Panda: Reinforcement Learning-Based Priority Assignment for Multi-Processor Real-Time Scheduling

Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and engineering areas. Motivated by this recent success of RL-based approaches, in this paper, we focus on how to utilize RL technologies in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 8; S. 185570 - 185583
Hauptverfasser: Lee, Hyunsung, Lee, Jinkyu, Yeom, Ikjun, Woo, Honguk
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and engineering areas. Motivated by this recent success of RL-based approaches, in this paper, we focus on how to utilize RL technologies in the context of real-time system research. Specifically, we first formulate the problem of fixed-priority assignments for multi-processor real-time scheduling, which has long been considered challenging in the real-time system community, as a combinatorial problem. We then propose the RL-based priority assignment model Panda that employs (i) a taskset embedding mechanism driven by attention-based encoder-decoder deep neural networks, hence enabling to efficiently extract useful features from the dynamic relation of periodic tasks. We also present two optimization schemes tailored to adopt RL for real-time task scheduling problems: (ii) the response time analysis (RTA)-based policy gradient RL and guided learning schemes, which facilitate the training processes of the Panda model. To the best of our knowledge, our approach is the first to employ RL for real-time task scheduling. Through various experiments, we show that Panda is competitive with well-known heuristic algorithms for real-time task scheduling upon a multi-processor platform, and it often outperforms them in large-scale non-trivial settings, e.g., achieving an average 7.7% enhancement in schedulability ratio for a testing system configuration of 64-sized tasksets and an 8-processor platform.
AbstractList Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and engineering areas. Motivated by this recent success of RL-based approaches, in this paper, we focus on how to utilize RL technologies in the context of real-time system research. Specifically, we first formulate the problem of fixed-priority assignments for multi-processor real-time scheduling, which has long been considered challenging in the real-time system community, as a combinatorial problem. We then propose the RL-based priority assignment model Panda that employs (i) a taskset embedding mechanism driven by attention-based encoder-decoder deep neural networks, hence enabling to efficiently extract useful features from the dynamic relation of periodic tasks. We also present two optimization schemes tailored to adopt RL for real-time task scheduling problems: (ii) the response time analysis (RTA)-based policy gradient RL and guided learning schemes, which facilitate the training processes of the Panda model. To the best of our knowledge, our approach is the first to employ RL for real-time task scheduling. Through various experiments, we show that Panda is competitive with well-known heuristic algorithms for real-time task scheduling upon a multi-processor platform, and it often outperforms them in large-scale non-trivial settings, e.g., achieving an average 7.7% enhancement in schedulability ratio for a testing system configuration of 64-sized tasksets and an 8-processor platform.
Author Lee, Hyunsung
Lee, Jinkyu
Woo, Honguk
Yeom, Ikjun
Author_xml – sequence: 1
  givenname: Hyunsung
  orcidid: 0000-0001-9814-9548
  surname: Lee
  fullname: Lee, Hyunsung
  organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 2
  givenname: Jinkyu
  orcidid: 0000-0002-2332-1996
  surname: Lee
  fullname: Lee, Jinkyu
  organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 3
  givenname: Ikjun
  surname: Yeom
  fullname: Yeom, Ikjun
  organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 4
  givenname: Honguk
  orcidid: 0000-0001-6948-3440
  surname: Woo
  fullname: Woo, Honguk
  email: hwoo@skku.edu
  organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea
BookMark eNqFUU1vEzEQtVCRKKG_oJeVOG-w1x9rcwtRoZWCiJpyNl57Njja2MV2Dv33uN2qQr0wl_nQe29G896jsxADIHRJ8JIQrD6t1uur3W7Z4Q4vKe4UZvgNOu-IUC3lVJz9U79DFzkfcA1ZR7w_R7-2JjjzubkFH8aYLBwhlGYDJgUf9u0Xk8E12-Rj8uWhWeXs9-EJUsHN99NUfLtN0ULOtb8FM7V3_gjNzv4Gd5qqxAf0djRThovnvEA_v17dra_bzY9vN-vVprUMy9ISZwYh6eDkyEBYIzn0sscYugEcM8rBMNqe9mKUnEhKMe-t4s4RMwo7GEsX6GbWddEc9H3yR5MedDRePw1i2muTircTaCUIlRKE7LliveEK4w4EHp1gRNbvVa2Ps9Z9in9OkIs-xFMK9XzdMU4l6Vk9YYHojLIp5pxgfNlKsH50Rs_O6Edn9LMzlaVesawvpvgYSjJ--g_3cuZ6AHjZpjrCmOT0L7BanXI
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TPDS_2023_3313779
crossref_primary_10_1007_s11241_025_09440_0
crossref_primary_10_3390_electronics12061358
crossref_primary_10_1109_ACCESS_2021_3130407
crossref_primary_10_1016_j_micpro_2022_104685
crossref_primary_10_1145_3573009
crossref_primary_10_1007_s00521_023_08778_5
crossref_primary_10_1007_s10664_022_10170_1
Cites_doi 10.1007/978-3-540-92221-6_7
10.1145/3341302.3342080
10.1109/SIES.2013.6601470
10.1109/RTSS.2016.019
10.1007/BF00992696
10.1109/INFOCOM.2019.8737460
10.1109/TPDS.2008.129
10.1145/321738.321743
10.1145/3005745.3005750
10.1007/s11241-010-9106-5
10.1016/j.sysarc.2016.04.002
10.1109/INFOCOM.2019.8737488
10.1109/RTSS.2009.31
10.1007/s11241-014-9205-9
10.1016/j.mcm.2013.02.003
10.1145/1978802.1978814
10.1109/TNN.1998.712192
10.1016/S0020-0190(00)00165-4
10.1109/CCGRID.2010.46
10.1007/BF00339943
10.1109/MCSE.2010.118
10.1109/RTSS.2007.31
10.1109/RTSS.2009.11
10.1109/ACCESS.2019.2948150
10.1109/REAL.2001.990610
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3029040
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 185583
ExternalDocumentID oai_doaj_org_article_961388e6875947a59002e60fd6418040
10_1109_ACCESS_2020_3029040
9214485
Genre orig-research
GrantInformation_xml – fundername: Kakao I Research Supporting Program
– fundername: Institute for Information and Communications Technology Planning and Evaluation (IITP)
– fundername: Ministry of Science and ICT (MSIT), South Korea, through the ICT Creative Consilience Program
  grantid: IITP-2020-0-01821
  funderid: 10.13039/501100014188
– fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
– fundername: Samsung Electronics
  funderid: 10.13039/100004358
– fundername: Ministry of Science, ICT, and Future Planning, through the Basic Science Research Program
  grantid: 2020R1A2C2009809; 2019R1A2B5B02001794
  funderid: 10.13039/501100003621
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-1dab683bd8f4e6ca85e78700e2bed4a9debfc7376f851833057c95dd1af6cbac3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583553900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:39:35 EDT 2025
Mon Jun 30 04:28:37 EDT 2025
Sat Nov 29 04:14:16 EST 2025
Tue Nov 18 21:08:02 EST 2025
Wed Aug 27 02:32:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1dab683bd8f4e6ca85e78700e2bed4a9debfc7376f851833057c95dd1af6cbac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2332-1996
0000-0001-9814-9548
0000-0001-6948-3440
OpenAccessLink https://doaj.org/article/961388e6875947a59002e60fd6418040
PQID 2453817483
PQPubID 4845423
PageCount 14
ParticipantIDs ieee_primary_9214485
crossref_citationtrail_10_1109_ACCESS_2020_3029040
proquest_journals_2453817483
doaj_primary_oai_doaj_org_article_961388e6875947a59002e60fd6418040
crossref_primary_10_1109_ACCESS_2020_3029040
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref15
paszke (ref32) 2019
ref14
ref31
ref30
foo (ref36) 1988
ref11
audsley (ref18) 1991
ref10
ref39
ref17
ref38
ref16
ref19
kool (ref3) 2019
mahmood (ref27) 2014
jang (ref25) 2016
emberson (ref28) 2010
ref26
ref20
ref41
bello (ref2) 2016
ref43
kingma (ref33) 2014
ioffe (ref23) 2015; 37
degris (ref22) 2012
foo (ref37) 1988
ref29
ref8
ref7
andersson (ref13) 2004
ref9
vinyals (ref1) 2015
hopfield (ref35) 1985; 52
ref6
ref5
bellemare (ref21) 2016
chen (ref42) 2018
ref40
vaswani (ref4) 2017
lei ba (ref24) 2016
References_xml – start-page: 3014
  year: 2014
  ident: ref27
  article-title: Weighted importance sampling for off-policy learning with linear function approximation
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref15
  doi: 10.1007/978-3-540-92221-6_7
– ident: ref6
  doi: 10.1145/3341302.3342080
– ident: ref29
  doi: 10.1109/SIES.2013.6601470
– ident: ref30
  doi: 10.1109/RTSS.2016.019
– start-page: 2692
  year: 2015
  ident: ref1
  article-title: Pointer networks
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref20
  doi: 10.1007/BF00992696
– ident: ref40
  doi: 10.1109/INFOCOM.2019.8737460
– start-page: 1471
  year: 2016
  ident: ref21
  article-title: Unifying count-based exploration and intrinsic motivation
  publication-title: Proc Conf Neural Inf Process Syst (NIPS)
– ident: ref17
  doi: 10.1109/TPDS.2008.129
– ident: ref43
  doi: 10.1145/321738.321743
– start-page: 1
  year: 2012
  ident: ref22
  article-title: Linear off-policy actor-critic
  publication-title: Proc 29th Int Conf Mach Learn (ICML)
– ident: ref5
  doi: 10.1145/3005745.3005750
– ident: ref11
  doi: 10.1007/s11241-010-9106-5
– ident: ref16
  doi: 10.1016/j.sysarc.2016.04.002
– ident: ref41
  doi: 10.1109/INFOCOM.2019.8737488
– ident: ref10
  doi: 10.1109/RTSS.2009.31
– year: 2016
  ident: ref24
  article-title: Layer normalization
  publication-title: arXiv 1607 06450
– start-page: 1
  year: 2019
  ident: ref3
  article-title: Attention, learn to solve routing problems!
  publication-title: Proc Int Conf Learn Represent (ICLR)ICLR
– year: 2014
  ident: ref33
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref31
  doi: 10.1007/s11241-014-9205-9
– start-page: 5998
  year: 2017
  ident: ref4
  article-title: Attention is all you need
  publication-title: Proc Conf Neural Inf Process Syst
– year: 2016
  ident: ref2
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: arXiv 1611 09940
– ident: ref39
  doi: 10.1016/j.mcm.2013.02.003
– ident: ref12
  doi: 10.1145/1978802.1978814
– ident: ref26
  doi: 10.1109/TNN.1998.712192
– ident: ref19
  doi: 10.1016/S0020-0190(00)00165-4
– start-page: 6
  year: 2010
  ident: ref28
  article-title: Techniques for the synthesis of multiprocessor tasksets
  publication-title: 1st International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Syst (WATERS'10
– ident: ref38
  doi: 10.1109/CCGRID.2010.46
– start-page: 578
  year: 2018
  ident: ref42
  article-title: TVM: An automated end-to-end optimizing compiler for deep learning
  publication-title: Proc 10th USENIX Symp Oper Syst Des Implement (OSDI)
– start-page: 341
  year: 1988
  ident: ref36
  article-title: Integer linear programming neural networks for job-shop scheduling
  publication-title: Proc Int Conf Neural Netw (ICNN)
– start-page: 275
  year: 1988
  ident: ref37
  article-title: Stochastic neural networks for solving job-shop scheduling. i. problem representation
  publication-title: Proc Int Conf Neural Netw (ICNN)
– start-page: 337
  year: 2004
  ident: ref13
  article-title: Fixed-priority preemptive multiprocessor scheduling: To partition or not to partition
  publication-title: Proc 7th Int Conf Real-Time Comput Syst Appl
– year: 2016
  ident: ref25
  article-title: Categorical reparameterization with gumbel-softmax
  publication-title: arXiv 1611 01144
– volume: 37
  start-page: 448
  year: 2015
  ident: ref23
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– volume: 52
  start-page: 141
  year: 1985
  ident: ref35
  article-title: œneural computation of decisions in optimization problems
  publication-title: Biol Cybern
  doi: 10.1007/BF00339943
– ident: ref34
  doi: 10.1109/MCSE.2010.118
– ident: ref9
  doi: 10.1109/RTSS.2007.31
– year: 1991
  ident: ref18
  publication-title: Optimal Priority Assignment and Feasibility of Static Priority Tasks with Arbitrary Start Times
– ident: ref8
  doi: 10.1109/RTSS.2009.11
– ident: ref7
  doi: 10.1109/ACCESS.2019.2948150
– start-page: 8024
  year: 2019
  ident: ref32
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref14
  doi: 10.1109/REAL.2001.990610
SSID ssj0000816957
Score 2.2814713
Snippet Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 185570
SubjectTerms Algorithms
Artificial neural networks
Coders
Combinatorial analysis
encoder-decoder neural network
Encoders-Decoders
Feature extraction
global fixed priority scheduling
Heuristic algorithms
Heuristic task scheduling
Machine learning
Microprocessors
Optimization
Priority assignment
Processor scheduling
Program processors
Real time
real-time system
Real-time systems
reinforcement learning
Response time
Scheduling
Task analysis
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMcyqMgthTkA8eaeh3HD27tiopTtSog9Wb8XK2EdtF229_fGceNKlFV4pZEY8vJ57FnJp5vCPmsuTWmeMuMCYVJIQILRSSWO55U6jXYCL4Wm9AXF-bqys53yPGYC5NzrofP8he8rP_y0zreYKjsxCK_l-l3ya7WasjVGuMpWEDC9roRC025PTmdzeAdwAUU4JlyYTkGOB5sPpWjvxVV-WclrtvL-cv_G9grst_MSHo64P6a7OTVG_LiAbngAfk9xyDBV3qZKzlqrHFA2vhUF-wMtq9E55vlGsvXUYBpuagnAygI05qXy1oWAdxfgj3JMF2E_gCUEx5fX7wlv86__Zx9Z62eAouSmy2bJh-U6UIyRWYVvekzqivPIuQkvU05lKhhxSlghpkOVgIdbZ_S1BcVg4_dO7K3Wq_ye0I760F7M9hLxcpecGNVTtAwKOT3CmlCxP2HdrGRjWPNiz-uOh3cugEdh-i4hs6EHI-N_g5cG0-LnyGCoygSZdcHAI1reucsmCvGZAVumZXaY41UkRUvScmpqZ0cIJxjJw3JCTm6nw-uKfW1E7JHPkNpusPHW30gz3GAQ4TmiOxtNzf5I3kWb7fL682nOl_vACMM59k
  priority: 102
  providerName: IEEE
Title Panda: Reinforcement Learning-Based Priority Assignment for Multi-Processor Real-Time Scheduling
URI https://ieeexplore.ieee.org/document/9214485
https://www.proquest.com/docview/2453817483
https://doaj.org/article/961388e6875947a59002e60fd6418040
Volume 8
WOSCitedRecordID wos000583553900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SPOhB1Cqu1pKDR0MzmUzmxVu7tHixLFWht5jPZUG2Zbt69G_3vUy6LAh68TIwQ-Yj7yvvvcn7PcbejdICFG8FQChCKxVEKCqJ3Mtk0jCij-Brs4nx8hKur-1ir9UX7Qmb4IEnwp1YXG8AskG_2urRU5NLlY0syegOUALJ-srR7gVT1QZDZ-wwNpihTtqT0_kcZ4QBocI4VSorKd2xtxRVxP7WYuUPu1wXm4un7EnzEvnp9HXP2IO8fs4e72EHHrJvC8oBfOBXuWKfxprm4w0udSnOcHVKfLFZ3VB3Oo5cWC3rj3-Og3ktuxWtSADPr9BdFFQNwj8jExPtTl--YF8vzr_MP4rWLkFELWEruuSDgT4kKDqb6GHIpI0yq5CT9jblUOKIBqWglwU9KvoY7ZBS54uJwcf-JTtY36zzK8Z761E5M7pDxepBSbAmJ7wxGILvCmnG1D3lXGxY4tTS4rurMYW0biK3I3K7Ru4Ze7-76XaC0vj78DNiyW4o4WDXCygdrkmH-5d0zNghMXT3EEsIcTDM2NE9g13T2Tun9EBwhRr61__j1W_YI5rOlK45YgfbzY_8lj2MP7eru81xFVc8fvp1flyLDn8DdTPqjg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1CuqDX630tGoefGxsLpvNJr61h6ViPY5aoW8xn8eB3Mn12r_fmWy6FBTBt91lErL7yyQzs5nfEPK-40br7AzT2mcmhfDMZxFZanhUse3ARnCl2EQ3nerLSzPbIgdDLkxKqRw-Sx_wsvzLj6twjaGyQ4P8Xrq9R-63UgreZ2sNERUsIWHarlILjbk5PJpM4C3ACRTgm3JhOIY47mw_haW_llX5Yy0uG8zJ0_8b2jPypBqS9KhH_jnZSssX5PEdesEd8mOGYYKP9DwVetRQIoG0MqrO2TFsYJHO1osVFrCjANRiXs4GUBCmJTOX1TwCuD8Hi5Jhwgj9BjhHPMA-3yXfTz5dTE5ZrajAguR6w8bReaUbH3WWSQWn24QKy5PwKUpnYvI5dLDmZDDEdANrQRdMG-PYZRW8C81Lsr1cLdMeoY1xoL8JLKZsZCu4NipFaOgVMnz5OCLi9kPbUOnGserFT1vcDm5sj45FdGxFZ0QOhka_eraNf4sfI4KDKFJllwcAja2aZw0YLFonBY6ZkZ3DKqkiKZ6jkmNdOtlBOIdOKpIjsn87H2xV6ysrZIuMhlI3r_7e6h15eHrx9cyefZ5-eU0e4WD7eM0-2d6sr9Mb8iDcbBZX67dl7v4GVojrIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Panda%3A+Reinforcement+Learning-Based+Priority+Assignment+for+Multi-Processor+Real-Time+Scheduling&rft.jtitle=IEEE+access&rft.au=Lee%2C+Hyunsung&rft.au=Lee%2C+Jinkyu&rft.au=Yeom%2C+Ikjun&rft.au=Woo%2C+Honguk&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=185570&rft.epage=185583&rft_id=info:doi/10.1109%2FACCESS.2020.3029040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3029040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon