Golden Search Optimization Algorithm

This study introduces an effective population-based optimization algorithm, namely the Golden Search Optimization Algorithm (GSO), for numerical function optimization. The new algorithm has a simple but effective strategy for solving complex problems. GSO starts with random possible solutions called...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 10; s. 37515 - 37532
Hlavní autori: Noroozi, Mohammad, Mohammadi, Hamed, Efatinasab, Emad, Lashgari, Ali, Eslami, Mahdiyeh, Khan, Baseem
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This study introduces an effective population-based optimization algorithm, namely the Golden Search Optimization Algorithm (GSO), for numerical function optimization. The new algorithm has a simple but effective strategy for solving complex problems. GSO starts with random possible solutions called objects, which interact with each other based on a simple mathematical model to reach the global optimum. To provide a fine balance between the explorative and exploitative behavior of a search, the proposed method utilizes a transfer operator in the adaptive step size adjustment scheme. The proposed algorithm is benchmarked with 23 unimodal, multimodal, and fixed dimensional functions and the results are verified by a comparative study with the well-known Gravitational Search Algorithm (GSA), Sine-Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Tunicate Swarm Algorithm (TSA). In addition, the nonparametric Wilcoxon's rank sum test is performed to measure the pair-wise statistical performance of the GSO and provide a valid judgment about the performance of the algorithm. The simulation results demonstrate that GSO is superior and could generate better optimal solutions when compared with other competitive algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3162853