 ioffe (ref23) 2015; 37 degris (ref22) 2012 foo (ref37) 1988 ref29 ref8 ref7 andersson (ref13) 2004 ref9 vinyals (ref1) 2015 hopfield (ref35) 1985; 52 ref6 ref5 bellemare (ref21) 2016 chen (ref42) 2018 ref40 vaswani (ref4) 2017 lei ba (ref24) 2016 |
| References_xml | – start-page: 3014 year: 2014 ident: ref27 article-title: Weighted importance sampling for off-policy learning with linear function approximation publication-title: Proc Conf Neural Inf Process Syst – ident: ref15 doi: 10.1007/978-3-540-92221-6_7 – ident: ref6 doi: 10.1145/3341302.3342080 – ident: ref29 doi: 10.1109/SIES.2013.6601470 – ident: ref30 doi: 10.1109/RTSS.2016.019 – start-page: 2692 year: 2015 ident: ref1 article-title: Pointer networks publication-title: Proc Conf Neural Inf Process Syst – ident: ref20 doi: 10.1007/BF00992696 – ident: ref40 doi: 10.1109/INFOCOM.2019.8737460 – start-page: 1471 year: 2016 ident: ref21 article-title: Unifying count-based exploration and intrinsic motivation publication-title: Proc Conf Neural Inf Process Syst (NIPS) – ident: ref17 doi: 10.1109/TPDS.2008.129 – ident: ref43 doi: 10.1145/321738.321743 – start-page: 1 year: 2012 ident: ref22 article-title: Linear off-policy actor-critic publication-title: Proc 29th Int Conf Mach Learn (ICML) – ident: ref5 doi: 10.1145/3005745.3005750 – ident: ref11 doi: 10.1007/s11241-010-9106-5 – ident: ref16 doi: 10.1016/j.sysarc.2016.04.002 – ident: ref41 doi: 10.1109/INFOCOM.2019.8737488 – ident: ref10 doi: 10.1109/RTSS.2009.31 – year: 2016 ident: ref24 article-title: Layer normalization publication-title: arXiv 1607 06450 – start-page: 1 year: 2019 ident: ref3 article-title: Attention, learn to solve routing problems! publication-title: Proc Int Conf Learn Represent (ICLR)ICLR – year: 2014 ident: ref33 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref31 doi: 10.1007/s11241-014-9205-9 – start-page: 5998 year: 2017 ident: ref4 article-title: Attention is all you need publication-title: Proc Conf Neural Inf Process Syst – year: 2016 ident: ref2 article-title: Neural combinatorial optimization with reinforcement learning publication-title: arXiv 1611 09940 – ident: ref39 doi: 10.1016/j.mcm.2013.02.003 – ident: ref12 doi: 10.1145/1978802.1978814 – ident: ref26 doi: 10.1109/TNN.1998.712192 – ident: ref19 doi: 10.1016/S0020-0190(00)00165-4 – start-page: 6 year: 2010 ident: ref28 article-title: Techniques for the synthesis of multiprocessor tasksets publication-title: 1st International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Syst (WATERS'10 – ident: ref38 doi: 10.1109/CCGRID.2010.46 – start-page: 578 year: 2018 ident: ref42 article-title: TVM: An automated end-to-end optimizing compiler for deep learning publication-title: Proc 10th USENIX Symp Oper Syst Des Implement (OSDI) – start-page: 341 year: 1988 ident: ref36 article-title: Integer linear programming neural networks for job-shop scheduling publication-title: Proc Int Conf Neural Netw (ICNN) – start-page: 275 year: 1988 ident: ref37 article-title: Stochastic neural networks for solving job-shop scheduling. i. problem representation publication-title: Proc Int Conf Neural Netw (ICNN) – start-page: 337 year: 2004 ident: ref13 article-title: Fixed-priority preemptive multiprocessor scheduling: To partition or not to partition publication-title: Proc 7th Int Conf Real-Time Comput Syst Appl – year: 2016 ident: ref25 article-title: Categorical reparameterization with gumbel-softmax publication-title: arXiv 1611 01144 – volume: 37 start-page: 448 year: 2015 ident: ref23 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – volume: 52 start-page: 141 year: 1985 ident: ref35 article-title: œneural computation of decisions in optimization problems publication-title: Biol Cybern doi: 10.1007/BF00339943 – ident: ref34 doi: 10.1109/MCSE.2010.118 – ident: ref9 doi: 10.1109/RTSS.2007.31 – year: 1991 ident: ref18 publication-title: Optimal Priority Assignment and Feasibility of Static Priority Tasks with Arbitrary Start Times – ident: ref8 doi: 10.1109/RTSS.2009.11 – ident: ref7 doi: 10.1109/ACCESS.2019.2948150 – start-page: 8024 year: 2019 ident: ref32 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Proc Conf Neural Inf Process Syst – ident: ref14 doi: 10.1109/REAL.2001.990610 |
| SSID | ssj0000816957 |
| Score | 2.2813745 |
| Snippet | Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 185570 |
| SubjectTerms | Algorithms Artificial neural networks Coders Combinatorial analysis encoder-decoder neural network Encoders-Decoders Feature extraction global fixed priority scheduling Heuristic algorithms Heuristic task scheduling Machine learning Microprocessors Optimization Priority assignment Processor scheduling Program processors Real time real-time system Real-time systems reinforcement learning Response time Scheduling Task analysis |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMceBXEloJ84FjTxLETm1u7ouJUrQpIvZlkPF6thHbRdsvv74zjRpVASJzykG05-Tz2zNjzjRAfACHRYEmqQbDKJA2qRyTBQ2OTriKT0OVkE93lpbu-9os9cTLFwiBiPnyGH_k27-XHDdyyq-zUM7-Xs_tiv-vaMVZr8qdwAglvu0IsVFf-9Gw-p28gE1CTZVppX7GD48Hikzn6S1KVP2bivLxcPPu_jj0XT4saKc9G3F-IPVy_FE8ekAseih8LdhJ8kleYyVEh-wFl4VNdqnNavqJcbFcbTl8nCabVMp8MkFRY5rhcVaII6PmK9EnF4SLyK6Ec-fj68pX4fvH52_yLKvkUFJjK7VQd-6F1zRBdMthC7yyyuFaoB4ym9xGHBB3NOInUMNfQTNCBtzHWfWph6KF5LQ7WmzW-ERKcbnpjMdWJLgYc2gEsq2st6Qu1mQl9_6MDFLJxznnxM2Sjo_JhRCcwOqGgMxMnU6VfI9fGv4ufM4JTUSbKzi8ImlDkLnhSV5zDlswyb7qec6RqbKsUW1O73Mghwzk1UpCcieP78RCKUN8EbSzzGRrXHP291lvxmDs4emiOxcFue4vvxCP4vVvdbN_n8XoH03vobA priority: 102 providerName: IEEE |
| Title | Panda: Reinforcement Learning-Based Priority Assignment for Multi-Processor Real-Time Scheduling |
| URI | https://ieeexplore.ieee.org/document/9214485 https://www.proquest.com/docview/2453817483 https://doaj.org/article/961388e6875947a59002e60fd6418040 |
| Volume | 8 |
| WOSCitedRecordID | wos000583553900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4kAPFY9W3RaQDxyxcBw7sbnBCtRL0YqHxM1N7PFqpWpBy7bH_vbOOGa1UiW4cEmUyHl4Xp6ZZL5h7DhASCgsSdQQjNBJBdEBoOKBNknJSCB0udlEe31tHx7cZK3VF_0TNsADD4Q7dbjeWAsN-tVOtx01uVTQyBQbXVmUQLK-snVrwVS2wbZqnGkLzFAl3en5eIwzwoBQYZwqlZOU7lhbijJif2mx8p9dzovN1Q77WLxEfj683S7bgPke-7CGHbjPfk4oB3DGbyBjn4ac5uMFLnUqLnB1inyymD1SdzqOXJhN84d_joN5LrsVpUgAj2_QXRRUDcJvkYmR_k6ffmL3V5d34--itEsQQUu7FFXs-sbWfbRJQxM6a4C0UYLqIerORehTaNGgJPSybI2K3gZnYqy61IS-C_Vntjl_nMMXxoNVdacNpCrhTgcLpg-GvLEG3YFKj5h6oZwPBUucWlr88jmmkM4P5PZEbl_IPWInq4ueBiiN14dfEEtWQwkHO59A6fBFOvxb0jFi-8TQ1U0cIcRZM2IHLwz2RWefvdKG4Aq1rb--x6O_sW2azpCuOWCby8VvOGRb4c9y9rw4yuKK2x9_L49y0eE_NsHrIQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEG8QTZQHv8BwitoHH1npdtvd1je4SDDi5YKY8FZ32-nlEnNnjoO_n5lu2ZBISHzaj7RNd3-ddmba-Q1jnzz4iIMlFhV4XagofdECoOCB0lGKQCR0KdlEM5mYiws73WD7QywMAKTDZ_CZbtNeflj6K3KVHVji9zL6EXuslZKij9YaPCqUQsLqJlMLlcIeHI7H-BVoBEq0TYW0glwcd5afxNKf06r8MxenBeb4xf917SV7nhVJftgj_4ptwOI127pDL7jNfk_JTfCFn0GiR_XJE8gzo-qsOMIFLPDpar6kBHYcgZrP0tkAjoV5iswtchwBPp-hRllQwAj_iTgHOsA-22G_jr-ej0-KnFGh8EqYdVGGtqtN1QUTFdS-NRpIYAXIDoJqbYAu-gbnnIiKmKlwLmi81SGUbax91_rqDdtcLBewy7g3smqVhlhGvChvQHdek8JWo8ZQqhGTtz_a-Uw3Tlkv_rhkdgjrenQcoeMyOiO2P1T627NtPFz8iBAcihJVdnqB0Lgsec6iwmIM1GiYWdW0lCVVQi1iqFVpUiPbBOfQSEZyxPZux4PLYn3ppNLEaKhM9fb-Wh_Z05PzH6fu9Nvk-zv2jDrb-2v22OZ6dQXv2RN_vZ5frj6ksXsDDubrsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Panda%3A+Reinforcement+Learning-Based+Priority+Assignment+for+Multi-Processor+Real-Time+Scheduling&rft.jtitle=IEEE+access&rft.au=Lee%2C+Hyunsung&rft.au=Lee%2C+Jinkyu&rft.au=Yeom%2C+Ikjun&rft.au=Woo%2C+Honguk&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=185570&rft.epage=185583&rft_id=info:doi/10.1109%2FACCESS.2020.3029040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3029040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |