Brain MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep Neural Network
Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain anatomy and functions. The mechanism of image processing has widespread usage in the area of medical science for improving the early detecti...
Uloženo v:
| Vydáno v: | IEEE access Ročník 7; s. 46278 - 46287 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain anatomy and functions. The mechanism of image processing has widespread usage in the area of medical science for improving the early detection and treatment phases. Deep neural networks (DNN), till date, have demonstrated wonderful performance in classification and segmentation task. Carrying this idea into consideration, in this paper, a technique for image compression using a deep wavelet autoencoder (DWA), which blends the basic feature reduction property of autoencoder along with the image decomposition property of wavelet transform is proposed. The combination of both has a tremendous effect on sinking the size of the feature set for enduring further classification task by using DNN. A brain image dataset was taken and the proposed DWA-DNN image classifier was considered. The performance criterion for the DWA-DNN classifier was compared with other existing classifiers such as autoencoder-DNN or DNN, and it was noted that the proposed method outshines the existing methods. |
|---|---|
| AbstractList | Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain anatomy and functions. The mechanism of image processing has widespread usage in the area of medical science for improving the early detection and treatment phases. Deep neural networks (DNN), till date, have demonstrated wonderful performance in classification and segmentation task. Carrying this idea into consideration, in this paper, a technique for image compression using a deep wavelet autoencoder (DWA), which blends the basic feature reduction property of autoencoder along with the image decomposition property of wavelet transform is proposed. The combination of both has a tremendous effect on sinking the size of the feature set for enduring further classification task by using DNN. A brain image dataset was taken and the proposed DWA-DNN image classifier was considered. The performance criterion for the DWA-DNN classifier was compared with other existing classifiers such as autoencoder-DNN or DNN, and it was noted that the proposed method outshines the existing methods. |
| Author | Ryu, Seuc Ho Mishra, Shruti Kumar Mallick, Pradeep Tiwari, Prayag Satapathy, Sandeep Kumar Nguyen, Gia Nhu |
| Author_xml | – sequence: 1 givenname: Pradeep surname: Kumar Mallick fullname: Kumar Mallick, Pradeep organization: Department of Game Design, Kongju National University, Gongju, South Korea – sequence: 2 givenname: Seuc Ho surname: Ryu fullname: Ryu, Seuc Ho organization: Department of Game Design, Kongju National University, Gongju, South Korea – sequence: 3 givenname: Sandeep Kumar surname: Satapathy fullname: Satapathy, Sandeep Kumar organization: Department of Computer Science and Engineering, Vignana Bharathi Institute of Technology, Hyderabad, India – sequence: 4 givenname: Shruti surname: Mishra fullname: Mishra, Shruti organization: Department of Computer Science and Engineering, Vignana Bharathi Institute of Technology, Hyderabad, India – sequence: 5 givenname: Gia Nhu orcidid: 0000-0003-4267-3900 surname: Nguyen fullname: Nguyen, Gia Nhu email: nguyengianhu@duytan.edu.vn organization: Duy Tan University, Da Nang, Vietnam – sequence: 6 givenname: Prayag orcidid: 0000-0002-2851-4260 surname: Tiwari fullname: Tiwari, Prayag organization: Department of Information Engineering, University of Padova, Padua, Italy |
| BookMark | eNqFUU1v1DAUtFCRKKW_oJdInLP4O_ZxGwqsVECiVBwtx3leeUnjxfaC-Pd4N1WFuODLs-e9mbHevERnc5wBoSuCV4Rg_Wbd9zd3dyuKiV5RjSkV9Bk6p0Tqlgkmz_66v0CXOe9wPapCojtH03WyYW4-ftk0mwe7haafbM7BB2dLiHPjY2p6OztIzVso4E7gfQ7ztr5h33yzP2GC0qwPJcLs4gipvbYZxqX9CQ7JTrWUXzF9f4WeeztluHysF-j-3c3X_kN7-_n9pl_fto5jVVrilOZ8kJYKJS1oQsdxYBz4gDvMOfOK2o5o3UGdwCAcs8J3I1OcysF7yi7QZtEdo92ZfQoPNv020QZzAmLaGptKcBMY7DEhglUaDBwIUd5J6jhgAZZJyqvW60Vrn-KPA-RidvGQ5vp9Q7kQkrGOHh3ZMuVSzDmBf3Il2BxTMktK5piSeUypsvQ_LBfKae-lpjL9h3u1cAMAPLkpKTtJFfsD5dOgsw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3394541 crossref_primary_10_1080_02533839_2025_2464551 crossref_primary_10_1109_TCBB_2021_3084596 crossref_primary_10_1016_j_patrec_2019_11_017 crossref_primary_10_1109_TCSS_2023_3253502 crossref_primary_10_3390_s23187816 crossref_primary_10_1016_j_eswa_2022_117295 crossref_primary_10_1007_s11760_025_03984_1 crossref_primary_10_1016_j_bspc_2022_104398 crossref_primary_10_1145_3595638 crossref_primary_10_1016_j_imavis_2025_105432 crossref_primary_10_32604_cmc_2023_039164 crossref_primary_10_1002_nbm_5307 crossref_primary_10_1038_s41598_024_56983_6 crossref_primary_10_1007_s00521_020_05173_2 crossref_primary_10_3390_s22051766 crossref_primary_10_1007_s00521_024_10168_4 crossref_primary_10_1007_s10598_023_09567_4 crossref_primary_10_1016_j_jksuci_2022_05_015 crossref_primary_10_3390_app15095186 crossref_primary_10_1007_s11042_020_10335_4 crossref_primary_10_1109_ACCESS_2021_3056553 crossref_primary_10_1007_s41207_024_00551_x crossref_primary_10_1109_JOE_2021_3073931 crossref_primary_10_3390_diagnostics11091589 crossref_primary_10_1016_j_artint_2024_104240 crossref_primary_10_1002_widm_1483 crossref_primary_10_1109_ACCESS_2021_3074405 crossref_primary_10_1111_exsy_13021 crossref_primary_10_1088_1742_6596_1964_7_072022 crossref_primary_10_1088_1742_6596_1964_7_072021 crossref_primary_10_1007_s12553_023_00737_3 crossref_primary_10_3389_fpsyg_2022_848784 crossref_primary_10_1080_21681163_2023_2250878 crossref_primary_10_1007_s00500_021_06519_1 crossref_primary_10_1007_s11042_022_13994_7 crossref_primary_10_1016_j_advengsoft_2022_103146 crossref_primary_10_1016_j_heliyon_2025_e41835 crossref_primary_10_3390_s24020429 crossref_primary_10_1007_s11831_024_10128_0 crossref_primary_10_3389_fnhum_2020_00128 crossref_primary_10_1007_s12652_020_02336_w crossref_primary_10_3390_math8091620 crossref_primary_10_1080_0954898X_2025_2476079 crossref_primary_10_1080_22797254_2023_2271651 crossref_primary_10_3390_app10103429 crossref_primary_10_1109_ACCESS_2023_3289224 crossref_primary_10_1007_s00521_019_04650_7 crossref_primary_10_1109_ACCESS_2023_3289867 crossref_primary_10_1016_j_ymeth_2020_09_007 crossref_primary_10_1109_ACCESS_2020_2973243 crossref_primary_10_3389_fmed_2025_1593016 crossref_primary_10_1007_s12553_022_00699_y crossref_primary_10_3390_jimaging6110121 crossref_primary_10_1016_j_irbm_2021_06_003 crossref_primary_10_1002_ima_22983 crossref_primary_10_1002_ima_22621 crossref_primary_10_1007_s00500_021_05748_8 crossref_primary_10_1093_comjnl_bxab194 crossref_primary_10_1109_ACCESS_2020_3003624 crossref_primary_10_1016_j_bspc_2022_103644 crossref_primary_10_1016_j_nancom_2025_100585 crossref_primary_10_1007_s00500_022_07166_w crossref_primary_10_1002_cpe_7541 crossref_primary_10_1007_s11831_021_09676_6 crossref_primary_10_32604_cmes_2024_051475 crossref_primary_10_1109_ACCESS_2022_3151361 crossref_primary_10_1080_13682199_2023_2211890 crossref_primary_10_1109_ACCESS_2020_2966770 crossref_primary_10_1109_ACCESS_2021_3095312 crossref_primary_10_3390_brainsci12050615 crossref_primary_10_1016_j_eswa_2022_116608 crossref_primary_10_3389_fnins_2021_687496 crossref_primary_10_1016_j_bspc_2024_107199 crossref_primary_10_1109_ACCESS_2020_3016319 crossref_primary_10_1007_s11042_021_11591_8 crossref_primary_10_1002_cpe_7016 crossref_primary_10_1016_j_mehy_2019_109433 crossref_primary_10_1016_j_compbiomed_2024_108910 crossref_primary_10_1007_s00500_023_08319_1 crossref_primary_10_32604_cmc_2024_046461 crossref_primary_10_1007_s10489_023_05155_6 crossref_primary_10_1109_RBME_2022_3185292 crossref_primary_10_1016_j_bspc_2023_105674 crossref_primary_10_1038_s41598_025_13155_4 crossref_primary_10_1016_j_gep_2022_119248 crossref_primary_10_7717_peerj_cs_1867 crossref_primary_10_1007_s11227_024_06350_z crossref_primary_10_1080_13682199_2023_2204038 crossref_primary_10_1098_rsos_231762 crossref_primary_10_1007_s11831_023_09967_0 crossref_primary_10_1007_s11042_021_11098_2 crossref_primary_10_1186_s12880_024_01238_z crossref_primary_10_32604_cmc_2022_025977 crossref_primary_10_1007_s41870_019_00412_9 crossref_primary_10_4108_eetpht_9_3220 crossref_primary_10_1016_j_bspc_2025_108057 crossref_primary_10_1108_SR_02_2020_0039 crossref_primary_10_3233_MGS_210353 crossref_primary_10_1016_j_media_2022_102359 crossref_primary_10_3389_fpubh_2022_959667 crossref_primary_10_1088_2632_2153_acd987 crossref_primary_10_1186_s12880_024_01315_3 crossref_primary_10_1007_s44163_024_00180_x crossref_primary_10_32604_cmc_2021_014158 crossref_primary_10_1002_ima_22554 crossref_primary_10_1016_j_bspc_2021_103440 crossref_primary_10_1093_comjnl_bxad047 crossref_primary_10_17694_bajece_1415025 crossref_primary_10_1007_s41870_023_01259_x crossref_primary_10_1109_TCSS_2022_3187342 crossref_primary_10_1007_s44427_025_00003_6 crossref_primary_10_1016_j_bspc_2023_105778 crossref_primary_10_1007_s11042_023_15576_7 crossref_primary_10_1007_s40031_023_00896_x crossref_primary_10_3390_s21227480 crossref_primary_10_1007_s42452_021_04162_x crossref_primary_10_1080_13682199_2023_2262259 crossref_primary_10_1080_21681163_2022_2083019 crossref_primary_10_1109_ACCESS_2022_3149130 crossref_primary_10_1109_ACCESS_2023_3326421 crossref_primary_10_1007_s11760_023_02567_2 crossref_primary_10_1002_ima_22543 crossref_primary_10_1016_j_compeleceng_2022_108238 crossref_primary_10_1109_ACCESS_2025_3552593 crossref_primary_10_1002_cpe_7031 crossref_primary_10_1016_j_bspc_2024_106005 crossref_primary_10_1016_j_bspc_2023_104955 crossref_primary_10_1109_TGRS_2022_3152984 crossref_primary_10_1007_s11042_021_11287_z crossref_primary_10_1109_TSE_2023_3243522 crossref_primary_10_1557_s43577_022_00342_1 crossref_primary_10_1109_ACCESS_2024_3379136 crossref_primary_10_1016_j_compeleceng_2025_110124 crossref_primary_10_1016_j_neucom_2024_129062 crossref_primary_10_1016_j_triboint_2023_108735 |
| Cites_doi | 10.1109/NAPS.2011.6024887 10.1007/978-3-319-47952-1_19 10.1016/j.asoc.2018.01.003 10.1145/3269206.3269304 10.1016/j.bspc.2018.06.001 10.1016/j.bbe.2018.06.009 10.1109/29.21701 10.1016/j.irbm.2018.08.002 10.1109/TITB.2005.847500 10.1016/j.cmpb.2018.10.004 10.1016/j.neucom.2013.09.055 10.1109/ECS.2014.6892750 10.1080/24699322.2017.1389398 10.1016/j.kijoms.2015.10.002 10.1016/j.neucom.2008.04.030 10.1155/2015/450341 10.1145/3234944.3234979 10.1109/WICT.2012.6409052 10.1146/annurev.bioeng.2.1.315 10.1007/978-81-322-2009-1_18 10.1080/02564602.2015.1027307 10.7494/csci.2015.16.2.133 10.1016/j.neucom.2015.07.119 10.1016/j.cogsys.2018.08.022 10.1145/1390156.1390294 10.1109/TSMCB.2011.2168604 10.1016/j.phycom.2009.07.001 10.1609/aaai.v33i01.330110051 10.1109/CCDC.2014.6852445 10.1038/nature14539 10.3923/itj.2007.217.221 10.1145/3234944.3234970 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2902252 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access资源_DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 46287 |
| ExternalDocumentID | oai_doaj_org_article_0f01153bffeb4e118fc62c4e05ea3624 10_1109_ACCESS_2019_2902252 8667628 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Kongju National University funderid: 10.13039/501100002510 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-1c8944b6a2586ae912ddb34e4b070443f82a71997ea250e5c3a5f7d38426bff23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 165 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466221500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:49:52 EDT 2025 Sun Nov 30 04:50:48 EST 2025 Tue Nov 18 21:42:24 EST 2025 Sat Nov 29 03:33:47 EST 2025 Wed Aug 27 02:47:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-1c8944b6a2586ae912ddb34e4b070443f82a71997ea250e5c3a5f7d38426bff23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4267-3900 0000-0002-2851-4260 |
| OpenAccessLink | https://doaj.org/article/0f01153bffeb4e118fc62c4e05ea3624 |
| PQID | 2455633722 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2455633722 ieee_primary_8667628 doaj_primary_oai_doaj_org_article_0f01153bffeb4e118fc62c4e05ea3624 crossref_citationtrail_10_1109_ACCESS_2019_2902252 crossref_primary_10_1109_ACCESS_2019_2902252 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 chen (ref25) 2018 ref36 ref31 ref30 ref11 ref32 ref10 tiwari (ref41) 2018 shalini (ref23) 2014; 3 ref2 barboriak (ref38) 2015 ref39 ref17 kle? (ref27) 2015; 16 ref16 ref19 lebedev (ref28) 2014 langote (ref3) 2012; 2 satapathy (ref9) 2015 allaoui (ref14) 2018; 13 tiwari (ref42) 2019 damodharan (ref24) 2015; 12 ref26 ref22 ref44 ganesh (ref21) 2012; 5 ref43 nayak (ref18) 2015; 2 alhadidi (ref1) 2007; 6 jose (ref20) 2014; 2 vincent (ref33) 2010; 11 ref29 ref8 ref7 ref4 ref6 ref5 ref40 |
| References_xml | – ident: ref35 doi: 10.1109/NAPS.2011.6024887 – ident: ref15 doi: 10.1007/978-3-319-47952-1_19 – start-page: 1 year: 2018 ident: ref25 article-title: Learning a wavelet-like auto-encoder to accelerate deep neural networks publication-title: Proc 32nd AAAI Conf Artif Intell – ident: ref6 doi: 10.1016/j.asoc.2018.01.003 – ident: ref39 doi: 10.1145/3269206.3269304 – ident: ref7 doi: 10.1016/j.bspc.2018.06.001 – volume: 3 start-page: 121 year: 2014 ident: ref23 article-title: MRI brain tumor segmentation using kernel weighted fuzzy clustering publication-title: Int J Eng Res Technol – ident: ref12 doi: 10.1016/j.bbe.2018.06.009 – ident: ref37 doi: 10.1109/29.21701 – ident: ref5 doi: 10.1016/j.irbm.2018.08.002 – ident: ref22 doi: 10.1109/TITB.2005.847500 – ident: ref31 doi: 10.1016/j.cmpb.2018.10.004 – ident: ref30 doi: 10.1016/j.neucom.2013.09.055 – ident: ref11 doi: 10.1109/ECS.2014.6892750 – ident: ref19 doi: 10.1080/24699322.2017.1389398 – ident: ref10 doi: 10.1016/j.kijoms.2015.10.002 – ident: ref29 doi: 10.1016/j.neucom.2008.04.030 – volume: 5 start-page: 406 year: 2012 ident: ref21 article-title: A multiple kernel fuzzy c-means clustering algorithm for brain mr image segmentation publication-title: International Journal of Advanced Engineering Technology – ident: ref13 doi: 10.1155/2015/450341 – volume: 2 start-page: 3496 year: 2014 ident: ref20 article-title: Brain tumor segmentation using k-means clustering and fuzzy c-means algorithms and its area calculation publication-title: Int J Innov Res Comput Commun Eng – ident: ref40 doi: 10.1145/3234944.3234979 – ident: ref4 doi: 10.1109/WICT.2012.6409052 – ident: ref2 doi: 10.1146/annurev.bioeng.2.1.315 – start-page: 151 year: 2015 ident: ref9 article-title: An empirical analysis of training algorithms of neural networks: A case study of EEG signal classification using java framework publication-title: Intelligent Computing Communication and Devices doi: 10.1007/978-81-322-2009-1_18 – ident: ref16 doi: 10.1080/02564602.2015.1027307 – volume: 16 start-page: 133 year: 2015 ident: ref27 article-title: Pre-trained deep neural network using sparse autoencoders and scattering wavelet transform for musical genre recognition publication-title: Comput Sci doi: 10.7494/csci.2015.16.2.133 – ident: ref32 doi: 10.1016/j.neucom.2015.07.119 – ident: ref44 doi: 10.1016/j.cogsys.2018.08.022 – ident: ref26 doi: 10.1145/1390156.1390294 – start-page: 1 year: 2014 ident: ref28 article-title: Speeding-up convolutional neural networks using fine-tuned CP-decomposition publication-title: Proc Int Conf Learn Represent – volume: 12 start-page: 42 year: 2015 ident: ref24 article-title: Combining tissue segmentation and neural network for brain tumor detection publication-title: Int Arab J Inf Technol – year: 2015 ident: ref38 publication-title: Data From RIDER_NEURO_MRI The Cancer Imaging Archive – ident: ref36 doi: 10.1109/TSMCB.2011.2168604 – ident: ref34 doi: 10.1016/j.phycom.2009.07.001 – year: 2019 ident: ref42 article-title: Binary classifier inspired by quantum theory publication-title: Proc AAAI doi: 10.1609/aaai.v33i01.330110051 – ident: ref17 doi: 10.1109/CCDC.2014.6852445 – volume: 13 start-page: 2084 year: 2018 ident: ref14 article-title: Evolutionary region growing for image segmentation publication-title: Int J Appl Eng Res – volume: 2 start-page: 4 year: 2015 ident: ref18 article-title: A study on brain MRI image segmentation techniques publication-title: International Journal of Research Studies in Computer Science and Engineering – volume: 11 start-page: 3371 year: 2010 ident: ref33 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 2 start-page: 252 year: 2012 ident: ref3 article-title: Segmentation techniques for image analysis publication-title: International Journal of Advanced Engineering Research and Studies – ident: ref8 doi: 10.1038/nature14539 – volume: 6 start-page: 217 year: 2007 ident: ref1 article-title: Mammogram breast cancer image detection using image processing functions publication-title: Inf Technol J doi: 10.3923/itj.2007.217.221 – year: 2018 ident: ref41 publication-title: Multi-class classification model inspired by quantum detection theory – ident: ref43 doi: 10.1145/3234944.3234970 |
| SSID | ssj0000816957 |
| Score | 2.5809774 |
| Snippet | Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 46278 |
| SubjectTerms | Artificial neural networks autoencoder (AE) Biological neural networks Biomedical imaging Brain Classifiers deep neural network (DNN) Image classification Image compression Image processing Image segmentation Magnetic resonance imaging Medical imaging Medical science Neural network (NN) Neural networks Task analysis Tumors Wavelet transforms |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqILQX5wLFpHdt5-Li7UFEJVgiB6M1ynLGEVHarbZbf3xnHjUAgJG552NHE3zgz44y_AXjT16onTeoKE1UsTCmx8LqOBcqI3kik0DnxzH5oVqv28tJ-2oOTaS8MIqbkMzzlw_Qvv9-EHS-VnbWckKnafdhvmnrcqzWtp3ABCVs1mViolPZsvlzSO3D2lj1VlmxVpX4zPomjPxdV-eNLnMzL-aP_E-wxPMxupJiPuD-BPVw_hQe_kAsewtWCqz-Ij58vxMUP-mqIVP-SM4MSGIK8VbFkzLfiLQ4pI2stUgYBneO1-Oa5JsUg5rthw2yXPW6LBdm8frzNrB4kwWpMI38GX8_ffVm-L3JthSIY2Q5FGVprTFd7VbW1R1uqvu-0QdMRcsbo2CrfcBIKUguJVdC-ik2vW7LoXYxKP4eD9WaNL0AEWxlPQx9iZ0wgh0uGGDsfZUXhXCn1DNTdoLuQice5_sWVSwGItG5EyjFSLiM1g5Op0_XIu_Hv5gtGc2rKpNnpAsHk8hx0MrL_q0l87AxSZBVDrYJBWSHppzIzOGRop4dkVGdwfKcbLk_wG6cMM6vpRqmjv_d6CfdZwHG15hgOhu0OX8G98HP4frN9nXT3FlEY69E priority: 102 providerName: IEEE |
| Title | Brain MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep Neural Network |
| URI | https://ieeexplore.ieee.org/document/8667628 https://www.proquest.com/docview/2455633722 https://doaj.org/article/0f01153bffeb4e118fc62c4e05ea3624 |
| Volume | 7 |
| WOSCitedRecordID | wos000466221500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access资源_DOAJ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iHtzDoquL4y9y8Gg1TdI2Oc6MygrrIKKst5CmLyC4o4zVo3-776V1GBHWy14KbdM2-d5r3kv5-j3GDppSNuhJdaajjJnOBWRelTEDEcFrAbh0Tjqzv6vJxNze2suFUl_ECevkgTvgjkWkpEXVMUKtAdPhGEoZNIgC8KYyKYGKyi4sptIcbPLSFlUvM5QLezwcj3FExOWyR9Ji5Crkh1CUFPv7Eiuf5uUUbM7W2Pc-S-TDrnfrbAmmP9i3Be3ADXY_ouIO_OLqnJ__xUmBp_KWRPxJWHNMRvmYTDrjJ9AmwtWUJ4IA7sMj_-Op5ETLh8_tA4lZNjDLRhjSmu40iXZgDyYdS3yT3ZydXo9_ZX3phCxoYdosD8ZqXZdeFqb0YHPZNLXSoGs0jNYqGukr4pgAthBQBOWLWDXKYMBGqKX6yZanD1PYYjzYQnvEMsRa64D5lAgx1j6KAldruVADJt9RdKHXFafyFvcurS-EdR30jqB3PfQDdji_6LGT1fh38xGZZ96UNLHTAfQU13uK-8pTBmyDjDu_iSF6rzQDtvtubNe_v09OahJOU5WU2__j0TtslYbTfbrZZcvt7Bn22Ep4ae-eZvvJdXF78Xq6n35AfAPnH_Eg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQceBXULQV84Ni0jjN5HXcXqq7YrhAqojcrccZSpbJbbbP9_cw4aURFhdRbHnY08TfOzDjjbwA-N5lpWJPqCL3xEcaaoirJfETaU4WaOHQOPLPzfLEozs_L71twMOyFIaKQfEaHchj-5Tcrt5GlsqNCEjJN8Qgep4hGd7u1hhUVKSFRpnlPLRTr8mg8nfJbSP5WeWhKtlapuWN-Akt_X1bln29xMDDHLx8m2it40TuSatwh_xq2aPkGnv9FL7gDlxOp_6BOf8zU7Dd_N1SogCm5QQEOxf6qmgrqa_WF2pCTtVQhh4DP6Ur9qqQqRavGm3YlfJcNraMJW72muy28HizBokskfws_j7-eTU-ivrpC5FAXbRS7okSss8qkRVZRGZumqRMkrBk7xMQXpsolDYW4habUJVXq8yYp2KbX3pvkHWwvV0vaBeXKFCseeudrRMcul3be15XXKQd0sU5GYG4H3bqeelwqYFzaEILo0nZIWUHK9kiN4GDodNUxb_y_-UTQHJoKbXa4wDDZfhZa7cUDTlh8qpE4tvIuMw5Jp8QaanAEOwLt8JAe1RHs3-qG7af4tTUo3GpJbsze_b0-wdOTs9O5nc8W397DMxG2W7vZh-12vaEP8MTdtBfX649Bj_8AuHLvGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+MRI+Image+Classification+for+Cancer+Detection+Using+Deep+Wavelet+Autoencoder-Based+Deep+Neural+Network&rft.jtitle=IEEE+access&rft.au=Kumar+Mallick%2C+Pradeep&rft.au=Ryu%2C+Seuc+Ho&rft.au=Satapathy%2C+Sandeep+Kumar&rft.au=Mishra%2C+Shruti&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=46278&rft.epage=46287&rft_id=info:doi/10.1109%2FACCESS.2019.2902252&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2902252 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |