DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity

Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-i...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 40; no. 1; pp. 170 - 180
Main Authors: Diamant, Noam, Hendel, Ayal, Vered, Ilan, Carell, Thomas, Reißner, Thomas, de Wind, Niels, Geacinov, Nicholas, Livneh, Zvi
Format: Journal Article
Language:English
Published: England Oxford University Press 01.01.2012
Subjects:
ISSN:0305-1048, 1362-4962, 1362-4962
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.
AbstractList Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.
Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.
Author Diamant, Noam
Vered, Ilan
Reißner, Thomas
Carell, Thomas
Hendel, Ayal
Livneh, Zvi
Geacinov, Nicholas
de Wind, Niels
AuthorAffiliation 1 Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2 Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3 Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4 Department of Chemistry, New York University, New York, NY 10003-5180, USA
AuthorAffiliation_xml – name: 1 Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2 Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3 Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4 Department of Chemistry, New York University, New York, NY 10003-5180, USA
Author_xml – sequence: 1
  givenname: Noam
  surname: Diamant
  fullname: Diamant, Noam
  organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA
– sequence: 2
  givenname: Ayal
  surname: Hendel
  fullname: Hendel, Ayal
  organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA
– sequence: 3
  givenname: Ilan
  surname: Vered
  fullname: Vered, Ilan
  organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA
– sequence: 4
  givenname: Thomas
  surname: Carell
  fullname: Carell, Thomas
  organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA
– sequence: 5
  givenname: Thomas
  surname: Reißner
  fullname: Reißner, Thomas
  organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA
– sequence: 6
  givenname: Niels
  surname: de Wind
  fullname: de Wind, Niels
  organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA
– sequence: 7
  givenname: Nicholas
  surname: Geacinov
  fullname: Geacinov, Nicholas
  organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA
– sequence: 8
  givenname: Zvi
  surname: Livneh
  fullname: Livneh, Zvi
  email: zvi.livneh@weizmann.ac.il
  organization: 1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany, 3Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands and 4Department of Chemistry, New York University, New York, NY 10003-5180, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21908406$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9rFDEQx4NU7LX64h8geRFBWJufu5cXoVStQtEH-x5mN8ld6m6yJtni_ffmerWoiA8hZOYz35l85wQdhRgsQs8peUOJ4mcB0tnmW5KqfYRWlLesEaplR2hFOJENJWJ9jE5yviGECirFE3TMqCJrQdoVunn3-RwbmGBjcb-bIWccZ5ug2Ix9wGVr8VcMweBLhuct5BqO7i482HHEw24Y7V3e_tj63peMjXfOJhuKhxFPS6nKwQ--7J6ixw7GbJ_d36fo-sP764uPzdWXy08X51fNIEhXGsfWxlkKIKwQjtVjmAJpuFMdBc4pSNZ21PXGkkH2a84Noawzkivu6usUvT3Izks_WTPUSRKMek5-grTTEbz-MxP8Vm_ireZMyGpLFXh1L5Di98Xmoief97-FYOOStaJKia4TspIvfm_10OOXvRV4fQCGFHNO1j0glOj97nTdnT7srsLkL7i6BsXH_Zh-_HfJy0NJXOb_Sf8E2YKr2A
CitedBy_id crossref_primary_10_1016_j_jmb_2023_168275
crossref_primary_10_1093_nar_gkac746
crossref_primary_10_1016_j_dnarep_2015_01_001
crossref_primary_10_1093_nar_gku1385
crossref_primary_10_1016_j_molcel_2013_10_034
crossref_primary_10_1016_j_mrfmmm_2015_08_002
crossref_primary_10_1186_s13059_018_1509_y
crossref_primary_10_1038_nrm3289
crossref_primary_10_1038_ncomms6437
crossref_primary_10_1016_j_ajhg_2012_10_018
crossref_primary_10_1093_nar_gkw1315
crossref_primary_10_1074_jbc_RA118_005297
crossref_primary_10_3389_fvets_2025_1587391
crossref_primary_10_1111_cmi_12028
crossref_primary_10_3390_ijms242316903
crossref_primary_10_1371_journal_pgen_1005411
crossref_primary_10_3390_genes10010010
crossref_primary_10_1016_j_dnarep_2021_103055
crossref_primary_10_3390_ijms21051706
crossref_primary_10_1128_mmbr_00078_22
crossref_primary_10_1038_s41598_021_00878_3
crossref_primary_10_1002_em_22087
crossref_primary_10_1038_s41388_024_03192_0
crossref_primary_10_1080_10409238_2019_1687420
crossref_primary_10_1093_nar_gks1325
crossref_primary_10_1016_j_dnarep_2024_103738
crossref_primary_10_1158_0008_5472_CAN_21_2039
crossref_primary_10_1038_s41467_023_35992_5
crossref_primary_10_1016_j_crpv_2014_06_002
crossref_primary_10_3390_genes8010019
crossref_primary_10_1073_pnas_1708122114
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1073_pnas_1216894110
crossref_primary_10_1083_jcb_201702006
crossref_primary_10_1093_nar_gkae785
crossref_primary_10_1093_nar_gkt1400
crossref_primary_10_3390_ijms18071584
crossref_primary_10_1093_nar_gkaf198
crossref_primary_10_1038_s41467_024_47222_7
crossref_primary_10_1101_gr_200501_115
crossref_primary_10_1093_nar_gkae546
crossref_primary_10_1093_nar_gkx619
crossref_primary_10_1016_j_dnarep_2013_08_015
crossref_primary_10_1093_nar_gky943
crossref_primary_10_3390_ijms22136957
crossref_primary_10_1016_j_coviro_2021_09_001
crossref_primary_10_1016_j_crmeth_2023_100501
crossref_primary_10_1158_0008_5472_CAN_17_3931
crossref_primary_10_1083_jcb_201408017
crossref_primary_10_1016_j_dnarep_2016_05_007
crossref_primary_10_1074_jbc_M117_792192
crossref_primary_10_1093_nar_gkw280
crossref_primary_10_1083_jcb_201311063
crossref_primary_10_1016_j_mrfmmm_2012_11_002
crossref_primary_10_1038_s41467_017_02164_1
crossref_primary_10_1111_pcmr_12136
crossref_primary_10_1016_j_dnarep_2013_12_005
crossref_primary_10_3390_genes14010175
crossref_primary_10_1080_15384101_2015_1121353
crossref_primary_10_1016_j_mrgentox_2018_02_004
crossref_primary_10_1016_j_dnarep_2020_102947
crossref_primary_10_1002_em_21736
crossref_primary_10_1002_em_21735
crossref_primary_10_1080_10409238_2020_1841089
crossref_primary_10_1016_j_dnarep_2024_103715
crossref_primary_10_1080_15384101_2015_1038686
crossref_primary_10_1093_nar_gkt542
crossref_primary_10_7554_eLife_19788
crossref_primary_10_1016_j_yexcr_2014_07_009
crossref_primary_10_1093_nar_gkz960
crossref_primary_10_1111_febs_14840
crossref_primary_10_1016_j_molcel_2021_01_012
crossref_primary_10_1016_j_molcel_2021_09_013
crossref_primary_10_3390_genes15101271
crossref_primary_10_1016_j_dnarep_2012_03_007
crossref_primary_10_1371_journal_pone_0052472
crossref_primary_10_1111_febs_14088
Cites_doi 10.1038/nature01965
10.1016/j.dnarep.2005.05.002
10.1016/S1097-2765(02)00679-2
10.1038/nature00991
10.1016/j.cell.2007.05.003
10.1038/nrm2852
10.1016/S1097-2765(01)00278-7
10.1016/j.molcel.2005.11.015
10.1073/pnas.0812548106
10.1038/35023030
10.1038/21447
10.1038/cr.2007.117
10.4161/cc.7.3.5295
10.1093/nar/gkr420
10.1016/j.cell.2010.02.028
10.1038/nature04329
10.1128/MCB.00071-09
10.1093/emboj/cdg626
10.1074/jbc.M409155200
10.1128/MCB.22.7.2419-2426.2002
10.1016/j.molcel.2005.03.032
10.1038/ncb1337
10.1146/annurev.biochem.74.082803.133250
10.1093/gbe/evr054
10.1093/nar/gkp632
10.1126/science.285.5425.263
10.1016/j.jmb.2008.06.031
10.1016/j.dnarep.2006.07.002
10.1038/nature09097
10.1016/0022-2836(68)90445-2
10.1016/j.dnarep.2008.06.008
10.1073/pnas.0910121106
10.1073/pnas.0704219104
10.1080/10409230902849180
10.4161/cc.9.4.10727
10.1038/emboj.2008.281
10.1016/S1097-2765(04)00259-X
10.1073/pnas.0510167103
10.1016/j.molcel.2010.02.009
10.1074/jbc.M314212200
10.1016/j.molcel.2006.03.022
10.1038/ng.363
10.1016/j.molcel.2006.05.034
10.1073/pnas.0504586102
10.1093/nar/24.10.1837
10.1016/j.dnarep.2009.09.006
ContentType Journal Article
Copyright The Author(s) 2011. Published by Oxford University Press. 2011
Copyright_xml – notice: The Author(s) 2011. Published by Oxford University Press. 2011
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkr596
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 180
ExternalDocumentID PMC3245908
21908406
10_1093_nar_gkr596
10.1093/nar/gkr596
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA099194
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABZEO
ACUKT
ACVCV
AEHUL
AGQPQ
AMNDL
APJGH
CITATION
OVT
AJDVS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c407t-f28dfe1aa4e44f244fd29a5d3f971a331a52671fbde0c5b833d0127d5393f833
IEDL.DBID TOX
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298733500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Sep 30 16:55:20 EDT 2025
Sun Sep 28 06:02:00 EDT 2025
Thu Apr 03 07:09:17 EDT 2025
Sat Nov 29 02:59:17 EST 2025
Tue Nov 18 22:09:54 EST 2025
Wed Aug 28 03:24:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-nc/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-f28dfe1aa4e44f244fd29a5d3f971a331a52671fbde0c5b833d0127d5393f833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/nar/gkr596
PMID 21908406
PQID 919947745
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3245908
proquest_miscellaneous_919947745
pubmed_primary_21908406
crossref_primary_10_1093_nar_gkr596
crossref_citationtrail_10_1093_nar_gkr596
oup_primary_10_1093_nar_gkr596
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Dart ( key 20170512110556_gkr596-B24) 2004; 279
Branzei ( key 20170512110556_gkr596-B39) 2010; 11
Livneh ( key 20170512110556_gkr596-B2) 2010; 9
Yoon ( key 20170512110556_gkr596-B10) 2009; 106
Poltoratsky ( key 20170512110556_gkr596-B23) 2005; 4
Friedberg ( key 20170512110556_gkr596-B15) 2005; 18
Berdichevsky ( key 20170512110556_gkr596-B36) 2002; 10
Richard ( key 20170512110556_gkr596-B27) 2009; 44
Friedberg ( key 20170512110556_gkr596-B3) 2006
Masutani ( key 20170512110556_gkr596-B5) 1999; 399
Avkin ( key 20170512110556_gkr596-B22) 2004; 279
Elvers ( key 20170512110556_gkr596-B47) 2011; 39
Stelter ( key 20170512110556_gkr596-B12) 2003; 425
Hendel ( key 20170512110556_gkr596-B34) 2008; 7
Shachar ( key 20170512110556_gkr596-B8) 2009; 28
Langston ( key 20170512110556_gkr596-B46) 2006; 23
Gan ( key 20170512110556_gkr596-B41) 2008; 18
Ohmori ( key 20170512110556_gkr596-B7) 2001; 8
Hoege ( key 20170512110556_gkr596-B11) 2002; 419
Lehmann ( key 20170512110556_gkr596-B25) 2006; 5
Johnson ( key 20170512110556_gkr596-B9) 2000; 406
Lopes ( key 20170512110556_gkr596-B17) 2006; 21
Moldovan ( key 20170512110556_gkr596-B32) 2007; 129
Stamatoyannopoulos ( key 20170512110556_gkr596-B43) 2009; 41
Kannouche ( key 20170512110556_gkr596-B13) 2004; 14
Yang ( key 20170512110556_gkr596-B4) 2007; 104
Johnson ( key 20170512110556_gkr596-B6) 1999; 285
Karras ( key 20170512110556_gkr596-B20) 2010; 141
Lang ( key 20170512110556_gkr596-B44) 2011
Avkin ( key 20170512110556_gkr596-B14) 2006; 22
Guo ( key 20170512110556_gkr596-B30) 2003; 22
Gentil ( key 20170512110556_gkr596-B35) 1996; 24
Adar ( key 20170512110556_gkr596-B38) 2009; 37
Daigaku ( key 20170512110556_gkr596-B21) 2010; 465
Boutros ( key 20170512110556_gkr596-B28) 2008; 7
Jansen ( key 20170512110556_gkr596-B18) 2009; 29
Heller ( key 20170512110556_gkr596-B45) 2006; 439
Rupp ( key 20170512110556_gkr596-B16) 1968; 31
Izhar ( key 20170512110556_gkr596-B37) 2008; 381
Prakash ( key 20170512110556_gkr596-B1) 2005; 74
Ziv ( key 20170512110556_gkr596-B33) 2009; 106
Zhang ( key 20170512110556_gkr596-B40) 2005; 102
Jazayeri ( key 20170512110556_gkr596-B26) 2006; 8
Ogi ( key 20170512110556_gkr596-B42) 2010; 37
Torres-Ramos ( key 20170512110556_gkr596-B19) 2002; 22
Jansen ( key 20170512110556_gkr596-B29) 2009; 8
Waters ( key 20170512110556_gkr596-B31) 2006; 103
20177396 - Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19
15916957 - Mol Cell. 2005 May 27;18(5):499-505
15952890 - Annu Rev Biochem. 2005;74:317-53
16247017 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9
18157155 - Cell Res. 2008 Jan;18(1):174-83
16387650 - Mol Cell. 2006 Jan 6;21(1):15-27
16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8
16751278 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8971-6
19153606 - EMBO J. 2009 Feb 18;28(4):383-93
20227374 - Mol Cell. 2010 Mar 12;37(5):714-27
10385124 - Nature. 1999 Jun 17;399(6737):700-4
8657563 - Nucleic Acids Res. 1996 May 15;24(10):1837-40
17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8
16327781 - Nat Cell Biol. 2006 Jan;8(1):37-45
20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35
18235220 - Cell Cycle. 2008 Feb 1;7(3):401-6
21646340 - Nucleic Acids Res. 2011 Sep 1;39(16):7049-57
18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46
21666225 - Genome Biol Evol. 2011;3:799-811
4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304
11515498 - Mol Cell. 2001 Jul;8(1):7-8
18585391 - J Mol Biol. 2008 Sep 12;381(4):803-9
19287383 - Nat Genet. 2009 Apr;41(4):393-5
19783229 - DNA Repair (Amst). 2009 Dec 3;8(12):1444-51
20403322 - Cell. 2010 Apr 16;141(2):255-67
11884624 - Mol Cell Biol. 2002 Apr;22(7):2419-26
10984059 - Nature. 2000 Aug 31;406(6799):1015-9
19654238 - Nucleic Acids Res. 2009 Sep;37(17):5737-48
19822754 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18219-24
16857582 - Mol Cell. 2006 Jul 21;23(2):155-60
15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
15950550 - DNA Repair (Amst). 2005 Sep 28;4(10):1182-8
16452972 - Nature. 2006 Feb 2;439(7076):557-62
16678112 - Mol Cell. 2006 May 5;22(3):407-13
19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7
19367476 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):98-116
20453836 - Nature. 2010 Jun 17;465(7300):951-5
17512402 - Cell. 2007 May 18;129(4):665-79
12226657 - Nature. 2002 Sep 12;419(6903):135-41
15149598 - Mol Cell. 2004 May 21;14(4):491-500
19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23
12419234 - Mol Cell. 2002 Oct;10(4):917-24
10398605 - Science. 1999 Jul 9;285(5425):263-5
12968183 - Nature. 2003 Sep 11;425(6954):188-91
14871897 - J Biol Chem. 2004 Apr 16;279(16):16433-40
14657033 - EMBO J. 2003 Dec 15;22(24):6621-30
References_xml – volume: 425
  start-page: 188
  year: 2003
  ident: key 20170512110556_gkr596-B12
  article-title: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
  publication-title: Nature
  doi: 10.1038/nature01965
– volume: 4
  start-page: 1182
  year: 2005
  ident: key 20170512110556_gkr596-B23
  article-title: REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2005.05.002
– volume: 10
  start-page: 917
  year: 2002
  ident: key 20170512110556_gkr596-B36
  article-title: Error-free recombinational repair predominates over mutagenic translesion replication in E. coli
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00679-2
– volume: 419
  start-page: 135
  year: 2002
  ident: key 20170512110556_gkr596-B11
  article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
  publication-title: Nature
  doi: 10.1038/nature00991
– volume: 129
  start-page: 665
  year: 2007
  ident: key 20170512110556_gkr596-B32
  article-title: PCNA, the maestro of the replication fork
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.003
– volume: 11
  start-page: 208
  year: 2010
  ident: key 20170512110556_gkr596-B39
  article-title: Maintaining genome stability at the replication fork
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/nrm2852
– volume: 8
  start-page: 7
  year: 2001
  ident: key 20170512110556_gkr596-B7
  article-title: The Y-family of DNA polymerases
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00278-7
– volume: 21
  start-page: 15
  year: 2006
  ident: key 20170512110556_gkr596-B17
  article-title: Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.11.015
– volume: 106
  start-page: 11552
  year: 2009
  ident: key 20170512110556_gkr596-B33
  article-title: DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0812548106
– volume: 406
  start-page: 1015
  year: 2000
  ident: key 20170512110556_gkr596-B9
  article-title: Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions
  publication-title: Nature
  doi: 10.1038/35023030
– volume: 399
  start-page: 700
  year: 1999
  ident: key 20170512110556_gkr596-B5
  article-title: The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta
  publication-title: Nature
  doi: 10.1038/21447
– volume: 18
  start-page: 174
  year: 2008
  ident: key 20170512110556_gkr596-B41
  article-title: DNA polymerase zeta (pol zeta) in higher eukaryotes
  publication-title: Cell Res.
  doi: 10.1038/cr.2007.117
– volume: 7
  start-page: 401
  year: 2008
  ident: key 20170512110556_gkr596-B28
  article-title: Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.3.5295
– volume: 39
  start-page: 1360
  year: 2011
  ident: key 20170512110556_gkr596-B47
  article-title: UV stalled replication forks restart by re-priming in human fibroblasts
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr420
– volume-title: DNA Repair and Mutagenesis
  year: 2006
  ident: key 20170512110556_gkr596-B3
– volume: 141
  start-page: 255
  year: 2010
  ident: key 20170512110556_gkr596-B20
  article-title: The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.028
– volume: 439
  start-page: 557
  year: 2006
  ident: key 20170512110556_gkr596-B45
  article-title: Replication fork reactivation downstream of a blocked nascent leading strand
  publication-title: Nature
  doi: 10.1038/nature04329
– volume: 29
  start-page: 3113
  year: 2009
  ident: key 20170512110556_gkr596-B18
  article-title: Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00071-09
– volume: 22
  start-page: 6621
  year: 2003
  ident: key 20170512110556_gkr596-B30
  article-title: Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg626
– volume: 279
  start-page: 53298
  year: 2004
  ident: key 20170512110556_gkr596-B22
  article-title: Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. The Role of DNA polymerase k
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409155200
– volume: 22
  start-page: 2419
  year: 2002
  ident: key 20170512110556_gkr596-B19
  article-title: Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.7.2419-2426.2002
– volume: 18
  start-page: 499
  year: 2005
  ident: key 20170512110556_gkr596-B15
  article-title: Trading places: how do DNA polymerases switch during translesion DNA synthesis?
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.03.032
– volume: 8
  start-page: 37
  year: 2006
  ident: key 20170512110556_gkr596-B26
  article-title: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1337
– volume: 74
  start-page: 317
  year: 2005
  ident: key 20170512110556_gkr596-B1
  article-title: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.082803.133250
– year: 2011
  ident: key 20170512110556_gkr596-B44
  article-title: Mutation rates across budding yeast Chromosome VI are correlated with replication timing
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evr054
– volume: 37
  start-page: 5737
  year: 2009
  ident: key 20170512110556_gkr596-B38
  article-title: Repair of gaps opposite lesions by homologous recombination in mammalian cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp632
– volume: 285
  start-page: 263
  year: 1999
  ident: key 20170512110556_gkr596-B6
  article-title: hRAD30 mutations in the variant form of xeroderma pigmentosum
  publication-title: Science
  doi: 10.1126/science.285.5425.263
– volume: 381
  start-page: 803
  year: 2008
  ident: key 20170512110556_gkr596-B37
  article-title: Analysis of strand transfer and template switching mechanisms in Escherichia coli: Predominance of strand transfer
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.06.031
– volume: 5
  start-page: 1595
  year: 2006
  ident: key 20170512110556_gkr596-B25
  article-title: Gaps and forks in DNA Replication: Rediscovering old models
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2006.07.002
– volume: 465
  start-page: 951
  year: 2010
  ident: key 20170512110556_gkr596-B21
  article-title: Ubiquitin-dependent DNA damage bypass is separable from genome replication
  publication-title: Nature
  doi: 10.1038/nature09097
– volume: 31
  start-page: 291
  year: 1968
  ident: key 20170512110556_gkr596-B16
  article-title: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(68)90445-2
– volume: 7
  start-page: 1636
  year: 2008
  ident: key 20170512110556_gkr596-B34
  article-title: Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase eta
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2008.06.008
– volume: 106
  start-page: 18219
  year: 2009
  ident: key 20170512110556_gkr596-B10
  article-title: Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0910121106
– volume: 104
  start-page: 15591
  year: 2007
  ident: key 20170512110556_gkr596-B4
  article-title: What a difference a decade makes: Insights into translesion synthesis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0704219104
– volume: 44
  start-page: 98
  year: 2009
  ident: key 20170512110556_gkr596-B27
  article-title: Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409230902849180
– volume: 9
  start-page: 729
  year: 2010
  ident: key 20170512110556_gkr596-B2
  article-title: Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.4.10727
– volume: 28
  start-page: 383
  year: 2009
  ident: key 20170512110556_gkr596-B8
  article-title: Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.281
– volume: 14
  start-page: 491
  year: 2004
  ident: key 20170512110556_gkr596-B13
  article-title: Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(04)00259-X
– volume: 103
  start-page: 8971
  year: 2006
  ident: key 20170512110556_gkr596-B31
  article-title: The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0510167103
– volume: 37
  start-page: 714
  year: 2010
  ident: key 20170512110556_gkr596-B42
  article-title: Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.02.009
– volume: 279
  start-page: 16433
  year: 2004
  ident: key 20170512110556_gkr596-B24
  article-title: Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M314212200
– volume: 22
  start-page: 407
  year: 2006
  ident: key 20170512110556_gkr596-B14
  article-title: p53 and p21 regulate error-prone DNA repair to yield a lower mutation load
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.03.022
– volume: 41
  start-page: 393
  year: 2009
  ident: key 20170512110556_gkr596-B43
  article-title: Human mutation rate associated with DNA replication timing
  publication-title: Nat. Genet.
  doi: 10.1038/ng.363
– volume: 23
  start-page: 155
  year: 2006
  ident: key 20170512110556_gkr596-B46
  article-title: DNA replication: keep moving and don't mind the gap
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.05.034
– volume: 102
  start-page: 15954
  year: 2005
  ident: key 20170512110556_gkr596-B40
  article-title: The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0504586102
– volume: 24
  start-page: 1837
  year: 1996
  ident: key 20170512110556_gkr596-B35
  article-title: Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6-4) photoproduct in mammalian cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/24.10.1837
– volume: 8
  start-page: 1444
  year: 2009
  ident: key 20170512110556_gkr596-B29
  article-title: Mammalian polymerase zeta is essential for post-replication repair of UV-induced DNA lesions
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2009.09.006
– reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5
– reference: 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8
– reference: 18235220 - Cell Cycle. 2008 Feb 1;7(3):401-6
– reference: 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23
– reference: 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7
– reference: 19783229 - DNA Repair (Amst). 2009 Dec 3;8(12):1444-51
– reference: 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304
– reference: 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27
– reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
– reference: 16751278 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8971-6
– reference: 14871897 - J Biol Chem. 2004 Apr 16;279(16):16433-40
– reference: 11515498 - Mol Cell. 2001 Jul;8(1):7-8
– reference: 19287383 - Nat Genet. 2009 Apr;41(4):393-5
– reference: 19654238 - Nucleic Acids Res. 2009 Sep;37(17):5737-48
– reference: 10385124 - Nature. 1999 Jun 17;399(6737):700-4
– reference: 20453836 - Nature. 2010 Jun 17;465(7300):951-5
– reference: 11884624 - Mol Cell Biol. 2002 Apr;22(7):2419-26
– reference: 10984059 - Nature. 2000 Aug 31;406(6799):1015-9
– reference: 18157155 - Cell Res. 2008 Jan;18(1):174-83
– reference: 17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8
– reference: 20227374 - Mol Cell. 2010 Mar 12;37(5):714-27
– reference: 21666225 - Genome Biol Evol. 2011;3:799-811
– reference: 8657563 - Nucleic Acids Res. 1996 May 15;24(10):1837-40
– reference: 16247017 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9
– reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500
– reference: 18585391 - J Mol Biol. 2008 Sep 12;381(4):803-9
– reference: 19153606 - EMBO J. 2009 Feb 18;28(4):383-93
– reference: 20177396 - Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19
– reference: 20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35
– reference: 16327781 - Nat Cell Biol. 2006 Jan;8(1):37-45
– reference: 19367476 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):98-116
– reference: 12419234 - Mol Cell. 2002 Oct;10(4):917-24
– reference: 15916957 - Mol Cell. 2005 May 27;18(5):499-505
– reference: 20403322 - Cell. 2010 Apr 16;141(2):255-67
– reference: 21646340 - Nucleic Acids Res. 2011 Sep 1;39(16):7049-57
– reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91
– reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41
– reference: 16452972 - Nature. 2006 Feb 2;439(7076):557-62
– reference: 16678112 - Mol Cell. 2006 May 5;22(3):407-13
– reference: 15950550 - DNA Repair (Amst). 2005 Sep 28;4(10):1182-8
– reference: 15952890 - Annu Rev Biochem. 2005;74:317-53
– reference: 16857582 - Mol Cell. 2006 Jul 21;23(2):155-60
– reference: 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46
– reference: 19822754 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18219-24
– reference: 14657033 - EMBO J. 2003 Dec 15;22(24):6621-30
– reference: 17512402 - Cell. 2007 May 18;129(4):665-79
SSID ssj0014154
Score 2.3710945
Snippet Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 170
SubjectTerms Animals
Cell Line, Tumor
Cells, Cultured
DNA - biosynthesis
DNA Damage
DNA-Binding Proteins - physiology
DNA-Directed DNA Polymerase - physiology
G2 Phase - genetics
Genome Integrity, Repair and
Humans
Mice
Mutagenesis
Nuclear Proteins - physiology
Nucleotidyltransferases - physiology
Replication Protein A - analysis
S Phase - genetics
Ultraviolet Rays
Title DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity
URI https://www.ncbi.nlm.nih.gov/pubmed/21908406
https://www.proquest.com/docview/919947745
https://pubmed.ncbi.nlm.nih.gov/PMC3245908
Volume 40
WOSCitedRecordID wos000298733500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4xhLS9wIANCqyytGnSHiKa2K7jxwrG9oC6SetD3yIntkc26lZNitR_z9lpKjKhbY-Jz4l15_g--y7fAXwQxsTCUhEVjMmIFZxHKRc5fu7MJztqq3WgzL8V43E6ncrvmySa6pkQvqSXTi0vf_5ecumJtWOe-joFk2_TbawAXVBDEhU4NVnakpB2unbcTudXtieI8s_EyCee5ubgP8f4GvY3UJKMGtsfwo5xR3A8criNnq3JRxKSO8Op-RG8vGoLux3Dr-vxiGg1w5WE5OsFomcyX3huZVOR0hFEhOQHUU6TLwlZ3KGXw3YbbvtTflKs8W2h3fji2mVdkbbKCq4W92S2qvHJriwQ37-Byc3nydXXaFNyAW01EHVkk1RbEyvFDGMWXb_ViVRcUytFrCiNFU-GIra5NoOC5yml2seuNaeSWrx6C7tu7swpkKFSsdIFo7lljCujkiRV-XCIG-JYyYHuwafWIFmxoSP3VTHusyYsTjPUadbotAfvt7KLhoTjWak-2vWvAqQ1eYYq9zpTzsxXVSY9QzICYd6Dk2YGbB-DK_oAN8HYWXTmxlbA83N3W1x5F3i6Eav6ivJn_xrXObxCGJY0BzsXsFsvV-Yd7BUPdVkt-_BCTNN-OCvoh4n_CGShAJM
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+damage+bypass+operates+in+the+S+and+G2+phases+of+the+cell+cycle+and+exhibits+differential+mutagenicity&rft.jtitle=Nucleic+acids+research&rft.au=Diamant%2C+Noam&rft.au=Hendel%2C+Ayal&rft.au=Vered%2C+Ilan&rft.au=Carell%2C+Thomas&rft.date=2012-01-01&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=40&rft.issue=1&rft.spage=170&rft.epage=180&rft_id=info:doi/10.1093%2Fnar%2Fgkr596&rft_id=info%3Apmid%2F21908406&rft.externalDocID=PMC3245908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon