Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms

•sEMG based muscle fatigue detection is widely preferred and these signals exhibit higher degree of nonstationarity.•B-distribution, extended modified B-distribution (EMBD) and S-transform based TFDs are proposed to address this property.•Twelve features and five classifiers are employed along with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods and programs in biomedicine Ročník 154; s. 45 - 56
Hlavní autoři: Karthick, P.A., Ghosh, Diptasree Maitra, Ramakrishnan, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Ireland Elsevier B.V 01.02.2018
Témata:
ISSN:0169-2607, 1872-7565, 1872-7565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •sEMG based muscle fatigue detection is widely preferred and these signals exhibit higher degree of nonstationarity.•B-distribution, extended modified B-distribution (EMBD) and S-transform based TFDs are proposed to address this property.•Twelve features and five classifiers are employed along with two feature selection techniques.•Appropriate time-frequency based features are determined to distinguish muscle nonfatigue and fatigue conditions.•An accuracy of 91%% is achieved by using genetic algorithm selected features and SVM, for EMBD time-frequency method. Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions.
AbstractList Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals.BACKGROUND AND OBJECTIVESurface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals.In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification.METHODSIn this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification.The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA.RESULTSThe results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA.The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions.CONCLUSIONSThe proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions.
Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions.
•sEMG based muscle fatigue detection is widely preferred and these signals exhibit higher degree of nonstationarity.•B-distribution, extended modified B-distribution (EMBD) and S-transform based TFDs are proposed to address this property.•Twelve features and five classifiers are employed along with two feature selection techniques.•Appropriate time-frequency based features are determined to distinguish muscle nonfatigue and fatigue conditions.•An accuracy of 91%% is achieved by using genetic algorithm selected features and SVM, for EMBD time-frequency method. Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions.
Author Karthick, P.A.
Ramakrishnan, S.
Ghosh, Diptasree Maitra
Author_xml – sequence: 1
  givenname: P.A.
  surname: Karthick
  fullname: Karthick, P.A.
  email: pakarthick1@gmail.com
  organization: Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
– sequence: 2
  givenname: Diptasree Maitra
  surname: Ghosh
  fullname: Ghosh, Diptasree Maitra
  organization: Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
– sequence: 3
  givenname: S.
  surname: Ramakrishnan
  fullname: Ramakrishnan, S.
  organization: Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29249346$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2P1SAYhYkZ49wZ_QMuDEs3vQJtoTVuzMSvZBIX6ppw4W3LlcIVqEn3_nCpd3Qxi3FFcvI8b8g5V-jCBw8IPadkTwnlr457PZ8Oe0aoKMGesOYR2tFOsEq0vL1AuwL1FeNEXKKrlI6EENa2_Am6ZD1r-rrhO_TryxIHpQGDA51jmNcwRnWaVnxQCQyel6Qd4EFlOy6ADeSC2eDxkqwf8WTHqYqQglv-pNnOUA0Rfizg9YpnyFMwCStfLik9WQ_YgYp-c5UbQ7R5mtNT9HhQLsGzu_cafXv_7uvNx-r284dPN29vK90QkStQuoW6ho60wyB4azhpiD4I0ET3WtS6M4r0IGjd1Y1qOae8aXjDuq5XBmhfX6OX57unGMoPU5azTRqcUx7CkiTtRVczShgr6Is7dDnMYOQp2lnFVf5trgDsDOgYUoow_EMokds88ii3eeQ2z5aVeYrU3ZO0zWprLkdl3cPqm7MKpaCfFqJM2paSwdhYJpEm2If11_d07ay3WrnvsP5P_g2VUsF3
CitedBy_id crossref_primary_10_1109_RBME_2019_2950897
crossref_primary_10_1016_j_dsp_2021_103033
crossref_primary_10_1016_j_actaastro_2025_01_040
crossref_primary_10_1016_j_clinph_2019_10_011
crossref_primary_10_3390_s19122651
crossref_primary_10_1016_j_irbm_2024_100866
crossref_primary_10_3390_s21155006
crossref_primary_10_1016_j_compbiomed_2025_110461
crossref_primary_10_1113_JP282562
crossref_primary_10_1007_s13534_024_00372_5
crossref_primary_10_3390_s21154994
crossref_primary_10_1109_TIM_2024_3420349
crossref_primary_10_1038_s41598_021_87403_8
crossref_primary_10_1016_j_compbiomed_2021_104413
crossref_primary_10_1155_2022_5143757
crossref_primary_10_1016_j_cmpb_2021_106451
crossref_primary_10_1007_s11517_025_03403_0
crossref_primary_10_1109_TITS_2024_3416382
crossref_primary_10_3390_app14093563
crossref_primary_10_1103_PhysRevResearch_6_033276
crossref_primary_10_1016_j_bspc_2021_102603
crossref_primary_10_1186_s12911_022_01808_7
crossref_primary_10_3390_bioengineering8030035
crossref_primary_10_1049_ell2_12026
crossref_primary_10_1109_JSEN_2024_3456479
crossref_primary_10_1109_TIM_2024_3376019
crossref_primary_10_1109_TNSRE_2024_3523332
crossref_primary_10_1109_TNSRE_2024_3375320
crossref_primary_10_1007_s13534_024_00367_2
crossref_primary_10_1049_iet_spr_2020_0315
crossref_primary_10_3390_s23229291
crossref_primary_10_1016_j_clineuro_2025_109027
crossref_primary_10_1109_LSENS_2023_3238426
crossref_primary_10_1016_j_eswa_2020_113571
crossref_primary_10_1109_JSEN_2021_3113123
crossref_primary_10_1016_j_bspc_2024_106266
crossref_primary_10_1007_s00034_022_02108_1
crossref_primary_10_1016_j_bspc_2022_103623
crossref_primary_10_3390_app11188676
crossref_primary_10_1016_j_bspc_2024_106615
crossref_primary_10_3390_electronics12030750
crossref_primary_10_1007_s11042_018_6561_9
crossref_primary_10_1080_10255842_2021_1955104
crossref_primary_10_3390_machines6040065
crossref_primary_10_34133_research_0766
crossref_primary_10_1002_itl2_241
crossref_primary_10_1088_1742_6596_1924_1_012020
crossref_primary_10_3390_healthcare10112292
crossref_primary_10_1145_3759159
crossref_primary_10_3390_app14114563
crossref_primary_10_1016_j_chaos_2020_110120
crossref_primary_10_1177_10711813241260287
crossref_primary_10_3389_frobt_2021_710806
crossref_primary_10_1016_j_wees_2024_12_005
crossref_primary_10_1016_j_bspc_2024_107403
crossref_primary_10_3389_fnbot_2021_742163
crossref_primary_10_1016_j_ijoes_2025_101080
crossref_primary_10_1177_09544119251321129
crossref_primary_10_3390_app9245343
crossref_primary_10_3390_s21196401
crossref_primary_10_1109_TBME_2023_3294016
crossref_primary_10_1109_JIOT_2024_3370960
crossref_primary_10_3390_bios14080396
crossref_primary_10_1016_j_apergo_2021_103574
crossref_primary_10_1016_j_apergo_2023_104025
crossref_primary_10_3390_s22051900
crossref_primary_10_1109_TIM_2021_3063777
crossref_primary_10_3390_bdcc2030021
crossref_primary_10_1016_j_apergo_2022_103757
crossref_primary_10_1016_j_eswa_2021_115639
crossref_primary_10_3390_bioengineering8120193
crossref_primary_10_3390_bioengineering10020219
crossref_primary_10_3390_computers7040058
crossref_primary_10_3390_s25051355
crossref_primary_10_3389_fnsys_2022_893275
crossref_primary_10_5114_reum_2019_87613
crossref_primary_10_1016_j_procs_2021_05_043
crossref_primary_10_1080_0952813X_2021_1960627
crossref_primary_10_1109_TNNLS_2021_3124330
crossref_primary_10_1016_j_jsr_2023_08_008
crossref_primary_10_1016_j_patrec_2022_11_021
crossref_primary_10_3390_s24072377
crossref_primary_10_1007_s11517_021_02466_z
crossref_primary_10_1109_JIOT_2021_3056126
crossref_primary_10_3390_electronics11050691
crossref_primary_10_2478_pjmpe_2020_0018
crossref_primary_10_1007_s12652_020_01919_x
crossref_primary_10_1109_ACCESS_2024_3377111
crossref_primary_10_3390_s21103542
crossref_primary_10_1109_ACCESS_2022_3190967
crossref_primary_10_3389_fphys_2022_956639
crossref_primary_10_3390_s19214729
crossref_primary_10_1007_s11277_024_11102_6
crossref_primary_10_1016_j_jneumeth_2020_108826
crossref_primary_10_1145_3648679
Cites_doi 10.1016/j.dsp.2013.10.002
10.1007/s00521-015-2103-9
10.1016/j.yebeh.2015.02.012
10.1007/s10439-013-0917-0
10.1016/j.eswa.2009.09.064
10.1016/j.clinph.2007.09.126
10.1109/78.492555
10.1016/j.eswa.2013.11.009
10.1088/0967-3334/27/12/001
10.1016/j.medengphy.2010.11.008
10.1007/s10916-015-0394-0
10.1016/j.jelekin.2007.08.007
10.1109/78.950779
10.1016/j.knosys.2016.05.027
10.1016/j.clinbiomech.2009.01.010
10.1016/j.jelekin.2011.05.002
10.1109/MSP.2013.2265914
10.1007/s10916-009-9292-7
10.1080/03091900500444281
10.1016/j.patcog.2014.08.016
10.1249/01.mss.0000233794.31659.6d
10.1016/j.eswa.2009.02.053
10.1016/j.jelekin.2009.03.011
10.1049/el.2015.3460
10.1109/TNSRE.2003.810425
10.3390/s110403545
10.1109/10.930899
10.1016/j.bspc.2015.12.007
10.1088/0967-3334/36/3/409
10.1016/j.compbiomed.2014.10.021
10.1007/s10916-010-9633-6
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2017.10.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 56
ExternalDocumentID 29249346
10_1016_j_cmpb_2017_10_024
S016926071730408X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-eac5e33e805ff765d6040cb7ec0c9c73c8da09e713834a5661644642889ade193
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418036000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 00:09:10 EDT 2025
Wed Feb 19 02:43:00 EST 2025
Tue Nov 18 21:48:03 EST 2025
Sat Nov 29 03:57:40 EST 2025
Fri Feb 23 02:26:01 EST 2024
Tue Oct 14 19:32:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Muscle fatigue analysis
Surface electromyography
EMBD
SVM
S-transform
Time-frequency features
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-eac5e33e805ff765d6040cb7ec0c9c73c8da09e713834a5661644642889ade193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29249346
PQID 1978321022
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1978321022
pubmed_primary_29249346
crossref_primary_10_1016_j_cmpb_2017_10_024
crossref_citationtrail_10_1016_j_cmpb_2017_10_024
elsevier_sciencedirect_doi_10_1016_j_cmpb_2017_10_024
elsevier_clinicalkey_doi_10_1016_j_cmpb_2017_10_024
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
2018-Feb
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cifrek, Medved, Tonković, Ostojić (bib0002) 2009; 24
Gonzalez-Izal, Malanda, Navarro-Amezqueta, Gorostiaga, Mallor, Ibanez, Izquierdo (bib0016) 2010; 20
Merletti, Parker (bib0001) 2004
Makaram, Swaminathan (bib0038) 2014
Assous, Boashash (bib0010) 2012; 1
Subasi, Kevric, Canbaz (bib0031) 2017
Barkat, Boashash (bib0025) 2001; 49
Dimitrov, Arabadzhiev, Mileva, Bowtell, Crichton, Dimitrova (bib0027) 2006; 38
Singh, Kumar, Polus, Fraser (bib0004) 2007; 31
Marri, Swaminathan (bib0039) 2015
Subasi, Kiymik (bib0036) 2010; 34
Stockwell, Mansinha, Lowe (bib0011) 1996; 44
Boashash (bib0014) 2003
Al-Mulla, Sepulveda, Colley (bib0037) 2011; 33
Marri, Swaminathan (bib0040) 2016; 138
Wang, Yan, Hu, Xie, Wang (bib0029) 2006; 27
Bonato, Roy, Knaflitz, De Luca (bib0008) 2001; 48
Karthick, Ramakrishnan (bib0018) 2016; 26
Kumar, Singh, Cosic, Giudice, Hawley (bib0024) 2005
Yan, Zhou, Yuan, Yuan, Wu, Zhao, Wang (bib0012) 2015; 45
Boashash, Ben-Jabeur (bib0019) 2012
Dimitrova, Arabadzhiev, Hogrel, Dimitrov (bib0007) 2009; 19
Boashash, Khlif, Ben-Jabeur, East, Colditz (bib0026) 2014; 25
Boashash, Ouelha (bib0028) 2016; 106
Aličković, Subasi (bib0034) 2017; 28
Venugopal, Navaneethakrishna, Ramakrishnan (bib0021) 2014; 41
Karthick, Venugopal, Ramakrishnan (bib0022) 2016; 40
Knaflitz, Molinari (bib0015) 2003; 11
Boashash, Azemi, O'Toole (bib0017) 2013
Babaoglu, Findik, Ülker (bib0030) 2010; 37
Du, Dua, Acharya, Chua (bib0035) 2012; 36
Ortigosa, Fernández, Galbis, Cano (bib0013) 2015; 36
Avci (bib0032) 2009; 36
Zwarts, Bleijenberg, van Engelen (bib0003) 2008; 119
Rogers, MacIsaac (bib0009) 2011; 21
Karthick, Ramakrishnan (bib0023) 2015; 52
Akram, M.Han, Kim (bib0033) 2015; 56
Zhang, Lockhart, Soangra (bib0005) 2014; 42
Al-Mulla, R., Sepulveda, Colley (bib0006) 2011; 11
Boashash, Azemi, Ali Khan (bib0020) 2014; 48
Karthick (10.1016/j.cmpb.2017.10.024_bib0023) 2015; 52
Zwarts (10.1016/j.cmpb.2017.10.024_bib0003) 2008; 119
Boashash (10.1016/j.cmpb.2017.10.024_bib0019) 2012
Aličković (10.1016/j.cmpb.2017.10.024_bib0034) 2017; 28
Bonato (10.1016/j.cmpb.2017.10.024_bib0008) 2001; 48
Knaflitz (10.1016/j.cmpb.2017.10.024_bib0015) 2003; 11
Makaram (10.1016/j.cmpb.2017.10.024_bib0038) 2014
Marri (10.1016/j.cmpb.2017.10.024_bib0040) 2016; 138
Boashash (10.1016/j.cmpb.2017.10.024_bib0028) 2016; 106
Gonzalez-Izal (10.1016/j.cmpb.2017.10.024_bib0016) 2010; 20
Venugopal (10.1016/j.cmpb.2017.10.024_bib0021) 2014; 41
Du (10.1016/j.cmpb.2017.10.024_bib0035) 2012; 36
Cifrek (10.1016/j.cmpb.2017.10.024_bib0002) 2009; 24
Singh (10.1016/j.cmpb.2017.10.024_bib0004) 2007; 31
Yan (10.1016/j.cmpb.2017.10.024_bib0012) 2015; 45
Karthick (10.1016/j.cmpb.2017.10.024_bib0018) 2016; 26
Subasi (10.1016/j.cmpb.2017.10.024_bib0036) 2010; 34
Merletti (10.1016/j.cmpb.2017.10.024_bib0001) 2004
Dimitrova (10.1016/j.cmpb.2017.10.024_bib0007) 2009; 19
Kumar (10.1016/j.cmpb.2017.10.024_bib0024) 2005
Babaoglu (10.1016/j.cmpb.2017.10.024_bib0030) 2010; 37
Barkat (10.1016/j.cmpb.2017.10.024_bib0025) 2001; 49
Subasi (10.1016/j.cmpb.2017.10.024_bib0031) 2017
Boashash (10.1016/j.cmpb.2017.10.024_bib0020) 2014; 48
Avci (10.1016/j.cmpb.2017.10.024_bib0032) 2009; 36
Al-Mulla (10.1016/j.cmpb.2017.10.024_bib0037) 2011; 33
Marri (10.1016/j.cmpb.2017.10.024_bib0039) 2015
Wang (10.1016/j.cmpb.2017.10.024_bib0029) 2006; 27
Boashash (10.1016/j.cmpb.2017.10.024_bib0014) 2003
Boashash (10.1016/j.cmpb.2017.10.024_bib0026) 2014; 25
Al-Mulla (10.1016/j.cmpb.2017.10.024_bib0006) 2011; 11
Rogers (10.1016/j.cmpb.2017.10.024_bib0009) 2011; 21
Boashash (10.1016/j.cmpb.2017.10.024_bib0017) 2013
Stockwell (10.1016/j.cmpb.2017.10.024_bib0011) 1996; 44
Akram (10.1016/j.cmpb.2017.10.024_bib0033) 2015; 56
Assous (10.1016/j.cmpb.2017.10.024_bib0010) 2012; 1
Ortigosa (10.1016/j.cmpb.2017.10.024_bib0013) 2015; 36
Karthick (10.1016/j.cmpb.2017.10.024_bib0022) 2016; 40
Dimitrov (10.1016/j.cmpb.2017.10.024_bib0027) 2006; 38
Zhang (10.1016/j.cmpb.2017.10.024_bib0005) 2014; 42
References_xml – volume: 48
  start-page: 616
  year: 2014
  end-page: 627
  ident: bib0020
  article-title: Principles of time–frequency feature extraction for change detection in non-stationary signals: applications to newborn EEG abnormality detection
  publication-title: Pattern Recognit.
– volume: 24
  start-page: 327
  year: 2009
  end-page: 340
  ident: bib0002
  article-title: Surface EMG based muscle fatigue evaluation in biomechanics
  publication-title: Clin. Biomech.
– volume: 19
  start-page: 252
  year: 2009
  end-page: 258
  ident: bib0007
  article-title: Fatigue analysis of interference EMG signals obtained from biceps brachii during isometric voluntary contraction at various force levels
  publication-title: J. Electromyogr. Kinesiol.
– volume: 119
  start-page: 2
  year: 2008
  end-page: 10
  ident: bib0003
  article-title: Clinical neurophysiology of fatigue
  publication-title: Clin. Neurophysiol.
– volume: 11
  start-page: 17
  year: 2003
  end-page: 23
  ident: bib0015
  article-title: Assessment of muscle fatigue during biking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 6683
  year: 2005
  end-page: 6686
  ident: bib0024
  article-title: Strategies to identify changes in SEMG due to muscle fatigue during cycling
  publication-title: IEEE Engineering in Medicine and Biology
– volume: 36
  start-page: 409
  year: 2015
  end-page: 424
  ident: bib0013
  article-title: Phase information of time-frequency transforms as a key feature for classification of atrial fibrillation episodes
  publication-title: Physiol. Meas.
– volume: 40
  year: 2016
  ident: bib0022
  article-title: Analysis of muscle fatigue progression using cyclostationary property of surface electromyography signals
  publication-title: J. Med. Syst.
– start-page: 108
  year: 2013
  end-page: 119
  ident: bib0017
  article-title: Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications
  publication-title: IEEE Sig. Process. Mag.
– volume: 37
  start-page: 3177
  year: 2010
  end-page: 3183
  ident: bib0030
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 1971
  year: 2006
  end-page: 1979
  ident: bib0027
  article-title: Muscle fatigue during dynamic contractions assessed by new spectral indices
  publication-title: Med. Sci. Sports Exerc.
– volume: 28
  start-page: 753
  year: 2017
  end-page: 763
  ident: bib0034
  article-title: Breast cancer diagnosis using GA feature selection and rotation forest
  publication-title: Neural Comput. Appl.
– volume: 31
  start-page: 144
  year: 2007
  end-page: 151
  ident: bib0004
  article-title: Strategies to identify changes in SEMG due to muscle fatigue during cycling
  publication-title: J. Med. Eng. Technol.
– volume: 42
  start-page: 600
  year: 2014
  end-page: 612
  ident: bib0005
  article-title: Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors
  publication-title: Ann. Biomed. Eng.
– volume: 20
  start-page: 233
  year: 2010
  end-page: 240
  ident: bib0016
  article-title: EMG spectral indices and muscle power fatigue during dynamic contractions
  publication-title: J. Electromyogr. Kinesiol.
– year: 2014
  ident: bib0038
  article-title: A binary bat approach for identification of fatigue condition from semg signals
  publication-title: International Conference on Swarm, Evolutionary, and Memetic Computing
– volume: 25
  start-page: 134
  year: 2014
  end-page: 155
  ident: bib0026
  article-title: Passive detection of accelerometer-recorded fetal movements using a time–frequency signal processing approach
  publication-title: Digit. Sig. Process.
– volume: 21
  start-page: 811
  year: 2011
  end-page: 818
  ident: bib0009
  article-title: EMG-based muscle fatigue assessment during dynamic contractions using principal component analysis
  publication-title: J. Electromyogr. Kinesiol.
– volume: 45
  start-page: 8
  year: 2015
  end-page: 14
  ident: bib0012
  article-title: Automatic seizure detection using Stockwell transform and boosting algorithm for long-term EEG
  publication-title: Epilepsy Behav.
– volume: 36
  start-page: 10618
  year: 2009
  end-page: 10626
  ident: bib0032
  article-title: A new intelligent diagnosis system for the heart valve diseases by using genetic-SVM classifier
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: bib0039
  article-title: Classification of muscle fatigue using surface electromyography signals and multifractals
  publication-title: 12th International Conference on Fuzzy Systems and Knowledge Discovery
– volume: 49
  start-page: 2232
  year: 2001
  end-page: 2239
  ident: bib0025
  article-title: A high-resolution quadratic time-frequency distribution for multicomponent signals analysis
  publication-title: IEEE Trans Sig. Process.
– volume: 36
  start-page: 1731
  year: 2012
  end-page: 1743
  ident: bib0035
  article-title: Classification of epilepsy using high-order spectra features and principle component analysis
  publication-title: J. Med. Syst.
– year: 2003
  ident: bib0014
  article-title: Time Frequency Signal Analysis and Processing A Comprehensive Reference
– volume: 26
  start-page: 42
  year: 2016
  end-page: 51
  ident: bib0018
  article-title: Surface electromyography based muscle fatigue progression analysis using modified B distribution time–frequency features
  publication-title: Biomed. Sig. Process. Control
– volume: 44
  start-page: 998
  year: 1996
  end-page: 1001
  ident: bib0011
  article-title: Localization of the complex spectrum: the S transform
  publication-title: IEEE Trans. Sig. Process.
– start-page: 1
  year: 2017
  end-page: 9
  ident: bib0031
  article-title: Epileptic seizure detection using hybrid machine learning methods
  publication-title: Neural Comput. Appl.
– volume: 48
  start-page: 745
  year: 2001
  end-page: 753
  ident: bib0008
  article-title: Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 1
  start-page: 1
  year: 2012
  end-page: 18
  ident: bib0010
  article-title: Evaluation of the modified S-transform for time-frequency synchrony analysis and source localisation
  publication-title: J. Adv. Sig. Process.
– volume: 27
  start-page: 1255
  year: 2006
  end-page: 1267
  ident: bib0029
  article-title: Classification of surface EMG signals using harmonic wavelet packet transform
  publication-title: Physiol. Meas.
– volume: 33
  start-page: 411
  year: 2011
  end-page: 417
  ident: bib0037
  article-title: Evolved pseudo-wavelet function to optimally decompose sEMG for automated classification of localized muscle fatigue
  publication-title: Med. Eng. Phys.
– volume: 41
  start-page: 2652
  year: 2014
  end-page: 2659
  ident: bib0021
  article-title: Extraction and analysis of multiple time window features associated with muscle fatigue conditions using sEMG signals
  publication-title: Expert Syst. Appl.
– year: 2012
  ident: bib0019
  article-title: Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection
  publication-title: Information Science, Signal Processing and their Applications
– volume: 56
  start-page: 30
  year: 2015
  end-page: 36
  ident: bib0033
  article-title: An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier
  publication-title: Comput. Bio. Med.
– volume: 34
  start-page: 777
  year: 2010
  end-page: 785
  ident: bib0036
  article-title: Muscle fatigue detection in EMG using time–frequency methods, ICA and neural networks
  publication-title: J. Med. Syst.
– year: 2004
  ident: bib0001
  article-title: Electromyography: Physiology, Engineering, and Non-Invasive Applications
– volume: 52
  start-page: 185
  year: 2015
  end-page: 186
  ident: bib0023
  article-title: Muscle fatigue analysis using surface EMG signals and time–frequency based medium-to-low band power ratio
  publication-title: Electron. Lett.
– volume: 11
  start-page: 3545
  year: 2011
  end-page: 3594
  ident: bib0006
  article-title: A review of non-invasive techniques to detect and predict localised muscle fatigue
  publication-title: Sensors
– volume: 106
  start-page: 38
  year: 2016
  end-page: 50
  ident: bib0028
  article-title: Automatic signal abnormality detection using time-frequency features and machine learning: a newborn EEG seizure case study
  publication-title: Knowl. Based Syst.
– volume: 138
  year: 2016
  ident: bib0040
  article-title: Classification of muscle fatigue in dynamic contraction using surface electromyography signals and multifractal singularity spectral analysis
  publication-title: J. Dyn. Syst. Meas. Control
– volume: 25
  start-page: 134
  year: 2014
  ident: 10.1016/j.cmpb.2017.10.024_bib0026
  article-title: Passive detection of accelerometer-recorded fetal movements using a time–frequency signal processing approach
  publication-title: Digit. Sig. Process.
  doi: 10.1016/j.dsp.2013.10.002
– volume: 28
  start-page: 753
  year: 2017
  ident: 10.1016/j.cmpb.2017.10.024_bib0034
  article-title: Breast cancer diagnosis using GA feature selection and rotation forest
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2103-9
– volume: 138
  issue: 2016
  year: 2016
  ident: 10.1016/j.cmpb.2017.10.024_bib0040
  article-title: Classification of muscle fatigue in dynamic contraction using surface electromyography signals and multifractal singularity spectral analysis
  publication-title: J. Dyn. Syst. Meas. Control
– volume: 45
  start-page: 8
  year: 2015
  ident: 10.1016/j.cmpb.2017.10.024_bib0012
  article-title: Automatic seizure detection using Stockwell transform and boosting algorithm for long-term EEG
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2015.02.012
– year: 2014
  ident: 10.1016/j.cmpb.2017.10.024_bib0038
  article-title: A binary bat approach for identification of fatigue condition from semg signals
– start-page: 6683
  year: 2005
  ident: 10.1016/j.cmpb.2017.10.024_bib0024
  article-title: Strategies to identify changes in SEMG due to muscle fatigue during cycling
– volume: 42
  start-page: 600
  year: 2014
  ident: 10.1016/j.cmpb.2017.10.024_bib0005
  article-title: Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0917-0
– volume: 37
  start-page: 3177
  year: 2010
  ident: 10.1016/j.cmpb.2017.10.024_bib0030
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.064
– volume: 119
  start-page: 2
  year: 2008
  ident: 10.1016/j.cmpb.2017.10.024_bib0003
  article-title: Clinical neurophysiology of fatigue
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.09.126
– volume: 44
  start-page: 998
  year: 1996
  ident: 10.1016/j.cmpb.2017.10.024_bib0011
  article-title: Localization of the complex spectrum: the S transform
  publication-title: IEEE Trans. Sig. Process.
  doi: 10.1109/78.492555
– volume: 41
  start-page: 2652
  year: 2014
  ident: 10.1016/j.cmpb.2017.10.024_bib0021
  article-title: Extraction and analysis of multiple time window features associated with muscle fatigue conditions using sEMG signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.11.009
– volume: 27
  start-page: 1255
  year: 2006
  ident: 10.1016/j.cmpb.2017.10.024_bib0029
  article-title: Classification of surface EMG signals using harmonic wavelet packet transform
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/27/12/001
– volume: 33
  start-page: 411
  year: 2011
  ident: 10.1016/j.cmpb.2017.10.024_bib0037
  article-title: Evolved pseudo-wavelet function to optimally decompose sEMG for automated classification of localized muscle fatigue
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.11.008
– volume: 40
  year: 2016
  ident: 10.1016/j.cmpb.2017.10.024_bib0022
  article-title: Analysis of muscle fatigue progression using cyclostationary property of surface electromyography signals
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0394-0
– volume: 19
  start-page: 252
  year: 2009
  ident: 10.1016/j.cmpb.2017.10.024_bib0007
  article-title: Fatigue analysis of interference EMG signals obtained from biceps brachii during isometric voluntary contraction at various force levels
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2007.08.007
– volume: 1
  start-page: 1
  year: 2012
  ident: 10.1016/j.cmpb.2017.10.024_bib0010
  article-title: Evaluation of the modified S-transform for time-frequency synchrony analysis and source localisation
  publication-title: J. Adv. Sig. Process.
– volume: 49
  start-page: 2232
  year: 2001
  ident: 10.1016/j.cmpb.2017.10.024_bib0025
  article-title: A high-resolution quadratic time-frequency distribution for multicomponent signals analysis
  publication-title: IEEE Trans Sig. Process.
  doi: 10.1109/78.950779
– volume: 106
  start-page: 38
  year: 2016
  ident: 10.1016/j.cmpb.2017.10.024_bib0028
  article-title: Automatic signal abnormality detection using time-frequency features and machine learning: a newborn EEG seizure case study
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.05.027
– volume: 24
  start-page: 327
  year: 2009
  ident: 10.1016/j.cmpb.2017.10.024_bib0002
  article-title: Surface EMG based muscle fatigue evaluation in biomechanics
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2009.01.010
– volume: 21
  start-page: 811
  year: 2011
  ident: 10.1016/j.cmpb.2017.10.024_bib0009
  article-title: EMG-based muscle fatigue assessment during dynamic contractions using principal component analysis
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2011.05.002
– start-page: 108
  year: 2013
  ident: 10.1016/j.cmpb.2017.10.024_bib0017
  article-title: Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications
  publication-title: IEEE Sig. Process. Mag.
  doi: 10.1109/MSP.2013.2265914
– volume: 34
  start-page: 777
  year: 2010
  ident: 10.1016/j.cmpb.2017.10.024_bib0036
  article-title: Muscle fatigue detection in EMG using time–frequency methods, ICA and neural networks
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9292-7
– volume: 31
  start-page: 144
  year: 2007
  ident: 10.1016/j.cmpb.2017.10.024_bib0004
  article-title: Strategies to identify changes in SEMG due to muscle fatigue during cycling
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091900500444281
– volume: 48
  start-page: 616
  year: 2014
  ident: 10.1016/j.cmpb.2017.10.024_bib0020
  article-title: Principles of time–frequency feature extraction for change detection in non-stationary signals: applications to newborn EEG abnormality detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.08.016
– volume: 38
  start-page: 1971
  year: 2006
  ident: 10.1016/j.cmpb.2017.10.024_bib0027
  article-title: Muscle fatigue during dynamic contractions assessed by new spectral indices
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/01.mss.0000233794.31659.6d
– volume: 36
  start-page: 10618
  year: 2009
  ident: 10.1016/j.cmpb.2017.10.024_bib0032
  article-title: A new intelligent diagnosis system for the heart valve diseases by using genetic-SVM classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.053
– volume: 20
  start-page: 233
  year: 2010
  ident: 10.1016/j.cmpb.2017.10.024_bib0016
  article-title: EMG spectral indices and muscle power fatigue during dynamic contractions
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2009.03.011
– volume: 52
  start-page: 185
  year: 2015
  ident: 10.1016/j.cmpb.2017.10.024_bib0023
  article-title: Muscle fatigue analysis using surface EMG signals and time–frequency based medium-to-low band power ratio
  publication-title: Electron. Lett.
  doi: 10.1049/el.2015.3460
– year: 2015
  ident: 10.1016/j.cmpb.2017.10.024_bib0039
  article-title: Classification of muscle fatigue using surface electromyography signals and multifractals
– volume: 11
  start-page: 17
  year: 2003
  ident: 10.1016/j.cmpb.2017.10.024_bib0015
  article-title: Assessment of muscle fatigue during biking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.810425
– volume: 11
  start-page: 3545
  year: 2011
  ident: 10.1016/j.cmpb.2017.10.024_bib0006
  article-title: A review of non-invasive techniques to detect and predict localised muscle fatigue
  publication-title: Sensors
  doi: 10.3390/s110403545
– year: 2012
  ident: 10.1016/j.cmpb.2017.10.024_bib0019
  article-title: Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection
– volume: 48
  start-page: 745
  year: 2001
  ident: 10.1016/j.cmpb.2017.10.024_bib0008
  article-title: Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.930899
– year: 2004
  ident: 10.1016/j.cmpb.2017.10.024_bib0001
– volume: 26
  start-page: 42
  year: 2016
  ident: 10.1016/j.cmpb.2017.10.024_bib0018
  article-title: Surface electromyography based muscle fatigue progression analysis using modified B distribution time–frequency features
  publication-title: Biomed. Sig. Process. Control
  doi: 10.1016/j.bspc.2015.12.007
– start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2017.10.024_bib0031
  article-title: Epileptic seizure detection using hybrid machine learning methods
  publication-title: Neural Comput. Appl.
– year: 2003
  ident: 10.1016/j.cmpb.2017.10.024_bib0014
– volume: 36
  start-page: 409
  year: 2015
  ident: 10.1016/j.cmpb.2017.10.024_bib0013
  article-title: Phase information of time-frequency transforms as a key feature for classification of atrial fibrillation episodes
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/36/3/409
– volume: 56
  start-page: 30
  year: 2015
  ident: 10.1016/j.cmpb.2017.10.024_bib0033
  article-title: An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier
  publication-title: Comput. Bio. Med.
  doi: 10.1016/j.compbiomed.2014.10.021
– volume: 36
  start-page: 1731
  year: 2012
  ident: 10.1016/j.cmpb.2017.10.024_bib0035
  article-title: Classification of epilepsy using high-order spectra features and principle component analysis
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9633-6
SSID ssj0002556
Score 2.5341516
Snippet •sEMG based muscle fatigue detection is widely preferred and these signals exhibit higher degree of nonstationarity.•B-distribution, extended modified...
Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms Algorithms
Arm
Automation
Electromyography - methods
EMBD
Humans
Machine Learning
Models, Theoretical
Muscle Contraction - physiology
Muscle Fatigue - physiology
Muscle fatigue analysis
Muscle, Skeletal - diagnostic imaging
Muscle, Skeletal - physiology
S-transform
Support Vector Machine
Surface electromyography
SVM
Time-frequency features
Title Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S016926071730408X
https://dx.doi.org/10.1016/j.cmpb.2017.10.024
https://www.ncbi.nlm.nih.gov/pubmed/29249346
https://www.proquest.com/docview/1978321022
Volume 154
WOSCitedRecordID wos000418036000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbSdhh2GfbsskehAbsFDmLLjuxjsHXYsyjWbsjNUGQ5SZc4gWMX7X1_Zv9ylES5TYp2D2AXIzAsWzE_kSJNfiTkVRDkfqQSbtIqvHDUzzzBMt9T4AoEEcvjnimk_faJHxzEw2Fy2Gr9dLUwpzNeFPHZWbL8r6KGcyBsXTr7F-Jubgon4DcIHY4gdjj-keCP6jIXsFqxwc38HEmpO9pgZZ15vYIBnRyuHte6aKpStlt4baIGmr7YAxccp2h6z3t5aROuz7HhtOV1nps8TOUaT4w7YjZelNNqggTojv8A-0asjcW0MJOMaxkA1r7wf4T_NcEe74fdQbfJEposViYO9AZUnQDrrjsnTauysS1fxFx8B701wbbLR93LYQ0_dpnQLtZ2pd7Ghj_7iQceGF_T31F4SQNbckq05Zaz_IqVsAGLk66cL0c6u493dYKfreXeYN8-0o_UT_RBFYa9eLhFdgIeJaBAdwbv94cfGrOvudwskbydIlZo2WTCzSddtwu6zssxu53je-Quuil0YOF1n7RU8YDc_oxiekh-IMroJsqoQRm1KKOIMtqgjBqU0Q2U0XWUUUQKBaRQRBl1KKMXKHtEvr7dP379zsOGHp4Me7zywMhHijEFCiDPeT_K-vBK5Ygr2ZOJ5EzGmeglivssZqEARwN8-VA7yHEiMgWuxmOyXSwK9YTQhGUsDKSKRlLzG-Ui1p1QhQ-3F6AcZZv47gWnEtnuddOVWerSGk9SLZRUC0WfA6G0SacZs7RcLzdezZzcUlfFDHY3BZDdOCpqRuEe1-5dfzvupYNGCgZAf9UThVrUq9TXwVsTuGmTXYuZZvaBjq6wsP_0n-b6jNy5WJnPyXZV1uoFuSVPq-mq3CNbfBjv4Sr4BZoY55Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+electromyography+based+muscle+fatigue+detection+using+high-resolution+time-frequency+methods+and+machine+learning+algorithms&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Karthick%2C+P.A.&rft.au=Ghosh%2C+Diptasree+Maitra&rft.au=Ramakrishnan%2C+S.&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.volume=154&rft.spage=45&rft.epage=56&rft_id=info:doi/10.1016%2Fj.cmpb.2017.10.024&rft.externalDocID=S016926071730408X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon