Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition

Early leak detection is of great importance for life-cycle maintenance and management of municipal pipeline system. Due to economic and technical efficiency, ductile iron pipe segments and socket joints are widely used in practice to construct water distribution systems. The ductile configuration of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement : journal of the International Measurement Confederation Ročník 115; s. 39 - 44
Hlavní autoři: Li, Suzhen, Song, Yanjue, Zhou, Gongqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Elsevier Ltd 01.02.2018
Elsevier Science Ltd
Témata:
ISSN:0263-2241, 1873-412X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Early leak detection is of great importance for life-cycle maintenance and management of municipal pipeline system. Due to economic and technical efficiency, ductile iron pipe segments and socket joints are widely used in practice to construct water distribution systems. The ductile configuration of the socket joint allowing for large deformation constitutes the most common cause for water leakage. Using acoustic emission (AE) techniques, this paper presents an experimental study on leak detection of a water distribution system subject to failure of socket joint. The acoustic characteristics of leak signals in the socket and spigot pipe segments are investigated. After feature extraction and selection, a classifier based on artificial neural network (ANN) is established. It has been validated that the dominant frequencies of the AE leak signals due to the failure of the socket joint concentrate on 0–10 kHz. The proposed ANN-based method can achieve good estimation accuracy of 97.2% and 96.9% by using the feature set {Peak, Mean, Peak Frequency, Kurtosis} and {Mean, Peak Frequency}.
AbstractList Early leak detection is of great importance for life-cycle maintenance and management of municipal pipeline system. Due to economic and technical efficiency, ductile iron pipe segments and socket joints are widely used in practice to construct water distribution systems. The ductile configuration of the socket joint allowing for large deformation constitutes the most common cause for water leakage. Using acoustic emission (AE) techniques, this paper presents an experimental study on leak detection of a water distribution system subject to failure of socket joint. The acoustic characteristics of leak signals in the socket and spigot pipe segments are investigated. After feature extraction and selection, a classifier based on artificial neural network (ANN) is established. It has been validated that the dominant frequencies of the AE leak signals due to the failure of the socket joint concentrate on 0–10 kHz. The proposed ANN-based method can achieve good estimation accuracy of 97.2% and 96.9% by using the feature set {Peak, Mean, Peak Frequency, Kurtosis} and {Mean, Peak Frequency}.
Author Li, Suzhen
Song, Yanjue
Zhou, Gongqi
Author_xml – sequence: 1
  givenname: Suzhen
  orcidid: 0000-0003-4792-7789
  surname: Li
  fullname: Li, Suzhen
  email: Lszh@tongji.edu.cn
  organization: Tongji University, State Key Laboratory of Disaster Reduction in Civil Engineering, Siping 1239, Shanghai 200092, China
– sequence: 2
  givenname: Yanjue
  surname: Song
  fullname: Song, Yanjue
  organization: Tongji University, College of Civil Engineering, Siping 1239, Shanghai 200092, China
– sequence: 3
  givenname: Gongqi
  surname: Zhou
  fullname: Zhou, Gongqi
  organization: Tongji University, College of Civil Engineering, Siping 1239, Shanghai 200092, China
BookMark eNqNkEtrGzEURkVxoHba_6DS9Uz0sOexKsE0bcCQTQLZCT2uisa2NJE0DVn3j0dTZxGy8kpw9X3nSmeFFj54QOgbJTUltLka6iPINEU4gs81I7Qt85ow-gktadfyak3Z4wItCWt4xdiafkarlAZCSMP7Zon-7UDusYEMOrvgcbD4WWaI2LiUo1PT_-noRjg4DzhNaihJnAO20h3K3rmRgt5DxkNwPmMlExhcSlKHKWWnMRxdSjNGeoNHmQve4wg6_PFuxn9BF1YeEnx9Oy_Rw83P--3vanf363Z7vav0mrS5MrYzRNqG095Q0ExabdRGkZZ1WrJesU5ZviGwJkpZgK5vrIKed3RjJHDo-CX6fuKOMTxNkLIYwhR9WSkYaVjf0oazkvpxSukYUopghXZZzu_MsXxZUCJm82IQ78yL2fx8VcwXQv-BMEZ3lPHlrO721IUi4q-DKJJ24DUYV4xlYYI7g_IKqHOtHg
CitedBy_id crossref_primary_10_1002_wat2_1667
crossref_primary_10_1038_s41545_024_00406_6
crossref_primary_10_3390_s22041562
crossref_primary_10_1016_j_ijpvp_2024_105162
crossref_primary_10_1109_ACCESS_2020_2964433
crossref_primary_10_1109_ACCESS_2021_3064445
crossref_primary_10_1016_j_engappai_2025_111432
crossref_primary_10_1109_JSEN_2025_3555335
crossref_primary_10_1109_ACCESS_2022_3212769
crossref_primary_10_3390_w15112046
crossref_primary_10_3233_JIFS_219197
crossref_primary_10_1007_s44245_025_00102_w
crossref_primary_10_1088_1742_6596_1978_1_012044
crossref_primary_10_1051_matecconf_201929001006
crossref_primary_10_1016_j_compind_2024_104102
crossref_primary_10_1016_j_autcon_2025_106228
crossref_primary_10_1016_j_jmsy_2023_11_004
crossref_primary_10_1016_j_measurement_2023_112691
crossref_primary_10_1680_jsmic_23_00070
crossref_primary_10_3390_s18124379
crossref_primary_10_1016_j_autcon_2022_104226
crossref_primary_10_1139_er_2021_0046
crossref_primary_10_1061__ASCE_PS_1949_1204_0000574
crossref_primary_10_1016_j_heliyon_2023_e15412
crossref_primary_10_1007_s13349_024_00845_2
crossref_primary_10_1177_14759217221123403
crossref_primary_10_1177_14759217231183715
crossref_primary_10_1016_j_watres_2024_121434
crossref_primary_10_1016_j_measurement_2019_06_050
crossref_primary_10_3390_w11091871
crossref_primary_10_1177_09544062221133948
crossref_primary_10_1016_j_measurement_2020_108284
crossref_primary_10_1177_14759217231174369
crossref_primary_10_1016_j_aei_2025_103558
crossref_primary_10_1016_j_scitotenv_2021_146549
crossref_primary_10_1016_j_jclepro_2020_125266
crossref_primary_10_1016_j_ymssp_2022_109557
crossref_primary_10_1016_j_ifacol_2018_07_312
crossref_primary_10_1061__ASCE_WR_1943_5452_0001317
crossref_primary_10_3390_s20092542
crossref_primary_10_1016_j_engappai_2025_110923
crossref_primary_10_1061_JWRMD5_WRENG_6578
crossref_primary_10_1016_j_engappai_2025_110525
crossref_primary_10_1007_s11042_023_14402_4
crossref_primary_10_3390_buildings13030590
crossref_primary_10_3390_smartcities7040091
crossref_primary_10_1016_j_measurement_2022_112298
crossref_primary_10_1016_j_psep_2024_04_138
crossref_primary_10_1080_09593330_2022_2074320
crossref_primary_10_3390_s25144487
crossref_primary_10_1371_journal_pone_0290337
crossref_primary_10_3390_w15061088
crossref_primary_10_1016_j_autcon_2020_103398
crossref_primary_10_1016_j_measurement_2020_108843
crossref_primary_10_1098_rsos_231029
crossref_primary_10_1109_JSEN_2024_3454269
crossref_primary_10_1016_j_measurement_2019_106902
crossref_primary_10_3390_s19194317
crossref_primary_10_1016_j_measurement_2022_111671
crossref_primary_10_1016_j_scitotenv_2022_153530
crossref_primary_10_1016_j_aei_2020_101103
crossref_primary_10_1016_j_measurement_2019_107150
crossref_primary_10_3390_s23198079
crossref_primary_10_1016_j_matdes_2025_114087
crossref_primary_10_1016_j_ymssp_2022_109810
crossref_primary_10_1016_j_measurement_2021_110611
crossref_primary_10_1016_j_ndteint_2024_103232
crossref_primary_10_1007_s40194_023_01632_1
crossref_primary_10_1016_j_watres_2024_123076
crossref_primary_10_1016_j_jsv_2025_118980
crossref_primary_10_1002_prs_12572
crossref_primary_10_1109_TIM_2020_3048538
crossref_primary_10_1016_j_psep_2020_02_006
crossref_primary_10_1061__ASCE_PS_1949_1204_0000415
crossref_primary_10_3390_s24124009
crossref_primary_10_1108_F_08_2019_0084
crossref_primary_10_1109_TIM_2022_3206833
crossref_primary_10_1016_j_tust_2024_105945
crossref_primary_10_3390_metrology5030040
crossref_primary_10_1016_j_engfailanal_2019_104264
crossref_primary_10_1016_j_measurement_2022_111543
crossref_primary_10_3390_app9122490
crossref_primary_10_2166_wpt_2025_109
crossref_primary_10_3390_pr7100648
crossref_primary_10_3390_w17030368
crossref_primary_10_1016_j_measurement_2020_108668
crossref_primary_10_3390_s20174712
crossref_primary_10_1155_2020_8875939
crossref_primary_10_1016_j_psep_2022_06_036
crossref_primary_10_1109_TASE_2024_3383852
crossref_primary_10_3390_w17162427
crossref_primary_10_3390_app12042128
crossref_primary_10_3390_app8020189
crossref_primary_10_1177_1687814021996915
crossref_primary_10_3233_JIFS_179461
crossref_primary_10_1016_j_psep_2022_12_001
crossref_primary_10_1016_j_biosystemseng_2019_12_015
crossref_primary_10_3390_s19112548
crossref_primary_10_1016_j_watres_2024_121999
crossref_primary_10_3390_pr12112572
crossref_primary_10_1016_j_ijpvp_2020_104243
crossref_primary_10_3390_app14167410
crossref_primary_10_3390_en12081472
crossref_primary_10_1080_19942060_2023_2225577
crossref_primary_10_1016_j_aei_2021_101484
crossref_primary_10_3390_s23136209
crossref_primary_10_1109_TIE_2023_3294645
crossref_primary_10_1016_j_ymssp_2022_110067
crossref_primary_10_1016_j_powtec_2019_06_045
crossref_primary_10_1016_j_psep_2023_08_011
crossref_primary_10_1177_01423312221147553
crossref_primary_10_1109_ACCESS_2020_3010871
crossref_primary_10_2166_ws_2021_101
crossref_primary_10_1016_j_oceaneng_2024_117211
crossref_primary_10_1145_3467981
crossref_primary_10_3390_w11122452
crossref_primary_10_3390_app15010185
crossref_primary_10_1109_TIM_2025_3577842
Cites_doi 10.1016/j.apacoust.2017.01.002
10.1080/15730621003610878
10.1016/j.jsv.2005.08.014
10.1016/j.ndteint.2003.10.006
10.1016/S0309-1708(02)00102-1
10.1061/41203(425)97
10.1016/S0003-682X(99)00013-4
10.1016/j.measurement.2012.05.032
10.1016/j.apacoust.2010.02.006
10.1016/j.jsv.2007.07.067
10.4028/www.scientific.net/AMR.13-14.351
10.1061/41069(360)53
10.1109/ESIAT.2009.57
10.1016/j.psep.2016.10.005
10.1016/S1532-0464(03)00034-0
10.1007/978-1-4939-1239-1_41
10.1016/j.eswa.2007.10.005
10.1061/(ASCE)PS.1949-1204.0000134
10.1016/j.jlp.2011.07.001
10.1016/j.jsv.2004.05.004
10.1016/j.measurement.2015.09.048
10.1061/(ASCE)PS.1949-1204.0000089
10.1016/j.jsv.2003.08.045
10.3390/app7010002
10.1016/j.jlp.2016.06.018
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 2018
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2017.10.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 44
ExternalDocumentID 10_1016_j_measurement_2017_10_021
S0263224117306498
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
ID FETCH-LOGICAL-c407t-df8d0af6319d1ec2afcdb5b0728ca29b28bf350e40bbfee896fbe93815dae3e83
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418350700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Wed Aug 13 10:37:39 EDT 2025
Sat Nov 29 06:47:43 EST 2025
Tue Nov 18 22:22:04 EST 2025
Fri Feb 23 02:27:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Acoustic emission
Pattern recognition
Artificial neural network
Socket joint
Water leak detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-df8d0af6319d1ec2afcdb5b0728ca29b28bf350e40bbfee896fbe93815dae3e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4792-7789
PQID 2062971632
PQPubID 2047460
PageCount 6
ParticipantIDs proquest_journals_2062971632
crossref_citationtrail_10_1016_j_measurement_2017_10_021
crossref_primary_10_1016_j_measurement_2017_10_021
elsevier_sciencedirect_doi_10_1016_j_measurement_2017_10_021
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References S. Valizadeh, B. Moshiri, K. Salahshoor, Leak Detection in Transportation Pipelines Using Feature Extraction and KNN Classification, Paper presented at the Pipelines Specialty Conference, 2009.
J.Z.F. Sikorska, D. Mba, Challenges and obstacles in the application of acoustic emission to process machinery, ARCHIVE Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 1989–1996, 222(1) (2008) 1–19.
Gao, Brennan, Joseph (b0155) 2006; 292
Hao, Zhang, Wei, Ding (b0065) 2014; 27
Guo, Wen, Li, Wen (b0060) 2016; 79
Khulief, Khalifa, Ben Mansour, Habib (b0085) 2012; 3
Ding, Reuben, Steel (b0030) 2004; 37
Gao, Brennan, Joseph, Muggleton, Hunaidi (b0050) 2005; 283
Yazdekhasti, Piratla, Atamturktur, Khan (b0160) 2016
J. Lim, Underground pipeline leak detection using acoustic emission and crest factor technique in: Advances in Acoustic Emission Technology, Springer, 2015.
Anastasopoulos, Kourousis, Bollas (b0010) 2009
Dipen N. Sinha, Acoustic sensor for pipeline monitoring, Technology Report, Los Alamos National Laboratory, USA, 2005.
Martini, Troncossi, Rivola (b0105) 2016; 7
Hunaidi, Chu, Wang, Guan (b0070) 2000; 92
Meng, Li, Wang, Fu (b0110) 2012; 25
Grosse, Ohtsu (b0055) 2008
Hunaidi, Chu (b0075) 1999; 58
Paliwal, Kumar (b0115) 2009; 36
X. Tang, Y. Liu, L. Zheng, C. Ma, H. Wang, Leak Detection of Water Pipeline Using Wavelet Transform Method, Paper presented at the International Conference on Environmental Science and Information Application Technology, 2009.
Yang, Wen, Li (b0165) 2008; 310
Ferrante, Brunone (b0045) 2003; 26
M. Romano, Z. Kapelan, D.A. Savić, Real-Time Leak Detection in Water Distribution Systems, Paper presented at the Conference on Water Distribution Systems Analysis, 2011.
Yuan, Zhong, Cai, Cheng (b0170) 2015
Puust, Kapelan, Savic, Koppel (b0125) 2010; 7
Butterfield, Krynkin, Collins, Beck (b0025) 2017; 119
Juliano, Meegoda, Watts (b0080) 2013; 4
Dreiseitl, Ohnomachado (b0040) 2002; 35
Zadkarami, Shahbazian, Salahshoor (b0175) 2016; 43
Liu, Kleiner (b0100) 2013; 46
Theodoridis, Koutroumbas (b0140) 2008
ASTM, Standard terminology for nondestructive examinations Astm, 2011.
Ahadi, Bakhtiar (b0005) 2010; 71
Brunner, Barbezat (b0020) 2006; 13–14
Gao, Brennan, Joseph, Muggleton, Hunaidi (b0150) 2004; 277
Li, Zhang, Tan, Chen, Lei (b0090) 2016; 105
Hunaidi (10.1016/j.measurement.2017.10.021_b0070) 2000; 92
10.1016/j.measurement.2017.10.021_b0130
10.1016/j.measurement.2017.10.021_b0015
Meng (10.1016/j.measurement.2017.10.021_b0110) 2012; 25
10.1016/j.measurement.2017.10.021_b0135
10.1016/j.measurement.2017.10.021_b0035
Yuan (10.1016/j.measurement.2017.10.021_b0170) 2015
10.1016/j.measurement.2017.10.021_b0095
Grosse (10.1016/j.measurement.2017.10.021_b0055) 2008
Zadkarami (10.1016/j.measurement.2017.10.021_b0175) 2016; 43
Puust (10.1016/j.measurement.2017.10.021_b0125) 2010; 7
Paliwal (10.1016/j.measurement.2017.10.021_b0115) 2009; 36
10.1016/j.measurement.2017.10.021_b0120
Yang (10.1016/j.measurement.2017.10.021_b0165) 2008; 310
Dreiseitl (10.1016/j.measurement.2017.10.021_b0040) 2002; 35
Hao (10.1016/j.measurement.2017.10.021_b0065) 2014; 27
Theodoridis (10.1016/j.measurement.2017.10.021_b0140) 2008
Gao (10.1016/j.measurement.2017.10.021_b0155) 2006; 292
10.1016/j.measurement.2017.10.021_b0145
Juliano (10.1016/j.measurement.2017.10.021_b0080) 2013; 4
Martini (10.1016/j.measurement.2017.10.021_b0105) 2016; 7
Yazdekhasti (10.1016/j.measurement.2017.10.021_b0160) 2016
Li (10.1016/j.measurement.2017.10.021_b0090) 2016; 105
Butterfield (10.1016/j.measurement.2017.10.021_b0025) 2017; 119
Anastasopoulos (10.1016/j.measurement.2017.10.021_b0010) 2009
Gao (10.1016/j.measurement.2017.10.021_b0050) 2005; 283
Khulief (10.1016/j.measurement.2017.10.021_b0085) 2012; 3
Ding (10.1016/j.measurement.2017.10.021_b0030) 2004; 37
Guo (10.1016/j.measurement.2017.10.021_b0060) 2016; 79
Hunaidi (10.1016/j.measurement.2017.10.021_b0075) 1999; 58
Gao (10.1016/j.measurement.2017.10.021_b0150) 2004; 277
Ferrante (10.1016/j.measurement.2017.10.021_b0045) 2003; 26
Liu (10.1016/j.measurement.2017.10.021_b0100) 2013; 46
Brunner (10.1016/j.measurement.2017.10.021_b0020) 2006; 13–14
Ahadi (10.1016/j.measurement.2017.10.021_b0005) 2010; 71
References_xml – volume: 71
  start-page: 634
  year: 2010
  end-page: 639
  ident: b0005
  article-title: Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals
  publication-title: Appl. Acoust.
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  ident: b0040
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
– volume: 105
  start-page: 32
  year: 2016
  end-page: 40
  ident: b0090
  article-title: A novel acoustic emission detection module for leakage recognition in a gas pipeline valve
  publication-title: Process Saf. Environ. Prot.
– volume: 36
  start-page: 2
  year: 2009
  end-page: 17
  ident: b0115
  article-title: Review: neural networks and statistical techniques: a review of applications
  publication-title: Expert Syst. Appl.
– start-page: 27
  year: 2009
  ident: b0010
  article-title: Acoustic emission leak detection of liquid filled buried pipeline
  publication-title: J. Acoust. Emission
– volume: 277
  start-page: 133
  year: 2004
  end-page: 148
  ident: b0150
  article-title: A model of the correlation function of leak noise in buried plastic pipes
  publication-title: J. Sound Vib.
– volume: 13–14
  start-page: 351
  year: 2006
  end-page: 356
  ident: b0020
  article-title: Acoustic emission monitoring of leaks in pipes for transport of liquid and gaseous media: a model experiment
  publication-title: Adv. Mater. Res.
– volume: 3
  start-page: 47
  year: 2012
  end-page: 54
  ident: b0085
  article-title: acoustic detection of leaks in water pipelines using measurements inside pipe
  publication-title: J. Pipeline Syst. Eng. Pract.
– volume: 26
  start-page: 107
  year: 2003
  end-page: 116
  ident: b0045
  article-title: Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis
  publication-title: Adv. Water Resour.
– volume: 27
  start-page: 74
  year: 2014
  end-page: 88
  ident: b0065
  article-title: Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method
  publication-title: J. Loss Prev. Process Ind.
– reference: M. Romano, Z. Kapelan, D.A. Savić, Real-Time Leak Detection in Water Distribution Systems, Paper presented at the Conference on Water Distribution Systems Analysis, 2011.
– volume: 283
  start-page: 927
  year: 2005
  end-page: 941
  ident: b0050
  article-title: On the selection of acoustic/vibration sensors for leak detection in plastic water pipes
  publication-title: J. Sound Vib.
– volume: 25
  start-page: 90
  year: 2012
  end-page: 102
  ident: b0110
  article-title: Experimental study on leak detection and location for gas pipeline based on acoustic method
  publication-title: J. Loss Prev. Process Ind.
– reference: J. Lim, Underground pipeline leak detection using acoustic emission and crest factor technique in: Advances in Acoustic Emission Technology, Springer, 2015.
– volume: 7
  start-page: 25
  year: 2010
  end-page: 45
  ident: b0125
  article-title: A review of methods for leakage management in pipe networks
  publication-title: Urban Water J.
– reference: X. Tang, Y. Liu, L. Zheng, C. Ma, H. Wang, Leak Detection of Water Pipeline Using Wavelet Transform Method, Paper presented at the International Conference on Environmental Science and Information Application Technology, 2009.
– volume: 79
  start-page: 188
  year: 2016
  end-page: 197
  ident: b0060
  article-title: Adaptive noise cancellation based on EMD in water-supply pipeline leak detection
  publication-title: Measurement
– volume: 292
  start-page: 552
  year: 2006
  end-page: 570
  ident: b0155
  article-title: A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes
  publication-title: J. Sound Vib.
– start-page: 1
  year: 2016
  end-page: 12
  ident: b0160
  article-title: Novel vibration-based technique for detecting water pipeline leakage
  publication-title: Struct. Infrastruct. Eng.
– volume: 119
  start-page: 146
  year: 2017
  end-page: 155
  ident: b0025
  article-title: Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes
  publication-title: Appl. Acoust.
– volume: 46
  start-page: 1
  year: 2013
  end-page: 15
  ident: b0100
  article-title: State of the art review of inspection technologies for condition assessment of water pipes
  publication-title: Measurement
– reference: S. Valizadeh, B. Moshiri, K. Salahshoor, Leak Detection in Transportation Pipelines Using Feature Extraction and KNN Classification, Paper presented at the Pipelines Specialty Conference, 2009.
– year: 2015
  ident: b0170
  article-title: Leak Detection Research of Water Supply Pipeline Based on HHT
– reference: ASTM, Standard terminology for nondestructive examinations Astm, 2011.
– year: 2008
  ident: b0055
  article-title: Acoustic Emission Testing
– volume: 7
  start-page: 2
  year: 2016
  ident: b0105
  article-title: Leak detection in water-filled small-diameter polyethylene pipes by means of acoustic emission measurements
  publication-title: Appl. Sci.
– volume: 58
  start-page: 235
  year: 1999
  end-page: 254
  ident: b0075
  article-title: Acoustical characteristics of leak signals in plastic water distribution pipes
  publication-title: Appl. Acoust.
– volume: 92
  start-page: 82
  year: 2000
  end-page: 94
  ident: b0070
  article-title: Detecting leaks in plastic pipes
  publication-title: Journal
– volume: 4
  start-page: 149
  year: 2013
  end-page: 155
  ident: b0080
  article-title: acoustic emission leak detection on a metal pipeline buried in sandy soil
  publication-title: J. Pipeline Syst. Eng. Pract.
– reference: J.Z.F. Sikorska, D. Mba, Challenges and obstacles in the application of acoustic emission to process machinery, ARCHIVE Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 1989–1996, 222(1) (2008) 1–19.
– volume: 310
  start-page: 134
  year: 2008
  end-page: 148
  ident: b0165
  article-title: Leak location using blind system identification in water distribution pipelines
  publication-title: J. Sound Vib.
– volume: 43
  start-page: 479
  year: 2016
  end-page: 487
  ident: b0175
  article-title: Pipeline leakage detection and isolation: an integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN)
  publication-title: J. Loss Prev. Process Ind.
– reference: Dipen N. Sinha, Acoustic sensor for pipeline monitoring, Technology Report, Los Alamos National Laboratory, USA, 2005.
– volume: 37
  start-page: 279
  year: 2004
  end-page: 290
  ident: b0030
  article-title: A new method for waveform analysis for estimating AE wave arrival times using wavelet decomposition
  publication-title: Ndt & E Int.
– year: 2008
  ident: b0140
  article-title: Pattern Recognition
– volume: 119
  start-page: 146
  year: 2017
  ident: 10.1016/j.measurement.2017.10.021_b0025
  article-title: Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2017.01.002
– volume: 7
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.measurement.2017.10.021_b0125
  article-title: A review of methods for leakage management in pipe networks
  publication-title: Urban Water J.
  doi: 10.1080/15730621003610878
– volume: 292
  start-page: 552
  year: 2006
  ident: 10.1016/j.measurement.2017.10.021_b0155
  article-title: A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.08.014
– volume: 37
  start-page: 279
  issue: 4
  year: 2004
  ident: 10.1016/j.measurement.2017.10.021_b0030
  article-title: A new method for waveform analysis for estimating AE wave arrival times using wavelet decomposition
  publication-title: Ndt & E Int.
  doi: 10.1016/j.ndteint.2003.10.006
– volume: 92
  start-page: 82
  issue: 2
  year: 2000
  ident: 10.1016/j.measurement.2017.10.021_b0070
  article-title: Detecting leaks in plastic pipes
  publication-title: Journal
– ident: 10.1016/j.measurement.2017.10.021_b0035
– volume: 26
  start-page: 107
  issue: 1
  year: 2003
  ident: 10.1016/j.measurement.2017.10.021_b0045
  article-title: Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis
  publication-title: Adv. Water Resour.
  doi: 10.1016/S0309-1708(02)00102-1
– ident: 10.1016/j.measurement.2017.10.021_b0120
  doi: 10.1061/41203(425)97
– year: 2015
  ident: 10.1016/j.measurement.2017.10.021_b0170
– volume: 58
  start-page: 235
  issue: 3
  year: 1999
  ident: 10.1016/j.measurement.2017.10.021_b0075
  article-title: Acoustical characteristics of leak signals in plastic water distribution pipes
  publication-title: Appl. Acoust.
  doi: 10.1016/S0003-682X(99)00013-4
– ident: 10.1016/j.measurement.2017.10.021_b0130
– start-page: 27
  year: 2009
  ident: 10.1016/j.measurement.2017.10.021_b0010
  article-title: Acoustic emission leak detection of liquid filled buried pipeline
  publication-title: J. Acoust. Emission
– ident: 10.1016/j.measurement.2017.10.021_b0015
– volume: 46
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2017.10.021_b0100
  article-title: State of the art review of inspection technologies for condition assessment of water pipes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.05.032
– year: 2008
  ident: 10.1016/j.measurement.2017.10.021_b0055
– volume: 71
  start-page: 634
  issue: 7
  year: 2010
  ident: 10.1016/j.measurement.2017.10.021_b0005
  article-title: Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2010.02.006
– volume: 310
  start-page: 134
  issue: 1–2
  year: 2008
  ident: 10.1016/j.measurement.2017.10.021_b0165
  article-title: Leak location using blind system identification in water distribution pipelines
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.07.067
– volume: 27
  start-page: 74
  issue: 1
  year: 2014
  ident: 10.1016/j.measurement.2017.10.021_b0065
  article-title: Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method
  publication-title: J. Loss Prev. Process Ind.
– volume: 13–14
  start-page: 351
  year: 2006
  ident: 10.1016/j.measurement.2017.10.021_b0020
  article-title: Acoustic emission monitoring of leaks in pipes for transport of liquid and gaseous media: a model experiment
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.13-14.351
– ident: 10.1016/j.measurement.2017.10.021_b0145
  doi: 10.1061/41069(360)53
– ident: 10.1016/j.measurement.2017.10.021_b0135
  doi: 10.1109/ESIAT.2009.57
– volume: 105
  start-page: 32
  year: 2016
  ident: 10.1016/j.measurement.2017.10.021_b0090
  article-title: A novel acoustic emission detection module for leakage recognition in a gas pipeline valve
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2016.10.005
– year: 2008
  ident: 10.1016/j.measurement.2017.10.021_b0140
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  ident: 10.1016/j.measurement.2017.10.021_b0040
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– ident: 10.1016/j.measurement.2017.10.021_b0095
  doi: 10.1007/978-1-4939-1239-1_41
– volume: 36
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.measurement.2017.10.021_b0115
  article-title: Review: neural networks and statistical techniques: a review of applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.10.005
– volume: 4
  start-page: 149
  issue: 3
  year: 2013
  ident: 10.1016/j.measurement.2017.10.021_b0080
  article-title: acoustic emission leak detection on a metal pipeline buried in sandy soil
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000134
– volume: 25
  start-page: 90
  issue: 1
  year: 2012
  ident: 10.1016/j.measurement.2017.10.021_b0110
  article-title: Experimental study on leak detection and location for gas pipeline based on acoustic method
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2011.07.001
– volume: 283
  start-page: 927
  issue: 3–5
  year: 2005
  ident: 10.1016/j.measurement.2017.10.021_b0050
  article-title: On the selection of acoustic/vibration sensors for leak detection in plastic water pipes
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2004.05.004
– volume: 79
  start-page: 188
  year: 2016
  ident: 10.1016/j.measurement.2017.10.021_b0060
  article-title: Adaptive noise cancellation based on EMD in water-supply pipeline leak detection
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.09.048
– volume: 3
  start-page: 47
  issue: 2
  year: 2012
  ident: 10.1016/j.measurement.2017.10.021_b0085
  article-title: acoustic detection of leaks in water pipelines using measurements inside pipe
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000089
– volume: 277
  start-page: 133
  issue: 1–2
  year: 2004
  ident: 10.1016/j.measurement.2017.10.021_b0150
  article-title: A model of the correlation function of leak noise in buried plastic pipes
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2003.08.045
– start-page: 1
  year: 2016
  ident: 10.1016/j.measurement.2017.10.021_b0160
  article-title: Novel vibration-based technique for detecting water pipeline leakage
  publication-title: Struct. Infrastruct. Eng.
– volume: 7
  start-page: 2
  issue: 1
  year: 2016
  ident: 10.1016/j.measurement.2017.10.021_b0105
  article-title: Leak detection in water-filled small-diameter polyethylene pipes by means of acoustic emission measurements
  publication-title: Appl. Sci.
  doi: 10.3390/app7010002
– volume: 43
  start-page: 479
  year: 2016
  ident: 10.1016/j.measurement.2017.10.021_b0175
  article-title: Pipeline leakage detection and isolation: an integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN)
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2016.06.018
SSID ssj0006396
Score 2.515755
Snippet Early leak detection is of great importance for life-cycle maintenance and management of municipal pipeline system. Due to economic and technical efficiency,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Acoustic emission
Acoustics
Artificial neural network
Artificial neural networks
Deformation mechanisms
Emission analysis
Failure
Faucets
Feature extraction
Kurtosis
Leak detection
Municipalities
Neural networks
Nodular iron
Pattern recognition
Peak frequency
Pipes
Segments
Socket joint
Studies
Water distribution
Water engineering
Water leak detection
Water pipes
Title Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition
URI https://dx.doi.org/10.1016/j.measurement.2017.10.021
https://www.proquest.com/docview/2062971632
Volume 115
WOSCitedRecordID wos000418350700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqDRA8IBhMDAYyEm9VptT5ZUu8TGgIUDUhMaTCS2Q7tpZuJGVNx8Qr_xx_FmfHTrKhiYLES1Q5vSjpfbE_X7-7Q-iFzGia8SgJolikQZywKOCx4EEhaEETkgipbNeSaXZ4SGcz9n40-ulzYc5Ps6qiFxds8V9dDWPgbJM6-xfu7i4KA_AZnA5HcDsc13L8VPGTcaEaJT0Z_MZtH3BTItd1txovyoWyBHO5EiYSYyio5qXRqBsLcNmJasbzuqyasVnoCvOnAkyetvfX2PSIW3od88JW6DRZMU6K5Bzt20T1QUgbfhiUquiFmz4iOfyyzUU0dUGHUoFp2UqJvh_3KWwfnKr4E6_mqw6nn4_rlQ36w9mv5TC4MaFeD93NgSSNAsMyLk3Yk2Qw5ba1kNzi3daS_G1ZaCMU870v_VMYVV-2Z4R9bYb25VLcV5bITrjoNXHzfHCp3FwKxvPQVDTYJFnCYH7d3H97MHvXsQJggmkb72sf6BZ63msNr7mv67jSFdZgqdDRPXTX7WHwfou9-2ikqi10Z1DZcgvdtMpiuXyAfhg84g6PuNbY4hEP8Yg9HrHDI25q7PBoLFo8YotHbPGIwcjjEXs8YsAjdnjEAzw-RB9fHxy9ehO4zh-BjMOsCQpNi5DrFNaHYqIk4VoWIhFhRqjkhAlChY6SUMWhEFopylItFAPymRRcRYpG22ijqiv1CGGWyoxpATtvIWOmmUhgQ6CJIiLWYMB3EPW_cS5dWXzTneU0_6OvdxDpTBdtbZh1jF56R-aO5LbkNQewrmO-652fuxd2CedTYkrBReTxv9zSE3S7f_d20UZztlJP0Q153pTLs2cOyL8A-5rljw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leak+detection+of+water+distribution+pipeline+subject+to+failure+of+socket+joint+based+on+acoustic+emission+and+pattern+recognition&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Li%2C+Suzhen&rft.au=Song%2C+Yanjue&rft.au=Zhou%2C+Gongqi&rft.date=2018-02-01&rft.issn=0263-2241&rft.volume=115&rft.spage=39&rft.epage=44&rft_id=info:doi/10.1016%2Fj.measurement.2017.10.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2017_10_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon