Brain MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep Neural Network

Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain anatomy and functions. The mechanism of image processing has widespread usage in the area of medical science for improving the early detecti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 7; pp. 46278 - 46287
Main Authors: Kumar Mallick, Pradeep, Ryu, Seuc Ho, Satapathy, Sandeep Kumar, Mishra, Shruti, Nguyen, Gia Nhu, Tiwari, Prayag
Format: Journal Article
Language:English
Published: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain anatomy and functions. The mechanism of image processing has widespread usage in the area of medical science for improving the early detection and treatment phases. Deep neural networks (DNN), till date, have demonstrated wonderful performance in classification and segmentation task. Carrying this idea into consideration, in this paper, a technique for image compression using a deep wavelet autoencoder (DWA), which blends the basic feature reduction property of autoencoder along with the image decomposition property of wavelet transform is proposed. The combination of both has a tremendous effect on sinking the size of the feature set for enduring further classification task by using DNN. A brain image dataset was taken and the proposed DWA-DNN image classifier was considered. The performance criterion for the DWA-DNN classifier was compared with other existing classifiers such as autoencoder-DNN or DNN, and it was noted that the proposed method outshines the existing methods.
AbstractList Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain anatomy and functions. The mechanism of image processing has widespread usage in the area of medical science for improving the early detection and treatment phases. Deep neural networks (DNN), till date, have demonstrated wonderful performance in classification and segmentation task. Carrying this idea into consideration, in this paper, a technique for image compression using a deep wavelet autoencoder (DWA), which blends the basic feature reduction property of autoencoder along with the image decomposition property of wavelet transform is proposed. The combination of both has a tremendous effect on sinking the size of the feature set for enduring further classification task by using DNN. A brain image dataset was taken and the proposed DWA-DNN image classifier was considered. The performance criterion for the DWA-DNN classifier was compared with other existing classifiers such as autoencoder-DNN or DNN, and it was noted that the proposed method outshines the existing methods.
Author Ryu, Seuc Ho
Mishra, Shruti
Kumar Mallick, Pradeep
Tiwari, Prayag
Satapathy, Sandeep Kumar
Nguyen, Gia Nhu
Author_xml – sequence: 1
  givenname: Pradeep
  surname: Kumar Mallick
  fullname: Kumar Mallick, Pradeep
  organization: Department of Game Design, Kongju National University, Gongju, South Korea
– sequence: 2
  givenname: Seuc Ho
  surname: Ryu
  fullname: Ryu, Seuc Ho
  organization: Department of Game Design, Kongju National University, Gongju, South Korea
– sequence: 3
  givenname: Sandeep Kumar
  surname: Satapathy
  fullname: Satapathy, Sandeep Kumar
  organization: Department of Computer Science and Engineering, Vignana Bharathi Institute of Technology, Hyderabad, India
– sequence: 4
  givenname: Shruti
  surname: Mishra
  fullname: Mishra, Shruti
  organization: Department of Computer Science and Engineering, Vignana Bharathi Institute of Technology, Hyderabad, India
– sequence: 5
  givenname: Gia Nhu
  orcidid: 0000-0003-4267-3900
  surname: Nguyen
  fullname: Nguyen, Gia Nhu
  email: nguyengianhu@duytan.edu.vn
  organization: Duy Tan University, Da Nang, Vietnam
– sequence: 6
  givenname: Prayag
  orcidid: 0000-0002-2851-4260
  surname: Tiwari
  fullname: Tiwari, Prayag
  organization: Department of Information Engineering, University of Padova, Padua, Italy
BookMark eNqFUU1v1DAUtFCRKKW_oJdInLP4O_ZxGwqsVECiVBwtx3leeUnjxfaC-Pd4N1WFuODLs-e9mbHevERnc5wBoSuCV4Rg_Wbd9zd3dyuKiV5RjSkV9Bk6p0Tqlgkmz_66v0CXOe9wPapCojtH03WyYW4-ftk0mwe7haafbM7BB2dLiHPjY2p6OztIzVso4E7gfQ7ztr5h33yzP2GC0qwPJcLs4gipvbYZxqX9CQ7JTrWUXzF9f4WeeztluHysF-j-3c3X_kN7-_n9pl_fto5jVVrilOZ8kJYKJS1oQsdxYBz4gDvMOfOK2o5o3UGdwCAcs8J3I1OcysF7yi7QZtEdo92ZfQoPNv020QZzAmLaGptKcBMY7DEhglUaDBwIUd5J6jhgAZZJyqvW60Vrn-KPA-RidvGQ5vp9Q7kQkrGOHh3ZMuVSzDmBf3Il2BxTMktK5piSeUypsvQ_LBfKae-lpjL9h3u1cAMAPLkpKTtJFfsD5dOgsw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3394541
crossref_primary_10_1080_02533839_2025_2464551
crossref_primary_10_1109_TCBB_2021_3084596
crossref_primary_10_1016_j_patrec_2019_11_017
crossref_primary_10_1109_TCSS_2023_3253502
crossref_primary_10_3390_s23187816
crossref_primary_10_1016_j_eswa_2022_117295
crossref_primary_10_1007_s11760_025_03984_1
crossref_primary_10_1016_j_bspc_2022_104398
crossref_primary_10_1145_3595638
crossref_primary_10_1016_j_imavis_2025_105432
crossref_primary_10_32604_cmc_2023_039164
crossref_primary_10_1002_nbm_5307
crossref_primary_10_1038_s41598_024_56983_6
crossref_primary_10_1007_s00521_020_05173_2
crossref_primary_10_3390_s22051766
crossref_primary_10_1007_s00521_024_10168_4
crossref_primary_10_1007_s10598_023_09567_4
crossref_primary_10_1016_j_jksuci_2022_05_015
crossref_primary_10_3390_app15095186
crossref_primary_10_1007_s11042_020_10335_4
crossref_primary_10_1109_ACCESS_2021_3056553
crossref_primary_10_1007_s41207_024_00551_x
crossref_primary_10_1109_JOE_2021_3073931
crossref_primary_10_3390_diagnostics11091589
crossref_primary_10_1016_j_artint_2024_104240
crossref_primary_10_1002_widm_1483
crossref_primary_10_1109_ACCESS_2021_3074405
crossref_primary_10_1111_exsy_13021
crossref_primary_10_1088_1742_6596_1964_7_072022
crossref_primary_10_1088_1742_6596_1964_7_072021
crossref_primary_10_1007_s12553_023_00737_3
crossref_primary_10_3389_fpsyg_2022_848784
crossref_primary_10_1080_21681163_2023_2250878
crossref_primary_10_1007_s00500_021_06519_1
crossref_primary_10_1007_s11042_022_13994_7
crossref_primary_10_1016_j_advengsoft_2022_103146
crossref_primary_10_1016_j_heliyon_2025_e41835
crossref_primary_10_3390_s24020429
crossref_primary_10_1007_s11831_024_10128_0
crossref_primary_10_3389_fnhum_2020_00128
crossref_primary_10_1007_s12652_020_02336_w
crossref_primary_10_3390_math8091620
crossref_primary_10_1080_0954898X_2025_2476079
crossref_primary_10_1080_22797254_2023_2271651
crossref_primary_10_3390_app10103429
crossref_primary_10_1109_ACCESS_2023_3289224
crossref_primary_10_1007_s00521_019_04650_7
crossref_primary_10_1109_ACCESS_2023_3289867
crossref_primary_10_1016_j_ymeth_2020_09_007
crossref_primary_10_1109_ACCESS_2020_2973243
crossref_primary_10_3389_fmed_2025_1593016
crossref_primary_10_1007_s12553_022_00699_y
crossref_primary_10_3390_jimaging6110121
crossref_primary_10_1016_j_irbm_2021_06_003
crossref_primary_10_1002_ima_22983
crossref_primary_10_1002_ima_22621
crossref_primary_10_1007_s00500_021_05748_8
crossref_primary_10_1093_comjnl_bxab194
crossref_primary_10_1109_ACCESS_2020_3003624
crossref_primary_10_1016_j_bspc_2022_103644
crossref_primary_10_1016_j_nancom_2025_100585
crossref_primary_10_1007_s00500_022_07166_w
crossref_primary_10_1002_cpe_7541
crossref_primary_10_1007_s11831_021_09676_6
crossref_primary_10_32604_cmes_2024_051475
crossref_primary_10_1109_ACCESS_2022_3151361
crossref_primary_10_1080_13682199_2023_2211890
crossref_primary_10_1109_ACCESS_2020_2966770
crossref_primary_10_1109_ACCESS_2021_3095312
crossref_primary_10_3390_brainsci12050615
crossref_primary_10_1016_j_eswa_2022_116608
crossref_primary_10_3389_fnins_2021_687496
crossref_primary_10_1016_j_bspc_2024_107199
crossref_primary_10_1109_ACCESS_2020_3016319
crossref_primary_10_1007_s11042_021_11591_8
crossref_primary_10_1002_cpe_7016
crossref_primary_10_1016_j_mehy_2019_109433
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_1007_s00500_023_08319_1
crossref_primary_10_32604_cmc_2024_046461
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1109_RBME_2022_3185292
crossref_primary_10_1016_j_bspc_2023_105674
crossref_primary_10_1038_s41598_025_13155_4
crossref_primary_10_1016_j_gep_2022_119248
crossref_primary_10_7717_peerj_cs_1867
crossref_primary_10_1007_s11227_024_06350_z
crossref_primary_10_1080_13682199_2023_2204038
crossref_primary_10_1098_rsos_231762
crossref_primary_10_1007_s11831_023_09967_0
crossref_primary_10_1007_s11042_021_11098_2
crossref_primary_10_1186_s12880_024_01238_z
crossref_primary_10_32604_cmc_2022_025977
crossref_primary_10_1007_s41870_019_00412_9
crossref_primary_10_4108_eetpht_9_3220
crossref_primary_10_1016_j_bspc_2025_108057
crossref_primary_10_1108_SR_02_2020_0039
crossref_primary_10_3233_MGS_210353
crossref_primary_10_1016_j_media_2022_102359
crossref_primary_10_3389_fpubh_2022_959667
crossref_primary_10_1088_2632_2153_acd987
crossref_primary_10_1186_s12880_024_01315_3
crossref_primary_10_1007_s44163_024_00180_x
crossref_primary_10_32604_cmc_2021_014158
crossref_primary_10_1002_ima_22554
crossref_primary_10_1016_j_bspc_2021_103440
crossref_primary_10_1093_comjnl_bxad047
crossref_primary_10_17694_bajece_1415025
crossref_primary_10_1007_s41870_023_01259_x
crossref_primary_10_1109_TCSS_2022_3187342
crossref_primary_10_1007_s44427_025_00003_6
crossref_primary_10_1016_j_bspc_2023_105778
crossref_primary_10_1007_s11042_023_15576_7
crossref_primary_10_1007_s40031_023_00896_x
crossref_primary_10_3390_s21227480
crossref_primary_10_1007_s42452_021_04162_x
crossref_primary_10_1080_13682199_2023_2262259
crossref_primary_10_1080_21681163_2022_2083019
crossref_primary_10_1109_ACCESS_2022_3149130
crossref_primary_10_1109_ACCESS_2023_3326421
crossref_primary_10_1007_s11760_023_02567_2
crossref_primary_10_1002_ima_22543
crossref_primary_10_1016_j_compeleceng_2022_108238
crossref_primary_10_1109_ACCESS_2025_3552593
crossref_primary_10_1002_cpe_7031
crossref_primary_10_1016_j_bspc_2024_106005
crossref_primary_10_1016_j_bspc_2023_104955
crossref_primary_10_1109_TGRS_2022_3152984
crossref_primary_10_1007_s11042_021_11287_z
crossref_primary_10_1109_TSE_2023_3243522
crossref_primary_10_1557_s43577_022_00342_1
crossref_primary_10_1109_ACCESS_2024_3379136
crossref_primary_10_1016_j_compeleceng_2025_110124
crossref_primary_10_1016_j_neucom_2024_129062
crossref_primary_10_1016_j_triboint_2023_108735
Cites_doi 10.1109/NAPS.2011.6024887
10.1007/978-3-319-47952-1_19
10.1016/j.asoc.2018.01.003
10.1145/3269206.3269304
10.1016/j.bspc.2018.06.001
10.1016/j.bbe.2018.06.009
10.1109/29.21701
10.1016/j.irbm.2018.08.002
10.1109/TITB.2005.847500
10.1016/j.cmpb.2018.10.004
10.1016/j.neucom.2013.09.055
10.1109/ECS.2014.6892750
10.1080/24699322.2017.1389398
10.1016/j.kijoms.2015.10.002
10.1016/j.neucom.2008.04.030
10.1155/2015/450341
10.1145/3234944.3234979
10.1109/WICT.2012.6409052
10.1146/annurev.bioeng.2.1.315
10.1007/978-81-322-2009-1_18
10.1080/02564602.2015.1027307
10.7494/csci.2015.16.2.133
10.1016/j.neucom.2015.07.119
10.1016/j.cogsys.2018.08.022
10.1145/1390156.1390294
10.1109/TSMCB.2011.2168604
10.1016/j.phycom.2009.07.001
10.1609/aaai.v33i01.330110051
10.1109/CCDC.2014.6852445
10.1038/nature14539
10.3923/itj.2007.217.221
10.1145/3234944.3234970
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2902252
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 46287
ExternalDocumentID oai_doaj_org_article_0f01153bffeb4e118fc62c4e05ea3624
10_1109_ACCESS_2019_2902252
8667628
Genre orig-research
GrantInformation_xml – fundername: Kongju National University
  funderid: 10.13039/501100002510
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-1c8944b6a2586ae912ddb34e4b070443f82a71997ea250e5c3a5f7d38426bff23
IEDL.DBID DOA
ISICitedReferencesCount 165
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466221500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:49:52 EDT 2025
Sun Nov 30 04:50:48 EST 2025
Tue Nov 18 21:42:24 EST 2025
Sat Nov 29 03:33:47 EST 2025
Wed Aug 27 02:47:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1c8944b6a2586ae912ddb34e4b070443f82a71997ea250e5c3a5f7d38426bff23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4267-3900
0000-0002-2851-4260
OpenAccessLink https://doaj.org/article/0f01153bffeb4e118fc62c4e05ea3624
PQID 2455633722
PQPubID 4845423
PageCount 10
ParticipantIDs proquest_journals_2455633722
ieee_primary_8667628
doaj_primary_oai_doaj_org_article_0f01153bffeb4e118fc62c4e05ea3624
crossref_citationtrail_10_1109_ACCESS_2019_2902252
crossref_primary_10_1109_ACCESS_2019_2902252
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
chen (ref25) 2018
ref36
ref31
ref30
ref11
ref32
ref10
tiwari (ref41) 2018
shalini (ref23) 2014; 3
ref2
barboriak (ref38) 2015
ref39
ref17
kle? (ref27) 2015; 16
ref16
ref19
lebedev (ref28) 2014
langote (ref3) 2012; 2
satapathy (ref9) 2015
allaoui (ref14) 2018; 13
tiwari (ref42) 2019
damodharan (ref24) 2015; 12
ref26
ref22
ref44
ganesh (ref21) 2012; 5
ref43
nayak (ref18) 2015; 2
alhadidi (ref1) 2007; 6
jose (ref20) 2014; 2
vincent (ref33) 2010; 11
ref29
ref8
ref7
ref4
ref6
ref5
ref40
References_xml – ident: ref35
  doi: 10.1109/NAPS.2011.6024887
– ident: ref15
  doi: 10.1007/978-3-319-47952-1_19
– start-page: 1
  year: 2018
  ident: ref25
  article-title: Learning a wavelet-like auto-encoder to accelerate deep neural networks
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref6
  doi: 10.1016/j.asoc.2018.01.003
– ident: ref39
  doi: 10.1145/3269206.3269304
– ident: ref7
  doi: 10.1016/j.bspc.2018.06.001
– volume: 3
  start-page: 121
  year: 2014
  ident: ref23
  article-title: MRI brain tumor segmentation using kernel weighted fuzzy clustering
  publication-title: Int J Eng Res Technol
– ident: ref12
  doi: 10.1016/j.bbe.2018.06.009
– ident: ref37
  doi: 10.1109/29.21701
– ident: ref5
  doi: 10.1016/j.irbm.2018.08.002
– ident: ref22
  doi: 10.1109/TITB.2005.847500
– ident: ref31
  doi: 10.1016/j.cmpb.2018.10.004
– ident: ref30
  doi: 10.1016/j.neucom.2013.09.055
– ident: ref11
  doi: 10.1109/ECS.2014.6892750
– ident: ref19
  doi: 10.1080/24699322.2017.1389398
– ident: ref10
  doi: 10.1016/j.kijoms.2015.10.002
– ident: ref29
  doi: 10.1016/j.neucom.2008.04.030
– volume: 5
  start-page: 406
  year: 2012
  ident: ref21
  article-title: A multiple kernel fuzzy c-means clustering algorithm for brain mr image segmentation
  publication-title: International Journal of Advanced Engineering Technology
– ident: ref13
  doi: 10.1155/2015/450341
– volume: 2
  start-page: 3496
  year: 2014
  ident: ref20
  article-title: Brain tumor segmentation using k-means clustering and fuzzy c-means algorithms and its area calculation
  publication-title: Int J Innov Res Comput Commun Eng
– ident: ref40
  doi: 10.1145/3234944.3234979
– ident: ref4
  doi: 10.1109/WICT.2012.6409052
– ident: ref2
  doi: 10.1146/annurev.bioeng.2.1.315
– start-page: 151
  year: 2015
  ident: ref9
  article-title: An empirical analysis of training algorithms of neural networks: A case study of EEG signal classification using java framework
  publication-title: Intelligent Computing Communication and Devices
  doi: 10.1007/978-81-322-2009-1_18
– ident: ref16
  doi: 10.1080/02564602.2015.1027307
– volume: 16
  start-page: 133
  year: 2015
  ident: ref27
  article-title: Pre-trained deep neural network using sparse autoencoders and scattering wavelet transform for musical genre recognition
  publication-title: Comput Sci
  doi: 10.7494/csci.2015.16.2.133
– ident: ref32
  doi: 10.1016/j.neucom.2015.07.119
– ident: ref44
  doi: 10.1016/j.cogsys.2018.08.022
– ident: ref26
  doi: 10.1145/1390156.1390294
– start-page: 1
  year: 2014
  ident: ref28
  article-title: Speeding-up convolutional neural networks using fine-tuned CP-decomposition
  publication-title: Proc Int Conf Learn Represent
– volume: 12
  start-page: 42
  year: 2015
  ident: ref24
  article-title: Combining tissue segmentation and neural network for brain tumor detection
  publication-title: Int Arab J Inf Technol
– year: 2015
  ident: ref38
  publication-title: Data From RIDER_NEURO_MRI The Cancer Imaging Archive
– ident: ref36
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref34
  doi: 10.1016/j.phycom.2009.07.001
– year: 2019
  ident: ref42
  article-title: Binary classifier inspired by quantum theory
  publication-title: Proc AAAI
  doi: 10.1609/aaai.v33i01.330110051
– ident: ref17
  doi: 10.1109/CCDC.2014.6852445
– volume: 13
  start-page: 2084
  year: 2018
  ident: ref14
  article-title: Evolutionary region growing for image segmentation
  publication-title: Int J Appl Eng Res
– volume: 2
  start-page: 4
  year: 2015
  ident: ref18
  article-title: A study on brain MRI image segmentation techniques
  publication-title: International Journal of Research Studies in Computer Science and Engineering
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref33
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 252
  year: 2012
  ident: ref3
  article-title: Segmentation techniques for image analysis
  publication-title: International Journal of Advanced Engineering Research and Studies
– ident: ref8
  doi: 10.1038/nature14539
– volume: 6
  start-page: 217
  year: 2007
  ident: ref1
  article-title: Mammogram breast cancer image detection using image processing functions
  publication-title: Inf Technol J
  doi: 10.3923/itj.2007.217.221
– year: 2018
  ident: ref41
  publication-title: Multi-class classification model inspired by quantum detection theory
– ident: ref43
  doi: 10.1145/3234944.3234970
SSID ssj0000816957
Score 2.5809171
Snippet Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 46278
SubjectTerms Artificial neural networks
autoencoder (AE)
Biological neural networks
Biomedical imaging
Brain
Classifiers
deep neural network (DNN)
Image classification
Image compression
Image processing
Image segmentation
Magnetic resonance imaging
Medical imaging
Medical science
Neural network (NN)
Neural networks
Task analysis
Tumors
Wavelet transforms
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqIhYJ84Ni0iR-JfdxdqKgEK4R49GY59liqVHarbZbfj8dxIxAIiVsSO9Ekn-0ZO5-_AXgt2ug6bFwlY4iVxNhUveplFVwUPvpGYU7f9vV9t1rpiwvzcQ-Op70wiJjJZ3hCh_lfftj4HS2VnWoiZHK9D_td1457tab1FEogYVRXhIWa2pzOl8v0DsTeMifcJF-l-G_OJ2v0l6Qqf4zE2b2cPfg_wx7C_RJGsvmI-yPYw_VjuPeLuOAhXC0o-wP78OmcnX9PowbL-S-JGZTBYClaZUvCfMve4JAZWWuWGQTpHK_ZN0c5KQY23w0bUrsMuK0WyeeFsZhUPZIFq5FG_gS-nL39vHxXldwKlZe1HqrGayNl3zqudOvQNDyEXkiUfRoDpBRRc9cRCQVTjRqVF07FLgidPHofIxdP4WC9WeMzYLpuU5DijOMySqXQ1ak4eTkXZBsN8hnw249ufREep_wXVzZPQGpjR6QsIWULUjM4nm66HnU3_l19QWhOVUk0O19IMNnSB20dKf4VyXzsJaaZVfQt9xLrZHPy43IGhwTt9JCC6gyObtuGLR38xnJJymqi4_z53-96AXfJwHG15ggOhu0OX8Id_2O4vNm-ym33J-qU7HM
  priority: 102
  providerName: IEEE
Title Brain MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep Neural Network
URI https://ieeexplore.ieee.org/document/8667628
https://www.proquest.com/docview/2455633722
https://doaj.org/article/0f01153bffeb4e118fc62c4e05ea3624
Volume 7
WOSCitedRecordID wos000466221500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6qEcUFuK2Ha78oFjA44_Evu4uwUVCVaoKi03y3HGEhJd0BJ67G_vjBNWW1Uql14iJXYSe2Y8M44m7zF2qKoUaihDoVObCg2pLBrT6KINScUUSwOZvu3beb1Y2Otrd7lB9UU1YT08cC-4Y5EoaVFNStBowHQ4xUpGDcJAQOebkUBF7TY2U9kH27Jyph5ghkrhjqfzOc6IarnckXQYuYz8IxRlxP6BYuUvv5yDzekrtjtkiXzaj-4124LlG7azgR24x25nRO7AL76c8bMf6BR4prekwp8sa47JKJ-TSlf8E3S54GrJc4EAnsM9_x6IcqLj08fujsAsW1gVMwxpbd9MoB04gkVfJf6WXZ2efJ1_LgbqhCJqYbuijNZp3VRBGlsFcKVs20Zp0A0uca1VsjLUVGMC2EOAiSqYVLfKYsBGUUu1z7aXd0s4YNyKCnOQ4ILUSRuUusBmDGKh1VVyIEdMPknRxwFXnOgtbn3eXwjne9F7Er0fRD9iH9c33fewGv_uPiP1rLsSJna-gJbiB0vxz1nKiO2RctcPsVTeK-2IjZ-U7Yf1--ClJuA0VUv57n-8-j17SdPpP92M2Xa3eoQP7EX82d08rCbZdPF48etkkn9A_A2EwfHC
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VgkR74KugblvAB45NmzjjJD7uLlRdsV0hVKA3y3HGElLZrbZZfj8eJ42KQEjcktiJJnm2Z-w8vwF4lxfelpTZBH3jEySfJbWqMWmsz513maKYvu3rvFwsqqsr_WkLjoe9MEQUyWd0wofxX36zchteKjutmJApqwfwUCHKtNutNayocAoJrcpeWihL9el4Og1vwfwtfSJ18FZK_uZ-okp_n1blj7E4Opizp_9n2jN40geSYtwh_xy2aPkCdu_JC-7B9YTzP4iLzzMx-xHGDREzYDI3KMIhQrwqpoz6WrynNnKyliJyCMI53YhvlrNStGK8aVesd9nQOpkEr9d0xazrESxYdETyl_Dl7MPl9DzpsyskDtOqTTJXacS6sFJVhSWdyaapcySswyiAmPtK2pJpKBRqpKRcbpUvm7wKPr32XuavYHu5WtI-iCotQphitZXoUSmyaSgOfs42WHhNcgTy7qMb10uPcwaMaxOnIKk2HVKGkTI9UiM4Hm666ZQ3_l19wmgOVVk2O14IMJm-F5rUcwScB_OpRgpzK-8K6ZDSYHPw5DiCPYZ2eEiP6giO7tqG6bv4rZHI2mp5KeXB3-96C4_PLy_mZj5bfDyEHTa2W7s5gu12vaHX8Mj9bL_frt_EdvwLW4_vug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+MRI+Image+Classification+for+Cancer+Detection+Using+Deep+Wavelet+Autoencoder-Based+Deep+Neural+Network&rft.jtitle=IEEE+access&rft.au=Kumar+Mallick%2C+Pradeep&rft.au=Ryu%2C+Seuc+Ho&rft.au=Satapathy%2C+Sandeep+Kumar&rft.au=Mishra%2C+Shruti&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=46278&rft.epage=46287&rft_id=info:doi/10.1109%2FACCESS.2019.2902252&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2902252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon