Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition
Early leak detection is of great importance for life-cycle maintenance and management of municipal pipeline system. Due to economic and technical efficiency, ductile iron pipe segments and socket joints are widely used in practice to construct water distribution systems. The ductile configuration of...
Uloženo v:
| Vydáno v: | Measurement : journal of the International Measurement Confederation Ročník 115; s. 39 - 44 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Elsevier Ltd
01.02.2018
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0263-2241, 1873-412X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Early leak detection is of great importance for life-cycle maintenance and management of municipal pipeline system. Due to economic and technical efficiency, ductile iron pipe segments and socket joints are widely used in practice to construct water distribution systems. The ductile configuration of the socket joint allowing for large deformation constitutes the most common cause for water leakage. Using acoustic emission (AE) techniques, this paper presents an experimental study on leak detection of a water distribution system subject to failure of socket joint. The acoustic characteristics of leak signals in the socket and spigot pipe segments are investigated. After feature extraction and selection, a classifier based on artificial neural network (ANN) is established. It has been validated that the dominant frequencies of the AE leak signals due to the failure of the socket joint concentrate on 0–10 kHz. The proposed ANN-based method can achieve good estimation accuracy of 97.2% and 96.9% by using the feature set {Peak, Mean, Peak Frequency, Kurtosis} and {Mean, Peak Frequency}. |
|---|---|
| AbstractList | Early leak detection is of great importance for life-cycle maintenance and management of municipal pipeline system. Due to economic and technical efficiency, ductile iron pipe segments and socket joints are widely used in practice to construct water distribution systems. The ductile configuration of the socket joint allowing for large deformation constitutes the most common cause for water leakage. Using acoustic emission (AE) techniques, this paper presents an experimental study on leak detection of a water distribution system subject to failure of socket joint. The acoustic characteristics of leak signals in the socket and spigot pipe segments are investigated. After feature extraction and selection, a classifier based on artificial neural network (ANN) is established. It has been validated that the dominant frequencies of the AE leak signals due to the failure of the socket joint concentrate on 0–10 kHz. The proposed ANN-based method can achieve good estimation accuracy of 97.2% and 96.9% by using the feature set {Peak, Mean, Peak Frequency, Kurtosis} and {Mean, Peak Frequency}. |
| Author | Li, Suzhen Song, Yanjue Zhou, Gongqi |
| Author_xml | – sequence: 1 givenname: Suzhen orcidid: 0000-0003-4792-7789 surname: Li fullname: Li, Suzhen email: Lszh@tongji.edu.cn organization: Tongji University, State Key Laboratory of Disaster Reduction in Civil Engineering, Siping 1239, Shanghai 200092, China – sequence: 2 givenname: Yanjue surname: Song fullname: Song, Yanjue organization: Tongji University, College of Civil Engineering, Siping 1239, Shanghai 200092, China – sequence: 3 givenname: Gongqi surname: Zhou fullname: Zhou, Gongqi organization: Tongji University, College of Civil Engineering, Siping 1239, Shanghai 200092, China |
| BookMark | eNqNkEtrGzEURkVxoHba_6DS9Uz0sOexKsE0bcCQTQLZCT2uisa2NJE0DVn3j0dTZxGy8kpw9X3nSmeFFj54QOgbJTUltLka6iPINEU4gs81I7Qt85ow-gktadfyak3Z4wItCWt4xdiafkarlAZCSMP7Zon-7UDusYEMOrvgcbD4WWaI2LiUo1PT_-noRjg4DzhNaihJnAO20h3K3rmRgt5DxkNwPmMlExhcSlKHKWWnMRxdSjNGeoNHmQve4wg6_PFuxn9BF1YeEnx9Oy_Rw83P--3vanf363Z7vav0mrS5MrYzRNqG095Q0ExabdRGkZZ1WrJesU5ZviGwJkpZgK5vrIKed3RjJHDo-CX6fuKOMTxNkLIYwhR9WSkYaVjf0oazkvpxSukYUopghXZZzu_MsXxZUCJm82IQ78yL2fx8VcwXQv-BMEZ3lPHlrO721IUi4q-DKJJ24DUYV4xlYYI7g_IKqHOtHg |
| CitedBy_id | crossref_primary_10_1002_wat2_1667 crossref_primary_10_1038_s41545_024_00406_6 crossref_primary_10_3390_s22041562 crossref_primary_10_1016_j_ijpvp_2024_105162 crossref_primary_10_1109_ACCESS_2020_2964433 crossref_primary_10_1109_ACCESS_2021_3064445 crossref_primary_10_1016_j_engappai_2025_111432 crossref_primary_10_1109_JSEN_2025_3555335 crossref_primary_10_1109_ACCESS_2022_3212769 crossref_primary_10_3390_w15112046 crossref_primary_10_3233_JIFS_219197 crossref_primary_10_1007_s44245_025_00102_w crossref_primary_10_1088_1742_6596_1978_1_012044 crossref_primary_10_1051_matecconf_201929001006 crossref_primary_10_1016_j_compind_2024_104102 crossref_primary_10_1016_j_autcon_2025_106228 crossref_primary_10_1016_j_jmsy_2023_11_004 crossref_primary_10_1016_j_measurement_2023_112691 crossref_primary_10_1680_jsmic_23_00070 crossref_primary_10_3390_s18124379 crossref_primary_10_1016_j_autcon_2022_104226 crossref_primary_10_1139_er_2021_0046 crossref_primary_10_1061__ASCE_PS_1949_1204_0000574 crossref_primary_10_1016_j_heliyon_2023_e15412 crossref_primary_10_1007_s13349_024_00845_2 crossref_primary_10_1177_14759217221123403 crossref_primary_10_1177_14759217231183715 crossref_primary_10_1016_j_watres_2024_121434 crossref_primary_10_1016_j_measurement_2019_06_050 crossref_primary_10_3390_w11091871 crossref_primary_10_1177_09544062221133948 crossref_primary_10_1016_j_measurement_2020_108284 crossref_primary_10_1177_14759217231174369 crossref_primary_10_1016_j_aei_2025_103558 crossref_primary_10_1016_j_scitotenv_2021_146549 crossref_primary_10_1016_j_jclepro_2020_125266 crossref_primary_10_1016_j_ymssp_2022_109557 crossref_primary_10_1016_j_ifacol_2018_07_312 crossref_primary_10_1061__ASCE_WR_1943_5452_0001317 crossref_primary_10_3390_s20092542 crossref_primary_10_1016_j_engappai_2025_110923 crossref_primary_10_1061_JWRMD5_WRENG_6578 crossref_primary_10_1016_j_engappai_2025_110525 crossref_primary_10_1007_s11042_023_14402_4 crossref_primary_10_3390_buildings13030590 crossref_primary_10_3390_smartcities7040091 crossref_primary_10_1016_j_measurement_2022_112298 crossref_primary_10_1016_j_psep_2024_04_138 crossref_primary_10_1080_09593330_2022_2074320 crossref_primary_10_3390_s25144487 crossref_primary_10_1371_journal_pone_0290337 crossref_primary_10_3390_w15061088 crossref_primary_10_1016_j_autcon_2020_103398 crossref_primary_10_1016_j_measurement_2020_108843 crossref_primary_10_1098_rsos_231029 crossref_primary_10_1109_JSEN_2024_3454269 crossref_primary_10_1016_j_measurement_2019_106902 crossref_primary_10_3390_s19194317 crossref_primary_10_1016_j_measurement_2022_111671 crossref_primary_10_1016_j_scitotenv_2022_153530 crossref_primary_10_1016_j_aei_2020_101103 crossref_primary_10_1016_j_measurement_2019_107150 crossref_primary_10_3390_s23198079 crossref_primary_10_1016_j_matdes_2025_114087 crossref_primary_10_1016_j_ymssp_2022_109810 crossref_primary_10_1016_j_measurement_2021_110611 crossref_primary_10_1016_j_ndteint_2024_103232 crossref_primary_10_1007_s40194_023_01632_1 crossref_primary_10_1016_j_watres_2024_123076 crossref_primary_10_1016_j_jsv_2025_118980 crossref_primary_10_1002_prs_12572 crossref_primary_10_1109_TIM_2020_3048538 crossref_primary_10_1016_j_psep_2020_02_006 crossref_primary_10_1061__ASCE_PS_1949_1204_0000415 crossref_primary_10_3390_s24124009 crossref_primary_10_1108_F_08_2019_0084 crossref_primary_10_1109_TIM_2022_3206833 crossref_primary_10_1016_j_tust_2024_105945 crossref_primary_10_3390_metrology5030040 crossref_primary_10_1016_j_engfailanal_2019_104264 crossref_primary_10_1016_j_measurement_2022_111543 crossref_primary_10_3390_app9122490 crossref_primary_10_2166_wpt_2025_109 crossref_primary_10_3390_pr7100648 crossref_primary_10_3390_w17030368 crossref_primary_10_1016_j_measurement_2020_108668 crossref_primary_10_3390_s20174712 crossref_primary_10_1155_2020_8875939 crossref_primary_10_1016_j_psep_2022_06_036 crossref_primary_10_1109_TASE_2024_3383852 crossref_primary_10_3390_w17162427 crossref_primary_10_3390_app12042128 crossref_primary_10_3390_app8020189 crossref_primary_10_1177_1687814021996915 crossref_primary_10_3233_JIFS_179461 crossref_primary_10_1016_j_psep_2022_12_001 crossref_primary_10_1016_j_biosystemseng_2019_12_015 crossref_primary_10_3390_s19112548 crossref_primary_10_1016_j_watres_2024_121999 crossref_primary_10_3390_pr12112572 crossref_primary_10_1016_j_ijpvp_2020_104243 crossref_primary_10_3390_app14167410 crossref_primary_10_3390_en12081472 crossref_primary_10_1080_19942060_2023_2225577 crossref_primary_10_1016_j_aei_2021_101484 crossref_primary_10_3390_s23136209 crossref_primary_10_1109_TIE_2023_3294645 crossref_primary_10_1016_j_ymssp_2022_110067 crossref_primary_10_1016_j_powtec_2019_06_045 crossref_primary_10_1016_j_psep_2023_08_011 crossref_primary_10_1177_01423312221147553 crossref_primary_10_1109_ACCESS_2020_3010871 crossref_primary_10_2166_ws_2021_101 crossref_primary_10_1016_j_oceaneng_2024_117211 crossref_primary_10_1145_3467981 crossref_primary_10_3390_w11122452 crossref_primary_10_3390_app15010185 crossref_primary_10_1109_TIM_2025_3577842 |
| Cites_doi | 10.1016/j.apacoust.2017.01.002 10.1080/15730621003610878 10.1016/j.jsv.2005.08.014 10.1016/j.ndteint.2003.10.006 10.1016/S0309-1708(02)00102-1 10.1061/41203(425)97 10.1016/S0003-682X(99)00013-4 10.1016/j.measurement.2012.05.032 10.1016/j.apacoust.2010.02.006 10.1016/j.jsv.2007.07.067 10.4028/www.scientific.net/AMR.13-14.351 10.1061/41069(360)53 10.1109/ESIAT.2009.57 10.1016/j.psep.2016.10.005 10.1016/S1532-0464(03)00034-0 10.1007/978-1-4939-1239-1_41 10.1016/j.eswa.2007.10.005 10.1061/(ASCE)PS.1949-1204.0000134 10.1016/j.jlp.2011.07.001 10.1016/j.jsv.2004.05.004 10.1016/j.measurement.2015.09.048 10.1061/(ASCE)PS.1949-1204.0000089 10.1016/j.jsv.2003.08.045 10.3390/app7010002 10.1016/j.jlp.2016.06.018 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 2018 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2017.10.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| EndPage | 44 |
| ExternalDocumentID | 10_1016_j_measurement_2017_10_021 S0263224117306498 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF |
| ID | FETCH-LOGICAL-c407t-df8d0af6319d1ec2afcdb5b0728ca29b28bf350e40bbfee896fbe93815dae3e83 |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418350700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Wed Aug 13 10:37:39 EDT 2025 Sat Nov 29 06:47:43 EST 2025 Tue Nov 18 22:22:04 EST 2025 Fri Feb 23 02:27:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Acoustic emission Pattern recognition Artificial neural network Socket joint Water leak detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c407t-df8d0af6319d1ec2afcdb5b0728ca29b28bf350e40bbfee896fbe93815dae3e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4792-7789 |
| PQID | 2062971632 |
| PQPubID | 2047460 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2062971632 crossref_citationtrail_10_1016_j_measurement_2017_10_021 crossref_primary_10_1016_j_measurement_2017_10_021 elsevier_sciencedirect_doi_10_1016_j_measurement_2017_10_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | S. Valizadeh, B. Moshiri, K. Salahshoor, Leak Detection in Transportation Pipelines Using Feature Extraction and KNN Classification, Paper presented at the Pipelines Specialty Conference, 2009. J.Z.F. Sikorska, D. Mba, Challenges and obstacles in the application of acoustic emission to process machinery, ARCHIVE Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 1989–1996, 222(1) (2008) 1–19. Gao, Brennan, Joseph (b0155) 2006; 292 Hao, Zhang, Wei, Ding (b0065) 2014; 27 Guo, Wen, Li, Wen (b0060) 2016; 79 Khulief, Khalifa, Ben Mansour, Habib (b0085) 2012; 3 Ding, Reuben, Steel (b0030) 2004; 37 Gao, Brennan, Joseph, Muggleton, Hunaidi (b0050) 2005; 283 Yazdekhasti, Piratla, Atamturktur, Khan (b0160) 2016 J. Lim, Underground pipeline leak detection using acoustic emission and crest factor technique in: Advances in Acoustic Emission Technology, Springer, 2015. Anastasopoulos, Kourousis, Bollas (b0010) 2009 Dipen N. Sinha, Acoustic sensor for pipeline monitoring, Technology Report, Los Alamos National Laboratory, USA, 2005. Martini, Troncossi, Rivola (b0105) 2016; 7 Hunaidi, Chu, Wang, Guan (b0070) 2000; 92 Meng, Li, Wang, Fu (b0110) 2012; 25 Grosse, Ohtsu (b0055) 2008 Hunaidi, Chu (b0075) 1999; 58 Paliwal, Kumar (b0115) 2009; 36 X. Tang, Y. Liu, L. Zheng, C. Ma, H. Wang, Leak Detection of Water Pipeline Using Wavelet Transform Method, Paper presented at the International Conference on Environmental Science and Information Application Technology, 2009. Yang, Wen, Li (b0165) 2008; 310 Ferrante, Brunone (b0045) 2003; 26 M. Romano, Z. Kapelan, D.A. Savić, Real-Time Leak Detection in Water Distribution Systems, Paper presented at the Conference on Water Distribution Systems Analysis, 2011. Yuan, Zhong, Cai, Cheng (b0170) 2015 Puust, Kapelan, Savic, Koppel (b0125) 2010; 7 Butterfield, Krynkin, Collins, Beck (b0025) 2017; 119 Juliano, Meegoda, Watts (b0080) 2013; 4 Dreiseitl, Ohnomachado (b0040) 2002; 35 Zadkarami, Shahbazian, Salahshoor (b0175) 2016; 43 Liu, Kleiner (b0100) 2013; 46 Theodoridis, Koutroumbas (b0140) 2008 ASTM, Standard terminology for nondestructive examinations Astm, 2011. Ahadi, Bakhtiar (b0005) 2010; 71 Brunner, Barbezat (b0020) 2006; 13–14 Gao, Brennan, Joseph, Muggleton, Hunaidi (b0150) 2004; 277 Li, Zhang, Tan, Chen, Lei (b0090) 2016; 105 Hunaidi (10.1016/j.measurement.2017.10.021_b0070) 2000; 92 10.1016/j.measurement.2017.10.021_b0130 10.1016/j.measurement.2017.10.021_b0015 Meng (10.1016/j.measurement.2017.10.021_b0110) 2012; 25 10.1016/j.measurement.2017.10.021_b0135 10.1016/j.measurement.2017.10.021_b0035 Yuan (10.1016/j.measurement.2017.10.021_b0170) 2015 10.1016/j.measurement.2017.10.021_b0095 Grosse (10.1016/j.measurement.2017.10.021_b0055) 2008 Zadkarami (10.1016/j.measurement.2017.10.021_b0175) 2016; 43 Puust (10.1016/j.measurement.2017.10.021_b0125) 2010; 7 Paliwal (10.1016/j.measurement.2017.10.021_b0115) 2009; 36 10.1016/j.measurement.2017.10.021_b0120 Yang (10.1016/j.measurement.2017.10.021_b0165) 2008; 310 Dreiseitl (10.1016/j.measurement.2017.10.021_b0040) 2002; 35 Hao (10.1016/j.measurement.2017.10.021_b0065) 2014; 27 Theodoridis (10.1016/j.measurement.2017.10.021_b0140) 2008 Gao (10.1016/j.measurement.2017.10.021_b0155) 2006; 292 10.1016/j.measurement.2017.10.021_b0145 Juliano (10.1016/j.measurement.2017.10.021_b0080) 2013; 4 Martini (10.1016/j.measurement.2017.10.021_b0105) 2016; 7 Yazdekhasti (10.1016/j.measurement.2017.10.021_b0160) 2016 Li (10.1016/j.measurement.2017.10.021_b0090) 2016; 105 Butterfield (10.1016/j.measurement.2017.10.021_b0025) 2017; 119 Anastasopoulos (10.1016/j.measurement.2017.10.021_b0010) 2009 Gao (10.1016/j.measurement.2017.10.021_b0050) 2005; 283 Khulief (10.1016/j.measurement.2017.10.021_b0085) 2012; 3 Ding (10.1016/j.measurement.2017.10.021_b0030) 2004; 37 Guo (10.1016/j.measurement.2017.10.021_b0060) 2016; 79 Hunaidi (10.1016/j.measurement.2017.10.021_b0075) 1999; 58 Gao (10.1016/j.measurement.2017.10.021_b0150) 2004; 277 Ferrante (10.1016/j.measurement.2017.10.021_b0045) 2003; 26 Liu (10.1016/j.measurement.2017.10.021_b0100) 2013; 46 Brunner (10.1016/j.measurement.2017.10.021_b0020) 2006; 13–14 Ahadi (10.1016/j.measurement.2017.10.021_b0005) 2010; 71 |
| References_xml | – volume: 71 start-page: 634 year: 2010 end-page: 639 ident: b0005 article-title: Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals publication-title: Appl. Acoust. – volume: 35 start-page: 352 year: 2002 end-page: 359 ident: b0040 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inform. – volume: 105 start-page: 32 year: 2016 end-page: 40 ident: b0090 article-title: A novel acoustic emission detection module for leakage recognition in a gas pipeline valve publication-title: Process Saf. Environ. Prot. – volume: 36 start-page: 2 year: 2009 end-page: 17 ident: b0115 article-title: Review: neural networks and statistical techniques: a review of applications publication-title: Expert Syst. Appl. – start-page: 27 year: 2009 ident: b0010 article-title: Acoustic emission leak detection of liquid filled buried pipeline publication-title: J. Acoust. Emission – volume: 277 start-page: 133 year: 2004 end-page: 148 ident: b0150 article-title: A model of the correlation function of leak noise in buried plastic pipes publication-title: J. Sound Vib. – volume: 13–14 start-page: 351 year: 2006 end-page: 356 ident: b0020 article-title: Acoustic emission monitoring of leaks in pipes for transport of liquid and gaseous media: a model experiment publication-title: Adv. Mater. Res. – volume: 3 start-page: 47 year: 2012 end-page: 54 ident: b0085 article-title: acoustic detection of leaks in water pipelines using measurements inside pipe publication-title: J. Pipeline Syst. Eng. Pract. – volume: 26 start-page: 107 year: 2003 end-page: 116 ident: b0045 article-title: Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis publication-title: Adv. Water Resour. – volume: 27 start-page: 74 year: 2014 end-page: 88 ident: b0065 article-title: Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method publication-title: J. Loss Prev. Process Ind. – reference: M. Romano, Z. Kapelan, D.A. Savić, Real-Time Leak Detection in Water Distribution Systems, Paper presented at the Conference on Water Distribution Systems Analysis, 2011. – volume: 283 start-page: 927 year: 2005 end-page: 941 ident: b0050 article-title: On the selection of acoustic/vibration sensors for leak detection in plastic water pipes publication-title: J. Sound Vib. – volume: 25 start-page: 90 year: 2012 end-page: 102 ident: b0110 article-title: Experimental study on leak detection and location for gas pipeline based on acoustic method publication-title: J. Loss Prev. Process Ind. – reference: J. Lim, Underground pipeline leak detection using acoustic emission and crest factor technique in: Advances in Acoustic Emission Technology, Springer, 2015. – volume: 7 start-page: 25 year: 2010 end-page: 45 ident: b0125 article-title: A review of methods for leakage management in pipe networks publication-title: Urban Water J. – reference: X. Tang, Y. Liu, L. Zheng, C. Ma, H. Wang, Leak Detection of Water Pipeline Using Wavelet Transform Method, Paper presented at the International Conference on Environmental Science and Information Application Technology, 2009. – volume: 79 start-page: 188 year: 2016 end-page: 197 ident: b0060 article-title: Adaptive noise cancellation based on EMD in water-supply pipeline leak detection publication-title: Measurement – volume: 292 start-page: 552 year: 2006 end-page: 570 ident: b0155 article-title: A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes publication-title: J. Sound Vib. – start-page: 1 year: 2016 end-page: 12 ident: b0160 article-title: Novel vibration-based technique for detecting water pipeline leakage publication-title: Struct. Infrastruct. Eng. – volume: 119 start-page: 146 year: 2017 end-page: 155 ident: b0025 article-title: Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes publication-title: Appl. Acoust. – volume: 46 start-page: 1 year: 2013 end-page: 15 ident: b0100 article-title: State of the art review of inspection technologies for condition assessment of water pipes publication-title: Measurement – reference: S. Valizadeh, B. Moshiri, K. Salahshoor, Leak Detection in Transportation Pipelines Using Feature Extraction and KNN Classification, Paper presented at the Pipelines Specialty Conference, 2009. – year: 2015 ident: b0170 article-title: Leak Detection Research of Water Supply Pipeline Based on HHT – reference: ASTM, Standard terminology for nondestructive examinations Astm, 2011. – year: 2008 ident: b0055 article-title: Acoustic Emission Testing – volume: 7 start-page: 2 year: 2016 ident: b0105 article-title: Leak detection in water-filled small-diameter polyethylene pipes by means of acoustic emission measurements publication-title: Appl. Sci. – volume: 58 start-page: 235 year: 1999 end-page: 254 ident: b0075 article-title: Acoustical characteristics of leak signals in plastic water distribution pipes publication-title: Appl. Acoust. – volume: 92 start-page: 82 year: 2000 end-page: 94 ident: b0070 article-title: Detecting leaks in plastic pipes publication-title: Journal – volume: 4 start-page: 149 year: 2013 end-page: 155 ident: b0080 article-title: acoustic emission leak detection on a metal pipeline buried in sandy soil publication-title: J. Pipeline Syst. Eng. Pract. – reference: J.Z.F. Sikorska, D. Mba, Challenges and obstacles in the application of acoustic emission to process machinery, ARCHIVE Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 1989–1996, 222(1) (2008) 1–19. – volume: 310 start-page: 134 year: 2008 end-page: 148 ident: b0165 article-title: Leak location using blind system identification in water distribution pipelines publication-title: J. Sound Vib. – volume: 43 start-page: 479 year: 2016 end-page: 487 ident: b0175 article-title: Pipeline leakage detection and isolation: an integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN) publication-title: J. Loss Prev. Process Ind. – reference: Dipen N. Sinha, Acoustic sensor for pipeline monitoring, Technology Report, Los Alamos National Laboratory, USA, 2005. – volume: 37 start-page: 279 year: 2004 end-page: 290 ident: b0030 article-title: A new method for waveform analysis for estimating AE wave arrival times using wavelet decomposition publication-title: Ndt & E Int. – year: 2008 ident: b0140 article-title: Pattern Recognition – volume: 119 start-page: 146 year: 2017 ident: 10.1016/j.measurement.2017.10.021_b0025 article-title: Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2017.01.002 – volume: 7 start-page: 25 issue: 1 year: 2010 ident: 10.1016/j.measurement.2017.10.021_b0125 article-title: A review of methods for leakage management in pipe networks publication-title: Urban Water J. doi: 10.1080/15730621003610878 – volume: 292 start-page: 552 year: 2006 ident: 10.1016/j.measurement.2017.10.021_b0155 article-title: A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.08.014 – volume: 37 start-page: 279 issue: 4 year: 2004 ident: 10.1016/j.measurement.2017.10.021_b0030 article-title: A new method for waveform analysis for estimating AE wave arrival times using wavelet decomposition publication-title: Ndt & E Int. doi: 10.1016/j.ndteint.2003.10.006 – volume: 92 start-page: 82 issue: 2 year: 2000 ident: 10.1016/j.measurement.2017.10.021_b0070 article-title: Detecting leaks in plastic pipes publication-title: Journal – ident: 10.1016/j.measurement.2017.10.021_b0035 – volume: 26 start-page: 107 issue: 1 year: 2003 ident: 10.1016/j.measurement.2017.10.021_b0045 article-title: Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(02)00102-1 – ident: 10.1016/j.measurement.2017.10.021_b0120 doi: 10.1061/41203(425)97 – year: 2015 ident: 10.1016/j.measurement.2017.10.021_b0170 – volume: 58 start-page: 235 issue: 3 year: 1999 ident: 10.1016/j.measurement.2017.10.021_b0075 article-title: Acoustical characteristics of leak signals in plastic water distribution pipes publication-title: Appl. Acoust. doi: 10.1016/S0003-682X(99)00013-4 – ident: 10.1016/j.measurement.2017.10.021_b0130 – start-page: 27 year: 2009 ident: 10.1016/j.measurement.2017.10.021_b0010 article-title: Acoustic emission leak detection of liquid filled buried pipeline publication-title: J. Acoust. Emission – ident: 10.1016/j.measurement.2017.10.021_b0015 – volume: 46 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.measurement.2017.10.021_b0100 article-title: State of the art review of inspection technologies for condition assessment of water pipes publication-title: Measurement doi: 10.1016/j.measurement.2012.05.032 – year: 2008 ident: 10.1016/j.measurement.2017.10.021_b0055 – volume: 71 start-page: 634 issue: 7 year: 2010 ident: 10.1016/j.measurement.2017.10.021_b0005 article-title: Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2010.02.006 – volume: 310 start-page: 134 issue: 1–2 year: 2008 ident: 10.1016/j.measurement.2017.10.021_b0165 article-title: Leak location using blind system identification in water distribution pipelines publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.07.067 – volume: 27 start-page: 74 issue: 1 year: 2014 ident: 10.1016/j.measurement.2017.10.021_b0065 article-title: Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method publication-title: J. Loss Prev. Process Ind. – volume: 13–14 start-page: 351 year: 2006 ident: 10.1016/j.measurement.2017.10.021_b0020 article-title: Acoustic emission monitoring of leaks in pipes for transport of liquid and gaseous media: a model experiment publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.13-14.351 – ident: 10.1016/j.measurement.2017.10.021_b0145 doi: 10.1061/41069(360)53 – ident: 10.1016/j.measurement.2017.10.021_b0135 doi: 10.1109/ESIAT.2009.57 – volume: 105 start-page: 32 year: 2016 ident: 10.1016/j.measurement.2017.10.021_b0090 article-title: A novel acoustic emission detection module for leakage recognition in a gas pipeline valve publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2016.10.005 – year: 2008 ident: 10.1016/j.measurement.2017.10.021_b0140 – volume: 35 start-page: 352 issue: 5–6 year: 2002 ident: 10.1016/j.measurement.2017.10.021_b0040 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(03)00034-0 – ident: 10.1016/j.measurement.2017.10.021_b0095 doi: 10.1007/978-1-4939-1239-1_41 – volume: 36 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.measurement.2017.10.021_b0115 article-title: Review: neural networks and statistical techniques: a review of applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.10.005 – volume: 4 start-page: 149 issue: 3 year: 2013 ident: 10.1016/j.measurement.2017.10.021_b0080 article-title: acoustic emission leak detection on a metal pipeline buried in sandy soil publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000134 – volume: 25 start-page: 90 issue: 1 year: 2012 ident: 10.1016/j.measurement.2017.10.021_b0110 article-title: Experimental study on leak detection and location for gas pipeline based on acoustic method publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2011.07.001 – volume: 283 start-page: 927 issue: 3–5 year: 2005 ident: 10.1016/j.measurement.2017.10.021_b0050 article-title: On the selection of acoustic/vibration sensors for leak detection in plastic water pipes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2004.05.004 – volume: 79 start-page: 188 year: 2016 ident: 10.1016/j.measurement.2017.10.021_b0060 article-title: Adaptive noise cancellation based on EMD in water-supply pipeline leak detection publication-title: Measurement doi: 10.1016/j.measurement.2015.09.048 – volume: 3 start-page: 47 issue: 2 year: 2012 ident: 10.1016/j.measurement.2017.10.021_b0085 article-title: acoustic detection of leaks in water pipelines using measurements inside pipe publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000089 – volume: 277 start-page: 133 issue: 1–2 year: 2004 ident: 10.1016/j.measurement.2017.10.021_b0150 article-title: A model of the correlation function of leak noise in buried plastic pipes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2003.08.045 – start-page: 1 year: 2016 ident: 10.1016/j.measurement.2017.10.021_b0160 article-title: Novel vibration-based technique for detecting water pipeline leakage publication-title: Struct. Infrastruct. Eng. – volume: 7 start-page: 2 issue: 1 year: 2016 ident: 10.1016/j.measurement.2017.10.021_b0105 article-title: Leak detection in water-filled small-diameter polyethylene pipes by means of acoustic emission measurements publication-title: Appl. Sci. doi: 10.3390/app7010002 – volume: 43 start-page: 479 year: 2016 ident: 10.1016/j.measurement.2017.10.021_b0175 article-title: Pipeline leakage detection and isolation: an integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN) publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2016.06.018 |
| SSID | ssj0006396 |
| Score | 2.515755 |
| Snippet | Early leak detection is of great importance for life-cycle maintenance and management of municipal pipeline system. Due to economic and technical efficiency,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 39 |
| SubjectTerms | Acoustic emission Acoustics Artificial neural network Artificial neural networks Deformation mechanisms Emission analysis Failure Faucets Feature extraction Kurtosis Leak detection Municipalities Neural networks Nodular iron Pattern recognition Peak frequency Pipes Segments Socket joint Studies Water distribution Water engineering Water leak detection Water pipes |
| Title | Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition |
| URI | https://dx.doi.org/10.1016/j.measurement.2017.10.021 https://www.proquest.com/docview/2062971632 |
| Volume | 115 |
| WOSCitedRecordID | wos000418350700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqDRA8IBhMDAYyEm9VptT5ZUu8TGgIUDUhMaTCS2Q7tpZuJGVNx8Qr_xx_FmfHTrKhiYLES1Q5vSjpfbE_X7-7Q-iFzGia8SgJolikQZywKOCx4EEhaEETkgipbNeSaXZ4SGcz9n40-ulzYc5Ps6qiFxds8V9dDWPgbJM6-xfu7i4KA_AZnA5HcDsc13L8VPGTcaEaJT0Z_MZtH3BTItd1txovyoWyBHO5EiYSYyio5qXRqBsLcNmJasbzuqyasVnoCvOnAkyetvfX2PSIW3od88JW6DRZMU6K5Bzt20T1QUgbfhiUquiFmz4iOfyyzUU0dUGHUoFp2UqJvh_3KWwfnKr4E6_mqw6nn4_rlQ36w9mv5TC4MaFeD93NgSSNAsMyLk3Yk2Qw5ba1kNzi3daS_G1ZaCMU870v_VMYVV-2Z4R9bYb25VLcV5bITrjoNXHzfHCp3FwKxvPQVDTYJFnCYH7d3H97MHvXsQJggmkb72sf6BZ63msNr7mv67jSFdZgqdDRPXTX7WHwfou9-2ikqi10Z1DZcgvdtMpiuXyAfhg84g6PuNbY4hEP8Yg9HrHDI25q7PBoLFo8YotHbPGIwcjjEXs8YsAjdnjEAzw-RB9fHxy9ehO4zh-BjMOsCQpNi5DrFNaHYqIk4VoWIhFhRqjkhAlChY6SUMWhEFopylItFAPymRRcRYpG22ijqiv1CGGWyoxpATtvIWOmmUhgQ6CJIiLWYMB3EPW_cS5dWXzTneU0_6OvdxDpTBdtbZh1jF56R-aO5LbkNQewrmO-652fuxd2CedTYkrBReTxv9zSE3S7f_d20UZztlJP0Q153pTLs2cOyL8A-5rljw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leak+detection+of+water+distribution+pipeline+subject+to+failure+of+socket+joint+based+on+acoustic+emission+and+pattern+recognition&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Li%2C+Suzhen&rft.au=Song%2C+Yanjue&rft.au=Zhou%2C+Gongqi&rft.date=2018-02-01&rft.issn=0263-2241&rft.volume=115&rft.spage=39&rft.epage=44&rft_id=info:doi/10.1016%2Fj.measurement.2017.10.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2017_10_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |