DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity
Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-i...
Saved in:
| Published in: | Nucleic acids research Vol. 40; no. 1; pp. 170 - 180 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
01.01.2012
|
| Subjects: | |
| ISSN: | 0305-1048, 1362-4962, 1362-4962 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity. |
|---|---|
| AbstractList | Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity. Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity. |
| Author | Diamant, Noam Vered, Ilan Reißner, Thomas Carell, Thomas Hendel, Ayal Livneh, Zvi Geacinov, Nicholas de Wind, Niels |
| AuthorAffiliation | 1 Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2 Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3 Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4 Department of Chemistry, New York University, New York, NY 10003-5180, USA |
| AuthorAffiliation_xml | – name: 1 Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2 Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3 Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4 Department of Chemistry, New York University, New York, NY 10003-5180, USA |
| Author_xml | – sequence: 1 givenname: Noam surname: Diamant fullname: Diamant, Noam organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA – sequence: 2 givenname: Ayal surname: Hendel fullname: Hendel, Ayal organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA – sequence: 3 givenname: Ilan surname: Vered fullname: Vered, Ilan organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA – sequence: 4 givenname: Thomas surname: Carell fullname: Carell, Thomas organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA – sequence: 5 givenname: Thomas surname: Reißner fullname: Reißner, Thomas organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA – sequence: 6 givenname: Niels surname: de Wind fullname: de Wind, Niels organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA – sequence: 7 givenname: Nicholas surname: Geacinov fullname: Geacinov, Nicholas organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA – sequence: 8 givenname: Zvi surname: Livneh fullname: Livneh, Zvi email: zvi.livneh@weizmann.ac.il organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21908406$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kd9rFDEQx4NU7LX64h8geRFBWJufu5cXoVStQtEH-x5mN8ld6m6yJtni_ffmerWoiA8hZOYz35l85wQdhRgsQs8peUOJ4mcB0tnmW5KqfYRWlLesEaplR2hFOJENJWJ9jE5yviGECirFE3TMqCJrQdoVunn3-RwbmGBjcb-bIWccZ5ug2Ix9wGVr8VcMweBLhuct5BqO7i482HHEw24Y7V3e_tj63peMjXfOJhuKhxFPS6nKwQ--7J6ixw7GbJ_d36fo-sP764uPzdWXy08X51fNIEhXGsfWxlkKIKwQjtVjmAJpuFMdBc4pSNZ21PXGkkH2a84Noawzkivu6usUvT3Izks_WTPUSRKMek5-grTTEbz-MxP8Vm_ireZMyGpLFXh1L5Di98Xmoief97-FYOOStaJKia4TspIvfm_10OOXvRV4fQCGFHNO1j0glOj97nTdnT7srsLkL7i6BsXH_Zh-_HfJy0NJXOb_Sf8E2YKr2A |
| CitedBy_id | crossref_primary_10_1016_j_jmb_2023_168275 crossref_primary_10_1093_nar_gkac746 crossref_primary_10_1016_j_dnarep_2015_01_001 crossref_primary_10_1093_nar_gku1385 crossref_primary_10_1016_j_molcel_2013_10_034 crossref_primary_10_1016_j_mrfmmm_2015_08_002 crossref_primary_10_1186_s13059_018_1509_y crossref_primary_10_1038_nrm3289 crossref_primary_10_1038_ncomms6437 crossref_primary_10_1016_j_ajhg_2012_10_018 crossref_primary_10_1093_nar_gkw1315 crossref_primary_10_1074_jbc_RA118_005297 crossref_primary_10_3389_fvets_2025_1587391 crossref_primary_10_1111_cmi_12028 crossref_primary_10_3390_ijms242316903 crossref_primary_10_1371_journal_pgen_1005411 crossref_primary_10_3390_genes10010010 crossref_primary_10_1016_j_dnarep_2021_103055 crossref_primary_10_3390_ijms21051706 crossref_primary_10_1128_mmbr_00078_22 crossref_primary_10_1038_s41598_021_00878_3 crossref_primary_10_1002_em_22087 crossref_primary_10_1038_s41388_024_03192_0 crossref_primary_10_1080_10409238_2019_1687420 crossref_primary_10_1093_nar_gks1325 crossref_primary_10_1016_j_dnarep_2024_103738 crossref_primary_10_1158_0008_5472_CAN_21_2039 crossref_primary_10_1038_s41467_023_35992_5 crossref_primary_10_1016_j_crpv_2014_06_002 crossref_primary_10_3390_genes8010019 crossref_primary_10_1073_pnas_1708122114 crossref_primary_10_1016_j_dnarep_2021_103163 crossref_primary_10_1073_pnas_1216894110 crossref_primary_10_1083_jcb_201702006 crossref_primary_10_1093_nar_gkae785 crossref_primary_10_1093_nar_gkt1400 crossref_primary_10_3390_ijms18071584 crossref_primary_10_1093_nar_gkaf198 crossref_primary_10_1038_s41467_024_47222_7 crossref_primary_10_1101_gr_200501_115 crossref_primary_10_1093_nar_gkae546 crossref_primary_10_1093_nar_gkx619 crossref_primary_10_1016_j_dnarep_2013_08_015 crossref_primary_10_1093_nar_gky943 crossref_primary_10_3390_ijms22136957 crossref_primary_10_1016_j_coviro_2021_09_001 crossref_primary_10_1016_j_crmeth_2023_100501 crossref_primary_10_1158_0008_5472_CAN_17_3931 crossref_primary_10_1083_jcb_201408017 crossref_primary_10_1016_j_dnarep_2016_05_007 crossref_primary_10_1074_jbc_M117_792192 crossref_primary_10_1093_nar_gkw280 crossref_primary_10_1083_jcb_201311063 crossref_primary_10_1016_j_mrfmmm_2012_11_002 crossref_primary_10_1038_s41467_017_02164_1 crossref_primary_10_1111_pcmr_12136 crossref_primary_10_1016_j_dnarep_2013_12_005 crossref_primary_10_3390_genes14010175 crossref_primary_10_1080_15384101_2015_1121353 crossref_primary_10_1016_j_mrgentox_2018_02_004 crossref_primary_10_1016_j_dnarep_2020_102947 crossref_primary_10_1002_em_21736 crossref_primary_10_1002_em_21735 crossref_primary_10_1080_10409238_2020_1841089 crossref_primary_10_1016_j_dnarep_2024_103715 crossref_primary_10_1080_15384101_2015_1038686 crossref_primary_10_1093_nar_gkt542 crossref_primary_10_7554_eLife_19788 crossref_primary_10_1016_j_yexcr_2014_07_009 crossref_primary_10_1093_nar_gkz960 crossref_primary_10_1111_febs_14840 crossref_primary_10_1016_j_molcel_2021_01_012 crossref_primary_10_1016_j_molcel_2021_09_013 crossref_primary_10_3390_genes15101271 crossref_primary_10_1016_j_dnarep_2012_03_007 crossref_primary_10_1371_journal_pone_0052472 crossref_primary_10_1111_febs_14088 |
| Cites_doi | 10.1038/nature01965 10.1016/j.dnarep.2005.05.002 10.1016/S1097-2765(02)00679-2 10.1038/nature00991 10.1016/j.cell.2007.05.003 10.1038/nrm2852 10.1016/S1097-2765(01)00278-7 10.1016/j.molcel.2005.11.015 10.1073/pnas.0812548106 10.1038/35023030 10.1038/21447 10.1038/cr.2007.117 10.4161/cc.7.3.5295 10.1093/nar/gkr420 10.1016/j.cell.2010.02.028 10.1038/nature04329 10.1128/MCB.00071-09 10.1093/emboj/cdg626 10.1074/jbc.M409155200 10.1128/MCB.22.7.2419-2426.2002 10.1016/j.molcel.2005.03.032 10.1038/ncb1337 10.1146/annurev.biochem.74.082803.133250 10.1093/gbe/evr054 10.1093/nar/gkp632 10.1126/science.285.5425.263 10.1016/j.jmb.2008.06.031 10.1016/j.dnarep.2006.07.002 10.1038/nature09097 10.1016/0022-2836(68)90445-2 10.1016/j.dnarep.2008.06.008 10.1073/pnas.0910121106 10.1073/pnas.0704219104 10.1080/10409230902849180 10.4161/cc.9.4.10727 10.1038/emboj.2008.281 10.1016/S1097-2765(04)00259-X 10.1073/pnas.0510167103 10.1016/j.molcel.2010.02.009 10.1074/jbc.M314212200 10.1016/j.molcel.2006.03.022 10.1038/ng.363 10.1016/j.molcel.2006.05.034 10.1073/pnas.0504586102 10.1093/nar/24.10.1837 10.1016/j.dnarep.2009.09.006 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2011. Published by Oxford University Press. 2011 |
| Copyright_xml | – notice: The Author(s) 2011. Published by Oxford University Press. 2011 |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1093/nar/gkr596 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1362-4962 |
| EndPage | 180 |
| ExternalDocumentID | PMC3245908 21908406 10_1093_nar_gkr596 10.1093/nar/gkr596 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA099194 |
| GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX ABEJV ABGNP ABIME ABNGD ABPIB ABZEO ACUKT ACVCV AEHUL AGQPQ AMNDL APJGH CITATION OVT AJDVS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c407t-f28dfe1aa4e44f244fd29a5d3f971a331a52671fbde0c5b833d0127d5393f833 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298733500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-1048 1362-4962 |
| IngestDate | Tue Sep 30 16:55:20 EDT 2025 Sun Sep 28 06:02:00 EDT 2025 Thu Apr 03 07:09:17 EDT 2025 Sat Nov 29 02:59:17 EST 2025 Tue Nov 18 22:09:54 EST 2025 Wed Aug 28 03:24:11 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-f28dfe1aa4e44f244fd29a5d3f971a331a52671fbde0c5b833d0127d5393f833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1093/nar/gkr596 |
| PMID | 21908406 |
| PQID | 919947745 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3245908 proquest_miscellaneous_919947745 pubmed_primary_21908406 crossref_primary_10_1093_nar_gkr596 crossref_citationtrail_10_1093_nar_gkr596 oup_primary_10_1093_nar_gkr596 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-01-01 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nucleic acids research |
| PublicationTitleAlternate | Nucleic Acids Res |
| PublicationYear | 2012 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Dart ( key 20170512110556_gkr596-B24) 2004; 279 Branzei ( key 20170512110556_gkr596-B39) 2010; 11 Livneh ( key 20170512110556_gkr596-B2) 2010; 9 Yoon ( key 20170512110556_gkr596-B10) 2009; 106 Poltoratsky ( key 20170512110556_gkr596-B23) 2005; 4 Friedberg ( key 20170512110556_gkr596-B15) 2005; 18 Berdichevsky ( key 20170512110556_gkr596-B36) 2002; 10 Richard ( key 20170512110556_gkr596-B27) 2009; 44 Friedberg ( key 20170512110556_gkr596-B3) 2006 Masutani ( key 20170512110556_gkr596-B5) 1999; 399 Avkin ( key 20170512110556_gkr596-B22) 2004; 279 Elvers ( key 20170512110556_gkr596-B47) 2011; 39 Stelter ( key 20170512110556_gkr596-B12) 2003; 425 Hendel ( key 20170512110556_gkr596-B34) 2008; 7 Shachar ( key 20170512110556_gkr596-B8) 2009; 28 Langston ( key 20170512110556_gkr596-B46) 2006; 23 Gan ( key 20170512110556_gkr596-B41) 2008; 18 Ohmori ( key 20170512110556_gkr596-B7) 2001; 8 Hoege ( key 20170512110556_gkr596-B11) 2002; 419 Lehmann ( key 20170512110556_gkr596-B25) 2006; 5 Johnson ( key 20170512110556_gkr596-B9) 2000; 406 Lopes ( key 20170512110556_gkr596-B17) 2006; 21 Moldovan ( key 20170512110556_gkr596-B32) 2007; 129 Stamatoyannopoulos ( key 20170512110556_gkr596-B43) 2009; 41 Kannouche ( key 20170512110556_gkr596-B13) 2004; 14 Yang ( key 20170512110556_gkr596-B4) 2007; 104 Johnson ( key 20170512110556_gkr596-B6) 1999; 285 Karras ( key 20170512110556_gkr596-B20) 2010; 141 Lang ( key 20170512110556_gkr596-B44) 2011 Avkin ( key 20170512110556_gkr596-B14) 2006; 22 Guo ( key 20170512110556_gkr596-B30) 2003; 22 Gentil ( key 20170512110556_gkr596-B35) 1996; 24 Adar ( key 20170512110556_gkr596-B38) 2009; 37 Daigaku ( key 20170512110556_gkr596-B21) 2010; 465 Boutros ( key 20170512110556_gkr596-B28) 2008; 7 Jansen ( key 20170512110556_gkr596-B18) 2009; 29 Heller ( key 20170512110556_gkr596-B45) 2006; 439 Rupp ( key 20170512110556_gkr596-B16) 1968; 31 Izhar ( key 20170512110556_gkr596-B37) 2008; 381 Prakash ( key 20170512110556_gkr596-B1) 2005; 74 Ziv ( key 20170512110556_gkr596-B33) 2009; 106 Zhang ( key 20170512110556_gkr596-B40) 2005; 102 Jazayeri ( key 20170512110556_gkr596-B26) 2006; 8 Ogi ( key 20170512110556_gkr596-B42) 2010; 37 Torres-Ramos ( key 20170512110556_gkr596-B19) 2002; 22 Jansen ( key 20170512110556_gkr596-B29) 2009; 8 Waters ( key 20170512110556_gkr596-B31) 2006; 103 20177396 - Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19 15916957 - Mol Cell. 2005 May 27;18(5):499-505 15952890 - Annu Rev Biochem. 2005;74:317-53 16247017 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9 18157155 - Cell Res. 2008 Jan;18(1):174-83 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8 16751278 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8971-6 19153606 - EMBO J. 2009 Feb 18;28(4):383-93 20227374 - Mol Cell. 2010 Mar 12;37(5):714-27 10385124 - Nature. 1999 Jun 17;399(6737):700-4 8657563 - Nucleic Acids Res. 1996 May 15;24(10):1837-40 17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8 16327781 - Nat Cell Biol. 2006 Jan;8(1):37-45 20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35 18235220 - Cell Cycle. 2008 Feb 1;7(3):401-6 21646340 - Nucleic Acids Res. 2011 Sep 1;39(16):7049-57 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46 21666225 - Genome Biol Evol. 2011;3:799-811 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304 11515498 - Mol Cell. 2001 Jul;8(1):7-8 18585391 - J Mol Biol. 2008 Sep 12;381(4):803-9 19287383 - Nat Genet. 2009 Apr;41(4):393-5 19783229 - DNA Repair (Amst). 2009 Dec 3;8(12):1444-51 20403322 - Cell. 2010 Apr 16;141(2):255-67 11884624 - Mol Cell Biol. 2002 Apr;22(7):2419-26 10984059 - Nature. 2000 Aug 31;406(6799):1015-9 19654238 - Nucleic Acids Res. 2009 Sep;37(17):5737-48 19822754 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18219-24 16857582 - Mol Cell. 2006 Jul 21;23(2):155-60 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305 15950550 - DNA Repair (Amst). 2005 Sep 28;4(10):1182-8 16452972 - Nature. 2006 Feb 2;439(7076):557-62 16678112 - Mol Cell. 2006 May 5;22(3):407-13 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7 19367476 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):98-116 20453836 - Nature. 2010 Jun 17;465(7300):951-5 17512402 - Cell. 2007 May 18;129(4):665-79 12226657 - Nature. 2002 Sep 12;419(6903):135-41 15149598 - Mol Cell. 2004 May 21;14(4):491-500 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23 12419234 - Mol Cell. 2002 Oct;10(4):917-24 10398605 - Science. 1999 Jul 9;285(5425):263-5 12968183 - Nature. 2003 Sep 11;425(6954):188-91 14871897 - J Biol Chem. 2004 Apr 16;279(16):16433-40 14657033 - EMBO J. 2003 Dec 15;22(24):6621-30 |
| References_xml | – volume: 425 start-page: 188 year: 2003 ident: key 20170512110556_gkr596-B12 article-title: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation publication-title: Nature doi: 10.1038/nature01965 – volume: 4 start-page: 1182 year: 2005 ident: key 20170512110556_gkr596-B23 article-title: REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast publication-title: DNA Repair doi: 10.1016/j.dnarep.2005.05.002 – volume: 10 start-page: 917 year: 2002 ident: key 20170512110556_gkr596-B36 article-title: Error-free recombinational repair predominates over mutagenic translesion replication in E. coli publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00679-2 – volume: 419 start-page: 135 year: 2002 ident: key 20170512110556_gkr596-B11 article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO publication-title: Nature doi: 10.1038/nature00991 – volume: 129 start-page: 665 year: 2007 ident: key 20170512110556_gkr596-B32 article-title: PCNA, the maestro of the replication fork publication-title: Cell doi: 10.1016/j.cell.2007.05.003 – volume: 11 start-page: 208 year: 2010 ident: key 20170512110556_gkr596-B39 article-title: Maintaining genome stability at the replication fork publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm2852 – volume: 8 start-page: 7 year: 2001 ident: key 20170512110556_gkr596-B7 article-title: The Y-family of DNA polymerases publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00278-7 – volume: 21 start-page: 15 year: 2006 ident: key 20170512110556_gkr596-B17 article-title: Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.11.015 – volume: 106 start-page: 11552 year: 2009 ident: key 20170512110556_gkr596-B33 article-title: DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0812548106 – volume: 406 start-page: 1015 year: 2000 ident: key 20170512110556_gkr596-B9 article-title: Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions publication-title: Nature doi: 10.1038/35023030 – volume: 399 start-page: 700 year: 1999 ident: key 20170512110556_gkr596-B5 article-title: The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta publication-title: Nature doi: 10.1038/21447 – volume: 18 start-page: 174 year: 2008 ident: key 20170512110556_gkr596-B41 article-title: DNA polymerase zeta (pol zeta) in higher eukaryotes publication-title: Cell Res. doi: 10.1038/cr.2007.117 – volume: 7 start-page: 401 year: 2008 ident: key 20170512110556_gkr596-B28 article-title: Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase publication-title: Cell Cycle doi: 10.4161/cc.7.3.5295 – volume: 39 start-page: 1360 year: 2011 ident: key 20170512110556_gkr596-B47 article-title: UV stalled replication forks restart by re-priming in human fibroblasts publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr420 – volume-title: DNA Repair and Mutagenesis year: 2006 ident: key 20170512110556_gkr596-B3 – volume: 141 start-page: 255 year: 2010 ident: key 20170512110556_gkr596-B20 article-title: The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase publication-title: Cell doi: 10.1016/j.cell.2010.02.028 – volume: 439 start-page: 557 year: 2006 ident: key 20170512110556_gkr596-B45 article-title: Replication fork reactivation downstream of a blocked nascent leading strand publication-title: Nature doi: 10.1038/nature04329 – volume: 29 start-page: 3113 year: 2009 ident: key 20170512110556_gkr596-B18 article-title: Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00071-09 – volume: 22 start-page: 6621 year: 2003 ident: key 20170512110556_gkr596-B30 article-title: Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis publication-title: EMBO J. doi: 10.1093/emboj/cdg626 – volume: 279 start-page: 53298 year: 2004 ident: key 20170512110556_gkr596-B22 article-title: Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. The Role of DNA polymerase k publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409155200 – volume: 22 start-page: 2419 year: 2002 ident: key 20170512110556_gkr596-B19 article-title: Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.7.2419-2426.2002 – volume: 18 start-page: 499 year: 2005 ident: key 20170512110556_gkr596-B15 article-title: Trading places: how do DNA polymerases switch during translesion DNA synthesis? publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.03.032 – volume: 8 start-page: 37 year: 2006 ident: key 20170512110556_gkr596-B26 article-title: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks publication-title: Nat. Cell Biol. doi: 10.1038/ncb1337 – volume: 74 start-page: 317 year: 2005 ident: key 20170512110556_gkr596-B1 article-title: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.082803.133250 – year: 2011 ident: key 20170512110556_gkr596-B44 article-title: Mutation rates across budding yeast Chromosome VI are correlated with replication timing publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evr054 – volume: 37 start-page: 5737 year: 2009 ident: key 20170512110556_gkr596-B38 article-title: Repair of gaps opposite lesions by homologous recombination in mammalian cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp632 – volume: 285 start-page: 263 year: 1999 ident: key 20170512110556_gkr596-B6 article-title: hRAD30 mutations in the variant form of xeroderma pigmentosum publication-title: Science doi: 10.1126/science.285.5425.263 – volume: 381 start-page: 803 year: 2008 ident: key 20170512110556_gkr596-B37 article-title: Analysis of strand transfer and template switching mechanisms in Escherichia coli: Predominance of strand transfer publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.06.031 – volume: 5 start-page: 1595 year: 2006 ident: key 20170512110556_gkr596-B25 article-title: Gaps and forks in DNA Replication: Rediscovering old models publication-title: DNA Repair doi: 10.1016/j.dnarep.2006.07.002 – volume: 465 start-page: 951 year: 2010 ident: key 20170512110556_gkr596-B21 article-title: Ubiquitin-dependent DNA damage bypass is separable from genome replication publication-title: Nature doi: 10.1038/nature09097 – volume: 31 start-page: 291 year: 1968 ident: key 20170512110556_gkr596-B16 article-title: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(68)90445-2 – volume: 7 start-page: 1636 year: 2008 ident: key 20170512110556_gkr596-B34 article-title: Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase eta publication-title: DNA Repair doi: 10.1016/j.dnarep.2008.06.008 – volume: 106 start-page: 18219 year: 2009 ident: key 20170512110556_gkr596-B10 article-title: Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0910121106 – volume: 104 start-page: 15591 year: 2007 ident: key 20170512110556_gkr596-B4 article-title: What a difference a decade makes: Insights into translesion synthesis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0704219104 – volume: 44 start-page: 98 year: 2009 ident: key 20170512110556_gkr596-B27 article-title: Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409230902849180 – volume: 9 start-page: 729 year: 2010 ident: key 20170512110556_gkr596-B2 article-title: Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis publication-title: Cell Cycle doi: 10.4161/cc.9.4.10727 – volume: 28 start-page: 383 year: 2009 ident: key 20170512110556_gkr596-B8 article-title: Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals publication-title: EMBO J doi: 10.1038/emboj.2008.281 – volume: 14 start-page: 491 year: 2004 ident: key 20170512110556_gkr596-B13 article-title: Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage publication-title: Mol. Cell doi: 10.1016/S1097-2765(04)00259-X – volume: 103 start-page: 8971 year: 2006 ident: key 20170512110556_gkr596-B31 article-title: The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0510167103 – volume: 37 start-page: 714 year: 2010 ident: key 20170512110556_gkr596-B42 article-title: Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.02.009 – volume: 279 start-page: 16433 year: 2004 ident: key 20170512110556_gkr596-B24 article-title: Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M314212200 – volume: 22 start-page: 407 year: 2006 ident: key 20170512110556_gkr596-B14 article-title: p53 and p21 regulate error-prone DNA repair to yield a lower mutation load publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.03.022 – volume: 41 start-page: 393 year: 2009 ident: key 20170512110556_gkr596-B43 article-title: Human mutation rate associated with DNA replication timing publication-title: Nat. Genet. doi: 10.1038/ng.363 – volume: 23 start-page: 155 year: 2006 ident: key 20170512110556_gkr596-B46 article-title: DNA replication: keep moving and don't mind the gap publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.05.034 – volume: 102 start-page: 15954 year: 2005 ident: key 20170512110556_gkr596-B40 article-title: The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0504586102 – volume: 24 start-page: 1837 year: 1996 ident: key 20170512110556_gkr596-B35 article-title: Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6-4) photoproduct in mammalian cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/24.10.1837 – volume: 8 start-page: 1444 year: 2009 ident: key 20170512110556_gkr596-B29 article-title: Mammalian polymerase zeta is essential for post-replication repair of UV-induced DNA lesions publication-title: DNA Repair doi: 10.1016/j.dnarep.2009.09.006 – reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5 – reference: 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8 – reference: 18235220 - Cell Cycle. 2008 Feb 1;7(3):401-6 – reference: 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23 – reference: 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7 – reference: 19783229 - DNA Repair (Amst). 2009 Dec 3;8(12):1444-51 – reference: 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304 – reference: 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27 – reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305 – reference: 16751278 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8971-6 – reference: 14871897 - J Biol Chem. 2004 Apr 16;279(16):16433-40 – reference: 11515498 - Mol Cell. 2001 Jul;8(1):7-8 – reference: 19287383 - Nat Genet. 2009 Apr;41(4):393-5 – reference: 19654238 - Nucleic Acids Res. 2009 Sep;37(17):5737-48 – reference: 10385124 - Nature. 1999 Jun 17;399(6737):700-4 – reference: 20453836 - Nature. 2010 Jun 17;465(7300):951-5 – reference: 11884624 - Mol Cell Biol. 2002 Apr;22(7):2419-26 – reference: 10984059 - Nature. 2000 Aug 31;406(6799):1015-9 – reference: 18157155 - Cell Res. 2008 Jan;18(1):174-83 – reference: 17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8 – reference: 20227374 - Mol Cell. 2010 Mar 12;37(5):714-27 – reference: 21666225 - Genome Biol Evol. 2011;3:799-811 – reference: 8657563 - Nucleic Acids Res. 1996 May 15;24(10):1837-40 – reference: 16247017 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9 – reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500 – reference: 18585391 - J Mol Biol. 2008 Sep 12;381(4):803-9 – reference: 19153606 - EMBO J. 2009 Feb 18;28(4):383-93 – reference: 20177396 - Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19 – reference: 20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35 – reference: 16327781 - Nat Cell Biol. 2006 Jan;8(1):37-45 – reference: 19367476 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):98-116 – reference: 12419234 - Mol Cell. 2002 Oct;10(4):917-24 – reference: 15916957 - Mol Cell. 2005 May 27;18(5):499-505 – reference: 20403322 - Cell. 2010 Apr 16;141(2):255-67 – reference: 21646340 - Nucleic Acids Res. 2011 Sep 1;39(16):7049-57 – reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91 – reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41 – reference: 16452972 - Nature. 2006 Feb 2;439(7076):557-62 – reference: 16678112 - Mol Cell. 2006 May 5;22(3):407-13 – reference: 15950550 - DNA Repair (Amst). 2005 Sep 28;4(10):1182-8 – reference: 15952890 - Annu Rev Biochem. 2005;74:317-53 – reference: 16857582 - Mol Cell. 2006 Jul 21;23(2):155-60 – reference: 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46 – reference: 19822754 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18219-24 – reference: 14657033 - EMBO J. 2003 Dec 15;22(24):6621-30 – reference: 17512402 - Cell. 2007 May 18;129(4):665-79 |
| SSID | ssj0014154 |
| Score | 2.3710945 |
| Snippet | Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 170 |
| SubjectTerms | Animals Cell Line, Tumor Cells, Cultured DNA - biosynthesis DNA Damage DNA-Binding Proteins - physiology DNA-Directed DNA Polymerase - physiology G2 Phase - genetics Genome Integrity, Repair and Humans Mice Mutagenesis Nuclear Proteins - physiology Nucleotidyltransferases - physiology Replication Protein A - analysis S Phase - genetics Ultraviolet Rays |
| Title | DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21908406 https://www.proquest.com/docview/919947745 https://pubmed.ncbi.nlm.nih.gov/PMC3245908 |
| Volume | 40 |
| WOSCitedRecordID | wos000298733500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4xhLS9wIANCqyytGnSHiKa2K7jxwrG9oC6SetD3yIntkc26lZNitR_z9lpKjKhbY-Jz4l15_g--y7fAXwQxsTCUhEVjMmIFZxHKRc5fu7MJztqq3WgzL8V43E6ncrvmySa6pkQvqSXTi0vf_5ecumJtWOe-joFk2_TbawAXVBDEhU4NVnakpB2unbcTudXtieI8s_EyCee5ubgP8f4GvY3UJKMGtsfwo5xR3A8criNnq3JRxKSO8Op-RG8vGoLux3Dr-vxiGg1w5WE5OsFomcyX3huZVOR0hFEhOQHUU6TLwlZ3KGXw3YbbvtTflKs8W2h3fji2mVdkbbKCq4W92S2qvHJriwQ37-Byc3nydXXaFNyAW01EHVkk1RbEyvFDGMWXb_ViVRcUytFrCiNFU-GIra5NoOC5yml2seuNaeSWrx6C7tu7swpkKFSsdIFo7lljCujkiRV-XCIG-JYyYHuwafWIFmxoSP3VTHusyYsTjPUadbotAfvt7KLhoTjWak-2vWvAqQ1eYYq9zpTzsxXVSY9QzICYd6Dk2YGbB-DK_oAN8HYWXTmxlbA83N3W1x5F3i6Eav6ivJn_xrXObxCGJY0BzsXsFsvV-Yd7BUPdVkt-_BCTNN-OCvoh4n_CGShAJM |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+damage+bypass+operates+in+the+S+and+G2+phases+of+the+cell+cycle+and+exhibits+differential+mutagenicity&rft.jtitle=Nucleic+acids+research&rft.au=Diamant%2C+Noam&rft.au=Hendel%2C+Ayal&rft.au=Vered%2C+Ilan&rft.au=Carell%2C+Thomas&rft.date=2012-01-01&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=40&rft.issue=1&rft.spage=170&rft.epage=180&rft_id=info:doi/10.1093%2Fnar%2Fgkr596&rft_id=info%3Apmid%2F21908406&rft.externalDocID=PMC3245908 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |