An Automatic History Matching Module with Distributed and Parallel Computing

The data assimilation process of adjusting variables in a reservoir simulation model to honor observations of field data is known as history matching and has been extensively studied for a few decades. However, limited success has been achieved due to the high complexity of the problem and the large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Petroleum science and technology Jg. 27; H. 10; S. 1092 - 1108
Hauptverfasser: Liang, B., Sepehrnoori, K., Delshad, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Colchester Taylor & Francis Group 01.01.2009
Taylor & Francis
Schlagworte:
ISSN:1091-6466, 1532-2459
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The data assimilation process of adjusting variables in a reservoir simulation model to honor observations of field data is known as history matching and has been extensively studied for a few decades. However, limited success has been achieved due to the high complexity of the problem and the large computational effort required in the real fields. Successful applications of the ensemble Kalman filter (EnKF) to reservoir history matching have been reported in various publications. The EnKF is a sequential method: once new data are available, only these data are used to update all the unknown reservoir properties while previous geological information is unused directly. In this method, multiple reservoir models rather than one single model are implemented, and each model is called a member. Conventionally, the impact of each member on the updating is equally treated. Another approach is the weighted EnKF. During the updating, the method weighs the contribution of each member through the comparison between the simulation response and the measurements. Better matching performance has been found in the weighted EnKF than in the conventional EnKF. To improve computational efficiency, two-level high-performance computing for reservoir history matching process is implemented in this research, distributing ensemble members simultaneously while simulating each member in a parallel style. An automatic history-matching module based on the weighted EnKF and high-performance computing is developed and validated through a synthetic case operating from primary, waterflooding to flooding of water alternating with gas. The study shows that the weighted EnKF improves the matching results, and the high-performance computing process significantly reduces the history matching execution time.
AbstractList The data assimilation process of adjusting variables in a reservoir simulation model to honor observations of field data is known as history matching and has been extensively studied for a few decades. However, limited success has been achieved due to the high complexity of the problem and the large computational effort required in the real fields. Successful applications of the ensemble Kalman filter (EnKF) to reservoir history matching have been reported in various publications. The EnKF is a sequential method: once new data are available, only these data are used to update all the unknown reservoir properties while previous geological information is unused directly. In this method, multiple reservoir models rather than one single model are implemented, and each model is called a member. Conventionally, the impact of each member on the updating is equally treated. Another approach is the weighted EnKF. During the updating, the method weighs the contribution of each member through the comparison between the simulation response and the measurements. Better matching performance has been found in the weighted EnKF than in the conventional EnKF. To improve computational efficiency, two-level high-performance computing for reservoir history matching process is implemented in this research, distributing ensemble members simultaneously while simulating each member in a parallel style. An automatic history-matching module based on the weighted EnKF and high-performance computing is developed and validated through a synthetic case operating from primary, waterflooding to flooding of water alternating with gas. The study shows that the weighted EnKF improves the matching results, and the high-performance computing process significantly reduces the history matching execution time.
The data assimilation process of adjusting variables in a reservoir simulation model to honor observations of field data is known as history matching and has been extensively studied for a few decades. However, limited success has been achieved due to the high complexity of the problem and the large computational effort required in the real fields. Successful applications of the ensemble Kalman filter (EnKF) to reservoir history matching have been reported in various publications. The EnKF is a sequential method: once new data are available, only these data are used to update all the unknown reservoir properties while previous geological information is unused directly. In this method, multiple reservoir models rather than one single model are implemented, and each model is called a member. Conventionally, the impact of each member on the updating is equally treated. Another approach is the weighted EnKF. During the updating, the method weighs the contribution of each member through the comparison between the simulation response and the measurements. Better matching performance has been found in the weighted EnKF than in the conventional EnKF. To improve computational efficiency, two-level high-performance computing for reservoir history matching process is implemented in this research, distributing ensemble members simultaneously while simulating each member in a parallel style. An automatic history-matching module based on the weighted EnKF and high-performance computing is developed and validated through a synthetic case operating from primary, waterflooding to flooding of water alternating with gas. The study shows that the weighted EnKF improves the matching results, and the high-performance computing process significantly reduces the history matching execution time.
Author Liang, B.
Delshad, M.
Sepehrnoori, K.
Author_xml – sequence: 1
  givenname: B.
  surname: Liang
  fullname: Liang, B.
  organization: Department of Petroleum and Geosystems Engineering , The University of Texas at Austin
– sequence: 2
  givenname: K.
  surname: Sepehrnoori
  fullname: Sepehrnoori, K.
  organization: Department of Petroleum and Geosystems Engineering , The University of Texas at Austin
– sequence: 3
  givenname: M.
  surname: Delshad
  fullname: Delshad, M.
  organization: Department of Petroleum and Geosystems Engineering , The University of Texas at Austin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21828916$$DView record in Pascal Francis
BookMark eNqFkE9P3DAQxa1qkQpLP0BvvrS3gJ04TiJxWW35J-0KDnC2Jo5dXDn2Yjta9tvjwnIBlZ481rzfm5l3hGbOO4XQd0pOKGnJKSUd5YznsmR13fHyCzqkdVUW-dvNcp37RRbwr-goxj-E0K6h_BCtFg4vpuRHSEbiKxOTDzu8hiQfjPuN136YrMJbkx7wr9wMpp-SGjC4Ad9CAGuVxUs_bqaU5cfoQION6tv-naP7i_O75VWxurm8Xi5WhWSkSYVqoIKWqYZ1tdZSMd0ABzmUQ9MC0IoMwHutdFdKXfEe-lr3ddVBD7KtJeXVHP189d0E_zipmMRoolTWglN-iqJinOX7WBb-2AshSrA6gJMmik0wI4SdKGlbtt2LYfOqk8HHGJQW0qSciHcpgLGCEvE3ZfEh5UzSd-Sb-WfMfppx2ocRtj7YQSTYWR_eVvxAifSUMnn2X7L69-BndcSmpw
CitedBy_id crossref_primary_10_2136_vzj2010_0159
crossref_primary_10_1007_s10596_012_9315_1
crossref_primary_10_1080_10916466_2010_538786
crossref_primary_10_1080_10916466_2024_2381601
crossref_primary_10_4018_IJAEC_2017070104
crossref_primary_10_3390_pr9111980
Cites_doi 10.1029/94JC00572
10.2118/77301-PA
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2009
2009 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2009
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
FR3
KR7
DOI 10.1080/10916460802455962
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1532-2459
EndPage 1108
ExternalDocumentID 21828916
10_1080_10916460802455962
345764
GroupedDBID .7F
.QJ
0BK
0R~
123
29O
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADUMR
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGBKS
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
1TA
ABEFU
ABJIA
ACTTO
ADYSH
AFBWG
AFION
AGVKY
AGWUF
ALRRR
BWMZZ
CYRSC
DAOYK
IQODW
LJTGL
NUSFT
OPCYK
8FD
FR3
KR7
ID FETCH-LOGICAL-c407t-e7a3a84e7495ffce4f7a6acd2d78aa130da6bfef92cf36bab5fb539abac85c163
IEDL.DBID TFW
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266205100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6466
IngestDate Fri Sep 05 14:24:07 EDT 2025
Mon Jul 21 09:17:15 EDT 2025
Sat Nov 29 06:43:05 EST 2025
Tue Nov 18 21:05:12 EST 2025
Mon May 13 12:11:24 EDT 2019
Mon Oct 20 23:49:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords distributed
Simulation model
Filter
parallel
ensemble Kalman filter
history matching
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-e7a3a84e7495ffce4f7a6acd2d78aa130da6bfef92cf36bab5fb539abac85c163
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34641974
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_34641974
informaworld_taylorfrancis_310_1080_10916460802455962
pascalfrancis_primary_21828916
crossref_citationtrail_10_1080_10916460802455962
crossref_primary_10_1080_10916460802455962
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Colchester
PublicationPlace_xml – name: Colchester
PublicationTitle Petroleum science and technology
PublicationYear 2009
Publisher Taylor & Francis Group
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
References Leitão H. C. (CIT0009)
Killough J. E. (CIT0007)
Landa J. L. (CIT0008)
Chien M. C. H. (CIT0001)
Schiozer D. J. (CIT0012)
Yang A. (CIT0019) 1990
Scott S. L. (CIT0014)
Gu Y. (CIT0006) 2005; 10
Nævdal G. (CIT0010) 2005; 10
Ouenes A. (CIT0011)
Wen X. (CIT0017)
Deutsch C. V. (CIT0003) 1998
Tecplot Inc (CIT0015) 2004
Computer Modelling Group Ltd (CIT0002) 2007
CIT0013
CIT0004
Wang P. (CIT0016)
Wheeler J. A. (CIT0018)
Evensen G. (CIT0005)
References_xml – volume-title: User's Guide GEM, Advanced Compositional Reservoir Simulator Version 2007
  year: 2007
  ident: CIT0002
– volume-title: Stochastic Heterogeneity and dispersion
  year: 1990
  ident: CIT0019
– volume-title: Fifth Latin American and Caribbean Petroleum Engineering Conference and Exhibition
  ident: CIT0012
– ident: CIT0004
  doi: 10.1029/94JC00572
– volume-title: SPE Reservoir Simulation Symposium
  ident: CIT0005
– volume-title: SPE Symposium on Reservoir Simulation
  ident: CIT0001
– volume-title: SPE Reservoir Simulation Symposium
  ident: CIT0017
– volume-title: SPE Reservoir Simulation Symposium
  ident: CIT0011
– ident: CIT0013
  doi: 10.2118/77301-PA
– volume-title: Tecplot RS 4.0 User's Manual
  year: 2004
  ident: CIT0015
– volume-title: Ninth SPE Symposium on Reservoir Simulation
  ident: CIT0014
– volume-title: International Petroleum Technology Conference
  ident: CIT0008
– volume-title: SPE Reservoir Simulation Symposium
  ident: CIT0016
– volume: 10
  start-page: 217
  year: 2005
  ident: CIT0006
  publication-title: Soc. Petrol. Eng. J.
– volume-title: GSLIB, Geostatistical Software Library and User's Guide,
  year: 1998
  ident: CIT0003
– volume-title: 64th Annual SPE Conference and Exhibition
  ident: CIT0018
– volume-title: SPE Latin American and Caribbean Petroleum Engineering Conference
  ident: CIT0009
– volume-title: SPE Symposium on Reservoir Simulation
  ident: CIT0007
– volume: 10
  start-page: 66
  year: 2005
  ident: CIT0010
  publication-title: Soc. Petrol. Eng. J.
SSID ssj0019716
Score 1.7922095
Snippet The data assimilation process of adjusting variables in a reservoir simulation model to honor observations of field data is known as history matching and has...
SourceID proquest
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1092
SubjectTerms Applied sciences
Crude oil, natural gas and petroleum products
distributed
Energy
ensemble Kalman filter
Exact sciences and technology
Fuels
history matching
parallel
Petroleum products, gas and fuels. Motor fuels, lubricants and asphalts
Processing of crude oil and oils from shales and tar sands. Processes. Equipment. Refinery and treatment units
Title An Automatic History Matching Module with Distributed and Parallel Computing
URI https://www.tandfonline.com/doi/abs/10.1080/10916460802455962
https://www.proquest.com/docview/34641974
Volume 27
WOSCitedRecordID wos000266205100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1532-2459
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019716
  issn: 1091-6466
  databaseCode: TFW
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB6keNCDuxiXOgdPQjDLZDsWtXhoSw9VewuzglBSaRLRf-97WYql0oPe3yyZecu8Jd8j5Ea7hikjYttRgbCZ5wibC4PYeK6QgkVOVBXRvAyi0SieTpNxU5uTN2WV6EObGiii0tUo3FzkbUXcHWJZhizEv0RZgN1jQAOD2UexnPRflzkEBEeqcp2JawN52OY0f5thxSqtYJZisSTP4bxM3ehiTWdXhqi__89POCB7zQuU9mqWOSRbOjsiuz9wCY_JoJfRXlnMKzhXWiOJfNEhaG2MV9HhXJUzTTGESx8QeBd7ZmlFYTd0zBfYnWVG63YRQH5CnvuPk_snu2m7YEvw7gpbR9znMdMR-E7GSM1MxEMulaeimHOweYqHwmiTeNL4oeAiMCLwEy64jAMJ77tT0snmmT4jNHGYUSYBLxgcH8HAi_eFpyOpwa8E91VaxGmPPZUNJjm2xpilbgNdunZQFrldDnmvATk2ETs_7zItqihIc5Pr5GnxWVgk2DDE37BUd4VPlptDiPwYiC1y3TJOCiKMeRme6XkJk7KQAbey8z8ufUF26hwXBoYuSadYlPqKbMuP4i1fdCuh-AbIqAmo
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4omqgH30Z8QA-eTDYubPd1JCrBCIQDKrdN220TE7IYWIz-e2d2FwLBcND79LHttNNvZvYbgBtdMzw2MrDs2JUWr9vSEtIQN15NKsl928-SaF7bfrcbDAZhr3C4TYq0SsLQJieKyO5qOtzkjJ6lxN0RmaXHPfpNlLtUPmYTtly0s8Sd32--zaMIRI-URTvDmoXy3iyq-VsXS3ZpibWU0iXFBFfM5KUuVm7tzBQ1D_77EYewXzxCWSPXmiPY0Mkx7C1QE55Au5GwxjQdZYyuLCcT-WYdvLjJZcU6o3g61Iy8uOyBuHepbJaOGU6H9cSYCrQMWV4xAsVP4aX52L9vWUXlBUshwEst7QtHBFz7CJ-MUZobX3hCxfXYD4RAsxcLTxptwroyjieFdI10nVBIoQJX4RPvDErJKNHnwEKbm9iECIQR-0iOQN6Rde0rjdASEawqgz1b90gVtORUHWMY1Qr20pWFKsPtvMlHzsmxTthe3MwozRwhxVauikfpV1oGd00TZ81QlSVFmU-OWPIDFC5DdaY5EZ5iCs2IRI-m2Cn3OKorv_jj0FXYafU77aj91H2-hN085EV-oisopeOpvoZt9Zm-T8aV7IT8AI-gDdI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1hf3YMnIZg2m9exqEWxLT34uoV9glDS0qai_96ZJC2WSg96n31kd2Z3v5nJNwCXpm65tjJyXO1Lhzdc6QhpiRuvLpXkoRvmSTQv7bDbjd7e4l6ZmzMu0yoJQ9uCKCI_q8m4h9pOM-Kuicsy4AH9Jcp9qh6zCmv4bA5IwZ9ar7MgArEj5cHOuO6gfDANav7Wxdy1NEdaStmSYowLZotKFwuHdn4TtXb--Q27sF0-QVmz0Jk9WDHpPmz9ICY8gHYzZc1JNsj5XFlBJfLFOnhsk8OKdQZ60jeMfLjslph3qWiW0Qxnw3piROVZ-qyoF4Hih_Dcunu6uXfKuguOQniXOSYUnoi4CRE8WasMt6EIhNINHUZC4KWnRSCtsXFDWS-QQvpW-l4spFCRr_CBdwSVdJCaY2Cxy622McJgRD6SI4z3ZMOEyiCwRPyqquBOlz1RJSk51cboJ_WSu3RhoapwNWsyLBg5lgm7P_cyyXI3SLmTi-JJ9plVwV_SxFsy1MWcnswmRxz5EQpXoTZVnARtmAIzIjWDCXbKA47ayk_-OHQNNnq3raT90H08hc0i3kVOojOoZKOJOYd19ZG9j0cXuX18A1hEDIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+History+Matching+Module+with+Distributed+and+Parallel+Computing&rft.jtitle=Petroleum+science+and+technology&rft.au=Liang%2C+B.&rft.au=Sepehrnoori%2C+K.&rft.au=Delshad%2C+M.&rft.date=2009-01-01&rft.issn=1091-6466&rft.eissn=1532-2459&rft.volume=27&rft.issue=10&rft.spage=1092&rft.epage=1108&rft_id=info:doi/10.1080%2F10916460802455962&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10916460802455962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6466&client=summon