Framework for Adaptive Controller Design Over Wireless Delay-Prone Communication Channels

Control over wireless channels promises to be a great enabler for an interconnected world. Historically, the "control engineering" and "wireless communications" domains were seen as separate, but with upcoming 5G networks, joint design of wireless control systems promises large g...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 7; s. 49726 - 49737
Hlavní autoři: Scheuvens, Lucas, Simsek, Meryem, Noll-Barreto, Andre, Franchi, Norman, Fettweis, Gerhard P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Control over wireless channels promises to be a great enabler for an interconnected world. Historically, the "control engineering" and "wireless communications" domains were seen as separate, but with upcoming 5G networks, joint design of wireless control systems promises large gains in both the domains for a wide range of applications. By means of a typical industrial use case of the automated guided vehicles (AGVs), we present a methodology to analyze the latency requirements along with the wireless links from a controller to a plant (downlink) and from a plant to its controller (uplink). From the perspective of a Wireless Communications Engineer, we present a framework to analyze the basic properties of the resulting control cycle in order to derive feasible latency values that differ from the commonly found values in the communications literature. Also, we highlight an approach to derive the proportional-derivative (PD) controller parameters that yield the best control performance according to the integral of absolute error (IAE) criterion. At last, we present the idea of a cross-domain manager (CDM) that is able to translate (in real-time) the current network performance metrics to optimal controller gains.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2911120