A Model Combining Stacked Auto Encoder and Back Propagation Algorithm for Short-Term Wind Power Forecasting

Recently, many countries have spent great efforts on wind power generation. Although there have been many methods in the field of wind power forecasting, the persistence statistics model based on historical data is still being challenged due to the randomness and uncontrollability in wind power. Hen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 6; s. 17851 - 17858
Hlavní autoři: Jiao, Runhai, Huang, Xujian, Ma, Xuehai, Han, Liye, Tian, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, many countries have spent great efforts on wind power generation. Although there have been many methods in the field of wind power forecasting, the persistence statistics model based on historical data is still being challenged due to the randomness and uncontrollability in wind power. Hence, a more accurate and effective wind power forecasting method is still required. In this paper, a new forecasting method is proposed by combining stacked auto-encoders (SAE) and the back propagation (BP) algorithm. First, an SAE with three hidden layers is designed to extract the characteristics from the reference data sequence, and the subsequent loss function is used in the pre-training process to obtain the optimal initial connection weights of the deep network. Second, after adding one output layer to the stacked auto encoders, the BP algorithm is used to fine tune the weights of the whole network. To achieve the best network architecture, the particle swarm optimization is adopted to decide the number of neurons of the hidden layer and the learning rate of each auto encoder. Experimental results show that, for short-term wind power forecasting, the proposed method achieves more stable and effective performance than the existing BP neural network and support vector machines. The improvement in accuracy is 12% on average under different time steps.
AbstractList Recently, many countries have spent great efforts on wind power generation. Although there have been many methods in the field of wind power forecasting, the persistence statistics model based on historical data is still being challenged due to the randomness and uncontrollability in wind power. Hence, a more accurate and effective wind power forecasting method is still required. In this paper, a new forecasting method is proposed by combining stacked auto-encoders (SAE) and the back propagation (BP) algorithm. First, an SAE with three hidden layers is designed to extract the characteristics from the reference data sequence, and the subsequent loss function is used in the pre-training process to obtain the optimal initial connection weights of the deep network. Second, after adding one output layer to the stacked auto encoders, the BP algorithm is used to fine tune the weights of the whole network. To achieve the best network architecture, the particle swarm optimization is adopted to decide the number of neurons of the hidden layer and the learning rate of each auto encoder. Experimental results show that, for short-term wind power forecasting, the proposed method achieves more stable and effective performance than the existing BP neural network and support vector machines. The improvement in accuracy is 12% on average under different time steps.
Author Han, Liye
Tian, Wei
Ma, Xuehai
Huang, Xujian
Jiao, Runhai
Author_xml – sequence: 1
  givenname: Runhai
  orcidid: 0000-0003-3759-4175
  surname: Jiao
  fullname: Jiao, Runhai
  email: runhaijiao@ncepu.edu.cn
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing, China
– sequence: 2
  givenname: Xujian
  surname: Huang
  fullname: Huang, Xujian
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing, China
– sequence: 3
  givenname: Xuehai
  surname: Ma
  fullname: Ma, Xuehai
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing, China
– sequence: 4
  givenname: Liye
  surname: Han
  fullname: Han, Liye
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing, China
– sequence: 5
  givenname: Wei
  surname: Tian
  fullname: Tian, Wei
  organization: Electrical and Computer Engineering Department, Illinois Institute of Technology, Chicago, IL, USA
BookMark eNqFUctq3DAUFSWFpmm-IBtB157qYb2Wrpm0gZQEJqVLIesx0cRjTWUNoX9fJQ6hZFNtdDk6j4vOR3AypckDcIHRCmOkvnR9v95sVgRhuSISS4zkO3BKMFcNZZSf_DN_AOfzvEP1yAoxcQoeOvgjOT_CPu2HOMVpCzfF2AfvYHcsCa4nW58zNJODXysOb3M6mK0pMU2wG7cpx3K_hyFluLlPuTR3Pu_hr1jpt-mxCi9T9tbMpTp_Au-DGWd__nKfgZ-X67v-e3N98-2q764b2yJZGixabgILlEhBnMOWD8I4NiCFgrUS0YAlacnApaCYMaMGaS0nhg91UJ7QM3C1-LpkdvqQ497kPzqZqJ-BlLfa5BLt6DULg6C25nImWkWY5I6HNrhAkJHKser1efE65PT76Oeid-mYp7q-Ji1jiiIlVGXRhWVzmufsw2sqRvqpJL2UpJ9K0i8lVZV6o7KxPP9sySaO_9FeLNrovX9Nk5QQTAT9C5UToJs
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_rineng_2024_102504
crossref_primary_10_1109_ACCESS_2021_3080297
crossref_primary_10_1109_ACCESS_2023_3330137
crossref_primary_10_3390_app11146420
crossref_primary_10_3390_make5030062
crossref_primary_10_3390_en15249657
crossref_primary_10_1177_0309524X19891672
crossref_primary_10_1016_j_tej_2020_106879
crossref_primary_10_1016_j_arcontrol_2020_03_001
crossref_primary_10_1049_cit2_12076
crossref_primary_10_1016_j_egyr_2023_05_063
crossref_primary_10_3390_app10175975
crossref_primary_10_3390_fractalfract8080487
crossref_primary_10_1016_j_apenergy_2019_114139
crossref_primary_10_1049_rpg2_12053
crossref_primary_10_1109_JSEN_2019_2927268
crossref_primary_10_1016_j_jhydrol_2021_126371
crossref_primary_10_1109_ACCESS_2019_2901920
crossref_primary_10_1016_j_rser_2023_113364
crossref_primary_10_1109_ACCESS_2020_2994119
crossref_primary_10_1109_JIOT_2023_3293800
crossref_primary_10_1016_j_ijepes_2020_106429
crossref_primary_10_1016_j_enconman_2019_111799
crossref_primary_10_1016_j_jmapro_2024_07_060
crossref_primary_10_1109_ACCESS_2019_2931995
crossref_primary_10_1016_j_enconman_2022_115703
crossref_primary_10_1515_ehs_2023_0072
crossref_primary_10_3390_app9091844
crossref_primary_10_1109_ACCESS_2019_2961810
crossref_primary_10_1007_s11831_024_10182_8
crossref_primary_10_1016_j_jclepro_2022_135414
crossref_primary_10_1007_s12204_022_2477_7
crossref_primary_10_1007_s10462_024_10728_z
crossref_primary_10_1016_j_epsr_2021_107518
crossref_primary_10_1109_ACCESS_2021_3097102
crossref_primary_10_1109_ACCESS_2018_2869981
crossref_primary_10_1109_ACCESS_2018_2849830
crossref_primary_10_1007_s42835_020_00616_1
crossref_primary_10_1016_j_energy_2020_119397
crossref_primary_10_1109_ACCESS_2020_3016832
crossref_primary_10_1016_j_apenergy_2021_116951
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1111_exsy_13716
crossref_primary_10_1007_s40815_023_01544_8
crossref_primary_10_1016_j_energy_2020_119356
crossref_primary_10_1016_j_infrared_2020_103198
crossref_primary_10_1108_COMPEL_12_2019_0477
crossref_primary_10_1109_ACCESS_2019_2932999
crossref_primary_10_1109_ACCESS_2019_2955515
crossref_primary_10_1016_j_enconman_2020_113456
crossref_primary_10_1016_j_ref_2025_100739
crossref_primary_10_1109_ACCESS_2020_2966275
crossref_primary_10_1016_j_enconman_2020_112524
crossref_primary_10_1109_JIOT_2020_3004469
crossref_primary_10_1109_TIA_2020_3037264
crossref_primary_10_1049_gtd2_12603
crossref_primary_10_1016_j_apenergy_2025_126606
crossref_primary_10_3390_en12122229
crossref_primary_10_3390_app9142831
crossref_primary_10_4018_IJACI_2020070104
crossref_primary_10_1007_s13369_020_05311_x
crossref_primary_10_1016_j_renene_2021_10_104
crossref_primary_10_1007_s00521_024_09923_4
crossref_primary_10_1109_JIOT_2020_3007130
crossref_primary_10_1016_j_jclepro_2019_118447
crossref_primary_10_3390_su16072894
crossref_primary_10_1016_j_engappai_2022_105445
crossref_primary_10_1080_01430750_2025_2516063
crossref_primary_10_1016_j_apenergy_2020_115237
crossref_primary_10_1002_qre_3562
crossref_primary_10_1109_TIA_2019_2940585
crossref_primary_10_1007_s40866_025_00293_x
crossref_primary_10_1016_j_jnca_2021_103017
crossref_primary_10_1088_1742_6596_2033_1_012112
crossref_primary_10_1007_s00170_024_13372_7
crossref_primary_10_1051_e3sconf_202015406002
crossref_primary_10_3390_electronics14163172
crossref_primary_10_1016_j_elerap_2020_101003
crossref_primary_10_3233_JIFS_233655
crossref_primary_10_1007_s11063_024_11478_3
crossref_primary_10_1016_j_energy_2019_116502
crossref_primary_10_1109_JIOT_2021_3093116
crossref_primary_10_1177_0957650918821040
crossref_primary_10_1049_smt2_12018
crossref_primary_10_3390_en15218062
crossref_primary_10_1049_iet_rpg_2018_5917
Cites_doi 10.1016/j.enconman.2010.11.007
10.1016/j.apenergy.2009.12.013
10.1016/j.pecs.2004.04.001
10.1016/j.renene.2003.11.009
10.1016/S0169-7439(02)00046-1
10.1016/j.solener.2004.09.013
10.1016/j.rser.2008.02.002
10.21437/Interspeech.2004-376
10.1109/ISAP.2009.5352853
10.1155/2013/461983
10.1016/j.renene.2015.02.034
10.1109/ICNN.1995.488968
10.1016/j.neucom.2013.03.047
10.1109/TEC.2003.821865
10.1016/j.apenergy.2013.02.002
10.1016/j.apenergy.2013.08.025
10.1016/j.egypro.2011.10.099
10.1016/j.scitotenv.2012.03.025
10.2172/968212
10.1109/ICIT.2004.1490783
10.1109/SPEEDAM.2010.5542259
10.1016/j.renene.2008.11.014
10.1109/MPE.2007.906306
10.1016/j.renene.2007.06.013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2818108
DatabaseName IEEE Xplore (IEEE)
Open Access资源_IEL Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 17858
ExternalDocumentID oai_doaj_org_article_5fb73cc40657492586d6f4fdf20a89d5
10_1109_ACCESS_2018_2818108
8322127
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2018ZD06
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-1746af5f32872dd1c6b7ad5b090fcc803f18242b6873155a9b8cc62a6bb8c9e23
IEDL.DBID RIE
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430840900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:25 EDT 2025
Sun Nov 30 04:57:42 EST 2025
Sat Nov 29 03:33:07 EST 2025
Tue Nov 18 21:30:18 EST 2025
Wed Aug 27 02:49:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1746af5f32872dd1c6b7ad5b090fcc803f18242b6873155a9b8cc62a6bb8c9e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3759-4175
OpenAccessLink https://ieeexplore.ieee.org/document/8322127
PQID 2455930979
PQPubID 4845423
PageCount 8
ParticipantIDs crossref_primary_10_1109_ACCESS_2018_2818108
doaj_primary_oai_doaj_org_article_5fb73cc40657492586d6f4fdf20a89d5
ieee_primary_8322127
proquest_journals_2455930979
crossref_citationtrail_10_1109_ACCESS_2018_2818108
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
lecun (ref25) 2010
ref11
ref10
hinton (ref24) 2011
ref2
kwolek (ref26) 2005
ref17
ref19
jps (ref16) 2009; 17
ref18
rifai (ref28) 2011
ref23
sukittanon (ref27) 2004
ref20
ref22
ref21
(ref30) 2014
ref29
ref8
ahin (ref1) 2004; 30
ref9
ref4
torres (ref7) 2005; 79
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1016/j.enconman.2010.11.007
– ident: ref13
  doi: 10.1016/j.apenergy.2009.12.013
– start-page: 645
  year: 2011
  ident: ref28
  article-title: Higher order contractive auto-encoder
  publication-title: Machine Learning and Knowledge Discovery in Databases
– volume: 30
  start-page: 501
  year: 2004
  ident: ref1
  article-title: Progress and recent trends in wind energy
  publication-title: Prog Energy Combustion Sci
  doi: 10.1016/j.pecs.2004.04.001
– start-page: 44
  year: 2011
  ident: ref24
  article-title: Transforming auto-encoders
  publication-title: Artificial Neural Networks in Machine Learning
– ident: ref17
  doi: 10.1016/j.renene.2003.11.009
– ident: ref20
  doi: 10.1016/S0169-7439(02)00046-1
– volume: 79
  start-page: 65
  year: 2005
  ident: ref7
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.09.013
– ident: ref5
  doi: 10.1016/j.rser.2008.02.002
– year: 2010
  ident: ref25
  publication-title: The MNIST Database of Handwritten Digits
– start-page: 1077
  year: 2004
  ident: ref27
  article-title: Convolutional networks for speech detection
  publication-title: Proc INTERSPEECH
  doi: 10.21437/Interspeech.2004-376
– ident: ref12
  doi: 10.1109/ISAP.2009.5352853
– ident: ref22
  doi: 10.1155/2013/461983
– ident: ref11
  doi: 10.1016/j.renene.2015.02.034
– ident: ref29
  doi: 10.1109/ICNN.1995.488968
– volume: 17
  start-page: 5
  year: 2009
  ident: ref16
  article-title: An artificial neural network approach for short-term wind power forecasting in Portugal
  publication-title: Int J Eng Intell Syst Elect Eng Commun
– ident: ref23
  doi: 10.1016/j.neucom.2013.03.047
– ident: ref6
  doi: 10.1109/TEC.2003.821865
– ident: ref21
  doi: 10.1016/j.apenergy.2013.02.002
– ident: ref19
  doi: 10.1016/j.apenergy.2013.08.025
– start-page: 551
  year: 2005
  ident: ref26
  article-title: Face detection using convolutional neural networks and gabor filters
  publication-title: Artificial Neural Networks Biological Inspirations?ICANN
– ident: ref10
  doi: 10.1016/j.egypro.2011.10.099
– ident: ref8
  doi: 10.1016/j.scitotenv.2012.03.025
– year: 2014
  ident: ref30
  publication-title: All Island-System Demand
– ident: ref4
  doi: 10.2172/968212
– ident: ref14
  doi: 10.1109/ICIT.2004.1490783
– ident: ref15
  doi: 10.1109/SPEEDAM.2010.5542259
– ident: ref3
  doi: 10.1016/j.renene.2008.11.014
– ident: ref2
  doi: 10.1109/MPE.2007.906306
– ident: ref9
  doi: 10.1016/j.renene.2007.06.013
SSID ssj0000816957
Score 2.4889045
Snippet Recently, many countries have spent great efforts on wind power generation. Although there have been many methods in the field of wind power forecasting, the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17851
SubjectTerms Algorithms
Back propagation
Back propagation networks
Coders
Computer architecture
Electric power generation
Feature extraction
Forecasting
Machine learning
Mathematical models
Neural networks
Neurons
Particle swarm optimization
Predictive models
stacked auto-encoders
Support vector machines
Training
Wavelet analysis
wind energy
Wind power
wind power forecasting
Wind power generation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EN7QLSAui1UPnBswEnWr2NYgXpCKxVUbpafgFiyKBv6-zvjhNVKSHDhFlnOwzPj8XyW832EHEnGomY2Flwph6TasdCJ66L2SXrruLR2EJuQFxfq-lrPN6S-8EzYQA88GO6EJydr72Hd4RKJ9JQIIk1TSBWzSofMXsqk3gBTOQerUmguR5qhkumTZjaDEeFZLnWMDEglCkpuLEWZsX-UWHmRl_Nic75DtscqkTbD130hH2L7lXze4A7cJfcNRR2zBYUZ7bLKA4XCEeZkoM1Tv6RnLf6t3lHbBnoK7XTeAT6-yY6gzeJm2d31tw8Ualb65xZq8OIScjT9CxCdzlE5jaJop7crPBa9R67Ozy5nv4tROaEAQ6m-AJghbOKpBjxUhVB64aQN3DHNkveK1QlgxbRyQskaCgqrnfJeVFY4uNCxqvfJVrts4zdCRfRQQ8oYggcsJgF_WOZ50AmJ_qywE1I9G9H4kVYc1S0WJsMLps1geYOWN6PlJ-TX-qbHgVXj9e6n6J11V6TEzg0QKGYMFPNWoEzILvp2_RBMZWUlJ-Tg2ddmnL4rU00BaNVMS_39PV79g3zC4Qw7Nwdkq--e4iH56P_1d6vuZ47c_8v47oQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Model Combining Stacked Auto Encoder and Back Propagation Algorithm for Short-Term Wind Power Forecasting
URI https://ieeexplore.ieee.org/document/8322127
https://www.proquest.com/docview/2455930979
https://doaj.org/article/5fb73cc40657492586d6f4fdf20a89d5
Volume 6
WOSCitedRecordID wos000430840900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXaqgtYFEpBDJTKC5ZN60nGr2U6mooN1UgU0Z3lZ1sxZKpMhiXfzr1OGlUCIbGJLCuOnBw_7nHscwj5KBmLmtlYcKUcimrHQieui8on6a3j0trebEJeXambG73cIafjWZgYY958Fs8wmf_lh7Xf4lLZOba-aSl3ya6Uoj-rNa6noIGE5nIQFpoyfV7P5_AOuHtLnaHm0RQtJJ9MPlmjfzBV-WMkztPL5Yv_q9hLcjCEkbTucT8kO7F5RZ4_ERc8It9rikZnKwpd3mUbCAqRJXTaQOttt6aLBo-zt9Q2gV5APl22QKBvM1K0Xt2u2_vu7geFoJZ-uYMgvbiGQZx-Aw5Pl2itRtHV09sN7pt-Tb5eLq7nn4rBWqHwM6a6AniIsImnCghTGcLUCydt4I5plrxXrErAO2alE0pWEHFY7ZT3orTCQULHsnpD9pp1E98SKqKHIFPGEDyQNQkExTLPg06oBGiFnZDy8ZsbP-iOo_3FymT-wbTpgTIIlBmAmpDTsdBDL7vx79svEMzxVtTMzhmAkhm6oOHJycrD-wsuUZJRiSDSLIVUMqt04BNyhMiODxlAnZDjx6Zhhv69MeUMmFjFtNTv_l7qPXmGFewXa47JXtdu4wey739295v2JDN_uH7-tTjJzfg32xTtyQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGLXGQAIeuG2IwgA_8LhsblLfHrNq0xCjqkQRe7McX7aJkqI05ffzfYkXTdo0aW-WFUd2ji_fcexzCPkiGQua2ZBxpSoU1Q6ZjlxnhYvS2YpLa3uzCTmbqfNzPd8i-8NdmBBCd_gsHGCy-5fvV26DW2WH2PvGuXxEHqNzVrqtNeyooIWE5jJJC42ZPiynU2gFnt9SB6h6NEYTyRvLT6fSn2xVbs3F3QJz8vJhVXtFXqRAkpY98q_JVqjfkOc35AV3yO-SotXZksKgrzojCAqxJQxbT8tNu6LHNV5ob6itPT2CfDpvgEJfdFjRcnmxaq7ayz8Uwlr64xLC9GwB0zj9BSyeztFcjaKvp7NrPDm9S36eHC-mp1kyV8jchKk2AyYibOSxAMqUez92opLW84ppFp1TrIjAPCZ5JZQsIOawulLOidyKChI65MVbsl2v6vCOUBEchJkyeO-ArkmgKJY57nVELUAr7Ijk19_cuKQ8jgYYS9MxEKZND5RBoEwCakT2h0J_e-GN-x8_QjCHR1E1u8sAlEwahIbHShYO2i-4RFFGJbyIk-hjzqzSno_IDiI7vCSBOiJ7113DpBG-NvkEuFjBtNTv7y71mTw9XXw_M2dfZ98-kGdY2X7rZo9st80mfCRP3L_2at186rrxfy117uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Model+Combining+Stacked+Auto+Encoder+and+Back+Propagation+Algorithm+for+Short-Term+Wind+Power+Forecasting&rft.jtitle=IEEE+access&rft.au=Jiao%2C+Runhai&rft.au=Huang%2C+Xujian&rft.au=Ma%2C+Xuehai&rft.au=Han%2C+Liye&rft.date=2018-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=6&rft.spage=17851&rft_id=info:doi/10.1109%2FACCESS.2018.2818108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon