Constrained Visualization Using the Shepard Interpolation Family

This paper discusses the problem of visualizing data where there are underlying constraints that must be preserved. For example, we may know that the data are inherently positive. We show how the Modified Quadratic Shepard method, which interpolates scattered data of any dimensionality, can be const...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 24; no. 4; pp. 809 - 820
Main Authors: Brodlie, K. W., Asim, M. R., Unsworth, K.
Format: Journal Article
Language:English
Published: 9600 Garsington Road , Oxford , OX4 2DQ , UK Blackwell Publishing Ltd 01.12.2005
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper discusses the problem of visualizing data where there are underlying constraints that must be preserved. For example, we may know that the data are inherently positive. We show how the Modified Quadratic Shepard method, which interpolates scattered data of any dimensionality, can be constrained to preserve positivity. We do this by forcing the quadratic basis functions to be positive. The method can be extended to handle other types of constraints, including lower bound of 0 and upper bound of 1—as occurs with fractional data. A further extension allows general range restrictions, creating an interpolant that lies between any two specified functions as the lower and upper bounds.
AbstractList This paper discusses the problem of visualizing data where there are underlying constraints that must be preserved. For example, we may know that the data are inherently positive. We show how the Modified Quadratic Shepard method, which interpolates scattered data of any dimensionality, can be constrained to preserve positivity. We do this by forcing the quadratic basis functions to be positive. The method can be extended to handle other types of constraints, including lower bound of 0 and upper bound of 1—as occurs with fractional data. A further extension allows general range restrictions, creating an interpolant that lies between any two specified functions as the lower and upper bounds.
This paper discusses the problem of visualizing data where there are underlying constraints that must be preserved. For example, we may know that the data are inherently positive. We show how the Modified Quadratic Shepard method, which interpolates scattered data of any dimensionality, can be constrained to preserve positivity. We do this by forcing the quadratic basis functions to be positive. The method can be extended to handle other types of constraints, including lower bound of 0 and upper bound of 1 - as occurs with fractional data. A further extension allows general range restrictions, creating an interpolant that lies between any two specified functions as the lower and upper bounds. [PUBLICATION ABSTRACT]
Author Unsworth, K.
Asim, M. R.
Brodlie, K. W.
Author_xml – sequence: 1
  givenname: K. W.
  surname: Brodlie
  fullname: Brodlie, K. W.
  organization: School of Computing, University of Leeds, Leeds LS2 9JT, UK
– sequence: 2
  givenname: M. R.
  surname: Asim
  fullname: Asim, M. R.
  organization: COMSATS Institute of Information Technology, Off Raiwind Road, Lahore, Pakistan
– sequence: 3
  givenname: K.
  surname: Unsworth
  fullname: Unsworth, K.
  organization: Applied Computing, Mathematics and Statistics Group, Division of Applied Management and Computing, P.O.Box 84, Lincoln University, Canterbury, New Zealand
BookMark eNqNkNFO2zAUhi3EJArjHSIuuEs4iePYlhACytohITaJwSRujlzHBZfUKXaqtXv6OWTigit84yOd__ttfftk17XOEJLkkOXxnCyyvKx4KiomswKAZQASaLbZIaP3xS4ZQR5nDoztkf0QFgBQ8oqNyPm4daHzyjpTJw82rFVj_6rOti65D9Y9Jd2zSe6ezUr5Orl2nfGrthn2E7W0zfYr-TJXTTCH_-8Dcj_59mv8Pb35Mb0eX9ykugRBU8rZzPCqhpnkcsYY0LIGKbUwILQRei4KUfIaNK-0BpZXuprVBRMFhVxxqegBOR56V759XZvQ4dIGbZpGOdOuAxaCx05JY_DoQ3DRrr2Lf8NcRiMlFBBDYghp34bgzRxX3i6V32IO2HvFBfb6sNeHvVd884qbiJ59QLXt3oz0GpvPFJwOBX9sY7affhjH00kcIp4OuA2d2bzjyr9gxaNm_H07xQcqbx-Lq594Sf8B8kKhnA
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_018
crossref_primary_10_1016_j_compstruct_2017_09_052
crossref_primary_10_1007_s11771_014_1974_8
crossref_primary_10_1080_23311916_2018_1505175
crossref_primary_10_1016_j_amc_2014_09_009
crossref_primary_10_1080_14498596_2011_623348
crossref_primary_10_1007_s10443_018_9731_z
crossref_primary_10_1016_j_finel_2014_03_012
crossref_primary_10_3390_sym12071071
crossref_primary_10_1155_2021_5925163
crossref_primary_10_4028_www_scientific_net_AMM_50_51_683
crossref_primary_10_1007_s40314_020_1067_2
crossref_primary_10_1002_nme_3321
crossref_primary_10_3390_a17090422
crossref_primary_10_1016_j_cam_2017_01_024
crossref_primary_10_3390_sym14020240
crossref_primary_10_1007_s10851_020_01005_z
crossref_primary_10_1016_j_compstruct_2018_01_013
crossref_primary_10_1109_TMAG_2014_2360841
crossref_primary_10_1111_j_2044_8317_2011_02016_x
crossref_primary_10_1007_s00707_019_02386_y
crossref_primary_10_1002_fld_4339
crossref_primary_10_1186_s13662_020_02598_w
crossref_primary_10_1016_j_amc_2012_01_072
crossref_primary_10_1109_ACCESS_2019_2931454
crossref_primary_10_32604_cmes_2021_015694
crossref_primary_10_1063_1_3553008
crossref_primary_10_1063_1_3427220
crossref_primary_10_1016_j_camwa_2011_01_013
crossref_primary_10_1007_s00366_017_0503_4
crossref_primary_10_1002_nme_6144
crossref_primary_10_1016_j_enggeo_2021_106300
Cites_doi 10.1145/800186.810616
10.1109/38.180119
10.1016/0021-9045(79)90020-0
10.1016/S0377-0427(00)00580-X
10.1016/S0097-8493(03)00084-0
10.1145/45054.45055
10.1007/BF02252986
10.1002/nme.1620151110
10.1016/B978-0-12-587260-7.50008-X
10.2307/2006273
10.1016/0021-9045(73)90020-8
10.1145/45054.356231
ContentType Journal Article
Copyright The Eurographics Association and Blackwell Publishing Ltd 2005
Copyright_xml – notice: The Eurographics Association and Blackwell Publishing Ltd 2005
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2005.00903.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 820
ExternalDocumentID 940203791
10_1111_j_1467_8659_2005_00903_x
CGF903
ark_67375_WNG_V39NZ2DP_B
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4083-375be76d0b979b55034d099c8e08ce8cf82847d0c76cc0516c6bd2582301a79a3
IEDL.DBID DRFUL
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233834800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Thu Oct 02 09:46:24 EDT 2025
Fri Jul 25 05:29:08 EDT 2025
Sat Nov 29 03:40:58 EST 2025
Tue Nov 18 22:37:01 EST 2025
Sun Sep 21 06:23:42 EDT 2025
Sun Sep 21 06:19:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4083-375be76d0b979b55034d099c8e08ce8cf82847d0c76cc0516c6bd2582301a79a3
Notes istex:69C5A3576800342A1DFBF138BEE8714594849BB1
ark:/67375/WNG-V39NZ2DP-B
ArticleID:CGF903
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 194674020
PQPubID 30877
PageCount 12
ParticipantIDs proquest_miscellaneous_28703493
proquest_journals_194674020
crossref_primary_10_1111_j_1467_8659_2005_00903_x
crossref_citationtrail_10_1111_j_1467_8659_2005_00903_x
wiley_primary_10_1111_j_1467_8659_2005_00903_x_CGF903
istex_primary_ark_67375_WNG_V39NZ2DP_B
PublicationCentury 2000
PublicationDate December 2005
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: December 2005
PublicationDecade 2000
PublicationPlace 9600 Garsington Road , Oxford , OX4 2DQ , UK
PublicationPlace_xml – name: 9600 Garsington Road , Oxford , OX4 2DQ , UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2005
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References B. Mulansky and J. Schmidt. Powell-Sabin splines in range restricted interpolation of scattered data. Computing, 53(1994), 137-154.
Y. Xiao and C. Woodbury. Constraining global interpolation methods for sparse data volume visualization. International Journal of Computers and Applications, 21, 2 (1999), 59-64.
R. J. Renka. Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of scattered data. ACM Transactions on Mathematical Software 14, 2 (1988), 149-150.
M. Asim and K. Brodlie. Curve drawing subject to positivity and more general constraints. Computers and Graphics, 27(2003), 469-485.
E. Chan and B. Ong. Range restricted scattered data interpolation using convex combination of cubic Bezier triangles. Journal of Computational and Applied Mathematics, 136(2001), 135-147.
W. J. Gordon and J. A. Wixom. Shepard's method of metric interpolation to bivariate and multivariate interpolation. Mathematics of Computation, 32, 141 (1978), 253-264.
R. Fletcher. Practical Methods of Optimization. Wiley, Chichester and New York , 1987.
P. Lancaster and K. Salkauskas. Curve and Surface Fitting: An Introduction. Academic Press, London , 1986.
R. Franke and G. Nielson. Smooth interpolation of large sets of scattered data. International Journal of Numerical Methods in Engineering, 15(1980), 1691-1704.
G. M. Nielson. Scattered data modelling. IEEE Computer Graphics and its Applications, (1993), 60-70.
R. J. Renka. Multivariate interpolation of large sets of scattered data. ACM Transactions on Mathematical Software, 14, 2 (1988), 139-148.
G. Nielson. The side-vertex method for interpolation in triangles. Journal of Approximation Theory, 25(1979), 318-336.
F. I. Utreras. Positive thin plate splines. J. Approximation Theory and its Applications, 1, 3 (1985), 77-108.
R. Barnhill G. Birkhoff and W. Gordon. Smooth interpolation in triangles. Journal of Approximation Theory, 8(1973), 114-128.
1980; 15
1985; 1
1979; 25
2000
1978; 32
1988; 14
1987
1986
1996
2003; 27
1999; 21
2005
1993
1973; 8
2001; 136
1968
1994; 53
1977
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
Xiao Y. (e_1_2_8_11_2) 1999; 21
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_9_2
Asim M. (e_1_2_8_3_2) 2000
e_1_2_8_2_2
Utreras F. I. (e_1_2_8_10_2) 1985; 1
e_1_2_8_4_2
e_1_2_8_5_2
Fletcher R. (e_1_2_8_20_2) 1987
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_21_2
Ong B. (e_1_2_8_6_2) 1996
Lancaster P. (e_1_2_8_22_2) 1986
References_xml – reference: R. Franke and G. Nielson. Smooth interpolation of large sets of scattered data. International Journal of Numerical Methods in Engineering, 15(1980), 1691-1704.
– reference: M. Asim and K. Brodlie. Curve drawing subject to positivity and more general constraints. Computers and Graphics, 27(2003), 469-485.
– reference: F. I. Utreras. Positive thin plate splines. J. Approximation Theory and its Applications, 1, 3 (1985), 77-108.
– reference: R. J. Renka. Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of scattered data. ACM Transactions on Mathematical Software 14, 2 (1988), 149-150.
– reference: R. Barnhill G. Birkhoff and W. Gordon. Smooth interpolation in triangles. Journal of Approximation Theory, 8(1973), 114-128.
– reference: B. Mulansky and J. Schmidt. Powell-Sabin splines in range restricted interpolation of scattered data. Computing, 53(1994), 137-154.
– reference: Y. Xiao and C. Woodbury. Constraining global interpolation methods for sparse data volume visualization. International Journal of Computers and Applications, 21, 2 (1999), 59-64.
– reference: R. J. Renka. Multivariate interpolation of large sets of scattered data. ACM Transactions on Mathematical Software, 14, 2 (1988), 139-148.
– reference: E. Chan and B. Ong. Range restricted scattered data interpolation using convex combination of cubic Bezier triangles. Journal of Computational and Applied Mathematics, 136(2001), 135-147.
– reference: R. Fletcher. Practical Methods of Optimization. Wiley, Chichester and New York , 1987.
– reference: W. J. Gordon and J. A. Wixom. Shepard's method of metric interpolation to bivariate and multivariate interpolation. Mathematics of Computation, 32, 141 (1978), 253-264.
– reference: P. Lancaster and K. Salkauskas. Curve and Surface Fitting: An Introduction. Academic Press, London , 1986.
– reference: G. Nielson. The side-vertex method for interpolation in triangles. Journal of Approximation Theory, 25(1979), 318-336.
– reference: G. M. Nielson. Scattered data modelling. IEEE Computer Graphics and its Applications, (1993), 60-70.
– year: 1986
– volume: 1
  start-page: 77
  issue: 3
  year: 1985
  end-page: 108
  article-title: Positive thin plate splines
  publication-title: J. Approximation Theory and its Applications
– volume: 14
  start-page: 149
  issue: 2
  year: 1988
  end-page: 150
  article-title: Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of scattered data
  publication-title: ACM Transactions on Mathematical Software
– volume: 21
  start-page: 59
  issue: 2
  year: 1999
  end-page: 64
  article-title: Constraining global interpolation methods for sparse data volume visualization
  publication-title: International Journal of Computers and Applications
– year: 2005
– volume: 27
  start-page: 469
  year: 2003
  end-page: 485
  article-title: Curve drawing subject to positivity and more general constraints
  publication-title: Computers and Graphics
– start-page: 259
  year: 1996
  end-page: 274
– start-page: 60
  year: 1993
  end-page: 70
  article-title: Scattered data modelling
  publication-title: IEEE Computer Graphics and its Applications
– volume: 25
  start-page: 318
  year: 1979
  end-page: 336
  article-title: The side‐vertex method for interpolation in triangles
  publication-title: Journal of Approximation Theory
– year: 1987
– start-page: 69
  year: 1977
  end-page: 120
– volume: 14
  start-page: 139
  issue: 2
  year: 1988
  end-page: 148
  article-title: Multivariate interpolation of large sets of scattered data
  publication-title: ACM Transactions on Mathematical Software
– volume: 15
  start-page: 1691
  year: 1980
  end-page: 1704
  article-title: Smooth interpolation of large sets of scattered data
  publication-title: International Journal of Numerical Methods in Engineering
– year: 2000
– start-page: 189
  year: 2000
  end-page: 230
– volume: 32
  start-page: 253
  issue: 141
  year: 1978
  end-page: 264
  article-title: Shepard's method of metric interpolation to bivariate and multivariate interpolation
  publication-title: Mathematics of Computation
– volume: 8
  start-page: 114
  year: 1973
  end-page: 128
  article-title: Smooth interpolation in triangles
  publication-title: Journal of Approximation Theory
– volume: 53
  start-page: 137
  year: 1994
  end-page: 154
  article-title: Powell‐Sabin splines in range restricted interpolation of scattered data
  publication-title: Computing
– volume: 136
  start-page: 135
  year: 2001
  end-page: 147
  article-title: Range restricted scattered data interpolation using convex combination of cubic Bezier triangles
  publication-title: Journal of Computational and Applied Mathematics
– start-page: 517
  year: 1968
  end-page: 523
– volume-title: Visualization of data subject to positivity constraint
  year: 2000
  ident: e_1_2_8_3_2
– ident: e_1_2_8_2_2
– ident: e_1_2_8_21_2
– ident: e_1_2_8_12_2
  doi: 10.1145/800186.810616
– ident: e_1_2_8_15_2
  doi: 10.1109/38.180119
– ident: e_1_2_8_7_2
  doi: 10.1016/0021-9045(79)90020-0
– volume-title: Practical Methods of Optimization
  year: 1987
  ident: e_1_2_8_20_2
– ident: e_1_2_8_9_2
  doi: 10.1016/S0377-0427(00)00580-X
– volume: 21
  start-page: 59
  issue: 2
  year: 1999
  ident: e_1_2_8_11_2
  article-title: Constraining global interpolation methods for sparse data volume visualization
  publication-title: International Journal of Computers and Applications
– ident: e_1_2_8_5_2
  doi: 10.1016/S0097-8493(03)00084-0
– ident: e_1_2_8_17_2
  doi: 10.1145/45054.45055
– volume: 1
  start-page: 77
  issue: 3
  year: 1985
  ident: e_1_2_8_10_2
  article-title: Positive thin plate splines
  publication-title: J. Approximation Theory and its Applications
– ident: e_1_2_8_8_2
  doi: 10.1007/BF02252986
– ident: e_1_2_8_13_2
  doi: 10.1002/nme.1620151110
– ident: e_1_2_8_14_2
  doi: 10.1016/B978-0-12-587260-7.50008-X
– ident: e_1_2_8_19_2
  doi: 10.2307/2006273
– ident: e_1_2_8_4_2
  doi: 10.1016/0021-9045(73)90020-8
– start-page: 259
  volume-title: Advanced Topics in Multivariate Approximation
  year: 1996
  ident: e_1_2_8_6_2
– ident: e_1_2_8_16_2
  doi: 10.1145/45054.356231
– volume-title: Curve and Surface Fitting: An Introduction
  year: 1986
  ident: e_1_2_8_22_2
– ident: e_1_2_8_18_2
SSID ssj0004765
Score 2.0122392
Snippet This paper discusses the problem of visualizing data where there are underlying constraints that must be preserved. For example, we may know that the data are...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 809
SubjectTerms Computer graphics
constraints
G.1.1 Numerical Analysis: Interpolation
G.1.6 Numerical Analysis: Optimization
I.3.5 Computer Graphics-Computational Geometry and Object Modelling
Interpolation
positivity
shape preservation
Shepard's method
Studies
visualisation
Visualization
Title Constrained Visualization Using the Shepard Interpolation Family
URI https://api.istex.fr/ark:/67375/WNG-V39NZ2DP-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2005.00903.x
https://www.proquest.com/docview/194674020
https://www.proquest.com/docview/28703493
Volume 24
WOSCitedRecordID wos000233834800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4Y8KAH38aKjx6Mtxr62G73poLggRCigsTLpt0ukWjAUDD8fGfaghA9EOOtaTOb7szO7re7M98AXAiB753QtpyYxZYXMW4JN1JWOVA9u-dqz45SEtcGbzaDble08vgnyoXJ-CHmB27kGel8TQ4eRslPJw98JmZHI6LsXiGeLDo4jL0CFKsPtXbjO0uS-2zG9E0cMstxPb-2tbRYFUnv0yUkuohn0wWptv2fXdmBrRyWmjfZONqFNT3Yg80FssJ9uKbanmlFCR2bnX5C2ZhZDqeZxh2YCCXNx1dN_I1mFss4zALtzKy6xgG0a3dPlXsrr79gKQ-RGc49LNLcj8uR4CLCrYzrxQgoVaDRkhqNGdDaFpcV95VC5_aVH8UOo6s7O-QidA-hMBgO9BGY2gt83MNzxCMCIUMc2j0fgWXQc7A1wTwD-EzRUuXk5NSjd7m0SeGSdESlM5lMdSSnBthzyY-MoGMFmcvUlnOBcPRGAW6cyedmXXZc0Xxxqi15a0BpZmyZ-3YibUEVWhBmG3A-_4pOSTct4UAPJ4mk22PXE64BLLX7yn8mK_UaPhz_Ua4EGxm1LIXbnEBhPJroU1hXn-N-MjrLHeILzzMGIA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbQhgQceCPKePSAuBWtjzTNDRiMIUaFYDzEJWrTVEygDe2B9vOx224wwQEhblUrR40dJ18S-zPAvhD43olsy0lYYnkx45ZwY2VVA5Xaqas9O85IXJs8DIPHR3FdlAOiXJicH2Jy4Eaekc3X5OB0IP3dywOfifHZiKi6hwgoyx6OKlaC8ulN_a75mSbJfTam-iYSmenAnh_bmlqtyqT40RQU_QposxWpvvSvfVmGxQKYmsf5SFqBGd1ZhYUvdIVrcETVPbOaEjox79t9ysfMszjNLPLARDBp3j5rYnA082jGbh5qZ-b1Ndbhrn7WqjWsogKDpTzEZjj7sFhzP6nGgosYNzOulyCkVIFGW2o0Z0CrW1JV3FcK3dtXfpw4jC7v7IiLyN2AUqfb0Ztgai_wcRfPEZEIBA1JZKc-QssgdbA1wTwD-FjTUhX05NSjVzm1TeGSdETFM5nMdCRHBtgTybecouMXMgeZMScCUe-FQtw4kw_hubx3RfjknF7LEwMqY2vLwrv70hZUowWBtgF7k6_olnTXEnV0d9iXdH_sesI1gGWG__Wfydp5HR-2_ii3B3ON1lVTNi_CywrM50SzFHyzDaVBb6h3YFa9D9r93m7hHR-apgoQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-hFk3bw4BtaOGreUB7y9R82I7f2FoCiCqqYLBqL1ZiO6ICtVU_Jv587pK0UG0PaNpblOisxJef_bN99zuAYynxfpD5XmCY8aKcCU-GufbasS78IrSRn5cirj2RpvFgIPt1OSDKhan0IVYbboSMcrwmgNuJKf5EecyZXO6NyHb4FQllM2KSI0qb3avkpvecJik4W0p9k4jMemDPX9tam62a1PGPa1T0JaEtZ6Rk679-yza8r4mp-636k3Zgw44-wLsXcoUf4YSqe5Y1Jaxxb4czysessjjdMvLARTLpXt9ZUnB0q2jGcRVq51b1NT7BTXL6o3Pu1RUYPB0hN8PRh-VWcNPOpZA5LmbCyCCl1LFFX1p0Z0yzm2lrwbVGeHPNcxMwOrzzMyGzcBcao_HIfgbXRjHHVbxARiKRNJjMLzhSy7gIsDXJIgfEsqeVruXJ6Yse1NoyRSjqIyqeyVTZR-rRAX9lOakkOl5h86V05sogm95TiJtg6md6pm5Dmf4Kun313YH9pbdVje6Z8iXVaEGi7UBr9RRhSWct2ciOFzNF58dhJEMHWOn4V7-Z6pwleLH3j3YteNPvJqp3kV7uw9tKZ5Zibw6gMZ8u7CFs6t_z4Wx6VIPjCRM_CYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Visualization+Using+the+Shepard+Interpolation+Family&rft.jtitle=Computer+graphics+forum&rft.au=Brodlie%2C+K+W&rft.au=Asim%2C+M+R&rft.au=Unsworth%2C+K&rft.date=2005-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=24&rft.issue=4&rft.spage=809&rft_id=info:doi/10.1111%2Fj.1467-8659.2005.00903.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=940203791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon