Using a Google Web Search Analysis to Assess the Utility of ChatGPT in Total Joint Arthroplasty

Rapid technological advancements have laid the foundations for the use of artificial intelligence in medicine. The promise of machine learning (ML) lies in its potential ability to improve treatment decision making, predict adverse outcomes, and streamline the management of perioperative healthcare....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of arthroplasty Ročník 38; číslo 7; s. 1195 - 1202
Hlavní autoři: Dubin, Jeremy A., Bains, Sandeep S., Chen, Zhongming, Hameed, Daniel, Nace, James, Mont, Michael A., Delanois, Ronald E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.07.2023
Témata:
ISSN:0883-5403, 1532-8406, 1532-8406
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rapid technological advancements have laid the foundations for the use of artificial intelligence in medicine. The promise of machine learning (ML) lies in its potential ability to improve treatment decision making, predict adverse outcomes, and streamline the management of perioperative healthcare. In an increasing consumer-focused health care model, unprecedented access to information may extend to patients using ChatGPT to gain insight into medical questions. The main objective of our study was to replicate a patient’s internet search in order to assess the appropriateness of ChatGPT, a novel machine learning tool released in 2022 that provides dialogue responses to queries, in comparison to Google Web Search, the most widely used search engine in the United States today, as a resource for patients for online health information. For the 2 different search engines, we compared i) the most frequently asked questions (FAQs) associated with total knee arthroplasty (TKA) and total hip arthroplasty (THA) by question type and topic; ii) the answers to the most frequently asked questions; as well as iii) the FAQs yielding a numerical response. A Google web search was performed with the following search terms: “total knee replacement” and “total hip replacement.” These terms were individually entered and the first 10 FAQs were extracted along with the source of the associated website for each question. The following statements were inputted into ChatGPT: 1) “Perform a google search with the search term ‘total knee replacement’ and record the 10 most FAQs related to the search term” as well as 2) “Perform a google search with the search term ‘total hip replacement’ and record the 10 most FAQs related to the search term.” A Google web search was repeated with the same search terms to identify the first 10 FAQs that included a numerical response for both “total knee replacement” and “total hip replacement.” These questions were then inputted into ChatGPT and the questions and answers were recorded. There were 5 of 20 (25%) questions that were similar when performing a Google web search and a search of ChatGPT for all search terms. Of the 20 questions asked for the Google Web Search, 13 of 20 were provided by commercial websites. For ChatGPT, 15 of 20 (75%) questions were answered by government websites, with the most frequent one being PubMed. In terms of numerical questions, 11 of 20 (55%) of the most FAQs provided different responses between a Google web search and ChatGPT. A comparison of the FAQs by a Google web search with attempted replication by ChatGPT revealed heterogenous questions and responses for open and discrete questions. ChatGPT should remain a trending use as a potential resource to patients that needs further corroboration until its ability to provide credible information is verified and concordant with the goals of the physician and the patient alike.
AbstractList Rapid technological advancements have laid the foundations for the use of artificial intelligence in medicine. The promise of machine learning (ML) lies in its potential ability to improve treatment decision making, predict adverse outcomes, and streamline the management of perioperative healthcare. In an increasing consumer-focused health care model, unprecedented access to information may extend to patients using ChatGPT to gain insight into medical questions. The main objective of our study was to replicate a patient’s internet search in order to assess the appropriateness of ChatGPT, a novel machine learning tool released in 2022 that provides dialogue responses to queries, in comparison to Google Web Search, the most widely used search engine in the United States today, as a resource for patients for online health information. For the 2 different search engines, we compared i) the most frequently asked questions (FAQs) associated with total knee arthroplasty (TKA) and total hip arthroplasty (THA) by question type and topic; ii) the answers to the most frequently asked questions; as well as iii) the FAQs yielding a numerical response. A Google web search was performed with the following search terms: “total knee replacement” and “total hip replacement.” These terms were individually entered and the first 10 FAQs were extracted along with the source of the associated website for each question. The following statements were inputted into ChatGPT: 1) “Perform a google search with the search term ‘total knee replacement’ and record the 10 most FAQs related to the search term” as well as 2) “Perform a google search with the search term ‘total hip replacement’ and record the 10 most FAQs related to the search term.” A Google web search was repeated with the same search terms to identify the first 10 FAQs that included a numerical response for both “total knee replacement” and “total hip replacement.” These questions were then inputted into ChatGPT and the questions and answers were recorded. There were 5 of 20 (25%) questions that were similar when performing a Google web search and a search of ChatGPT for all search terms. Of the 20 questions asked for the Google Web Search, 13 of 20 were provided by commercial websites. For ChatGPT, 15 of 20 (75%) questions were answered by government websites, with the most frequent one being PubMed. In terms of numerical questions, 11 of 20 (55%) of the most FAQs provided different responses between a Google web search and ChatGPT. A comparison of the FAQs by a Google web search with attempted replication by ChatGPT revealed heterogenous questions and responses for open and discrete questions. ChatGPT should remain a trending use as a potential resource to patients that needs further corroboration until its ability to provide credible information is verified and concordant with the goals of the physician and the patient alike.
Rapid technological advancements have laid the foundations for the use of artificial intelligence in medicine. The promise of machine learning (ML) lies in its potential ability to improve treatment decision making, predict adverse outcomes, and streamline the management of perioperative healthcare. In an increasing consumer-focused health care model, unprecedented access to information may extend to patients using ChatGPT to gain insight into medical questions. The main objective of our study was to replicate a patient's internet search in order to assess the appropriateness of ChatGPT, a novel machine learning tool released in 2022 that provides dialogue responses to queries, in comparison to Google Web Search, the most widely used search engine in the United States today, as a resource for patients for online health information. For the 2 different search engines, we compared i) the most frequently asked questions (FAQs) associated with total knee arthroplasty (TKA) and total hip arthroplasty (THA) by question type and topic; ii) the answers to the most frequently asked questions; as well as iii) the FAQs yielding a numerical response.BACKGROUNDRapid technological advancements have laid the foundations for the use of artificial intelligence in medicine. The promise of machine learning (ML) lies in its potential ability to improve treatment decision making, predict adverse outcomes, and streamline the management of perioperative healthcare. In an increasing consumer-focused health care model, unprecedented access to information may extend to patients using ChatGPT to gain insight into medical questions. The main objective of our study was to replicate a patient's internet search in order to assess the appropriateness of ChatGPT, a novel machine learning tool released in 2022 that provides dialogue responses to queries, in comparison to Google Web Search, the most widely used search engine in the United States today, as a resource for patients for online health information. For the 2 different search engines, we compared i) the most frequently asked questions (FAQs) associated with total knee arthroplasty (TKA) and total hip arthroplasty (THA) by question type and topic; ii) the answers to the most frequently asked questions; as well as iii) the FAQs yielding a numerical response.A Google web search was performed with the following search terms: "total knee replacement" and "total hip replacement." These terms were individually entered and the first 10 FAQs were extracted along with the source of the associated website for each question. The following statements were inputted into ChatGPT: 1) "Perform a google search with the search term 'total knee replacement' and record the 10 most FAQs related to the search term" as well as 2) "Perform a google search with the search term 'total hip replacement' and record the 10 most FAQs related to the search term." A Google web search was repeated with the same search terms to identify the first 10 FAQs that included a numerical response for both "total knee replacement" and "total hip replacement." These questions were then inputted into ChatGPT and the questions and answers were recorded.METHODSA Google web search was performed with the following search terms: "total knee replacement" and "total hip replacement." These terms were individually entered and the first 10 FAQs were extracted along with the source of the associated website for each question. The following statements were inputted into ChatGPT: 1) "Perform a google search with the search term 'total knee replacement' and record the 10 most FAQs related to the search term" as well as 2) "Perform a google search with the search term 'total hip replacement' and record the 10 most FAQs related to the search term." A Google web search was repeated with the same search terms to identify the first 10 FAQs that included a numerical response for both "total knee replacement" and "total hip replacement." These questions were then inputted into ChatGPT and the questions and answers were recorded.There were 5 of 20 (25%) questions that were similar when performing a Google web search and a search of ChatGPT for all search terms. Of the 20 questions asked for the Google Web Search, 13 of 20 were provided by commercial websites. For ChatGPT, 15 of 20 (75%) questions were answered by government websites, with the most frequent one being PubMed. In terms of numerical questions, 11 of 20 (55%) of the most FAQs provided different responses between a Google web search and ChatGPT.RESULTSThere were 5 of 20 (25%) questions that were similar when performing a Google web search and a search of ChatGPT for all search terms. Of the 20 questions asked for the Google Web Search, 13 of 20 were provided by commercial websites. For ChatGPT, 15 of 20 (75%) questions were answered by government websites, with the most frequent one being PubMed. In terms of numerical questions, 11 of 20 (55%) of the most FAQs provided different responses between a Google web search and ChatGPT.A comparison of the FAQs by a Google web search with attempted replication by ChatGPT revealed heterogenous questions and responses for open and discrete questions. ChatGPT should remain a trending use as a potential resource to patients that needs further corroboration until its ability to provide credible information is verified and concordant with the goals of the physician and the patient alike.CONCLUSIONA comparison of the FAQs by a Google web search with attempted replication by ChatGPT revealed heterogenous questions and responses for open and discrete questions. ChatGPT should remain a trending use as a potential resource to patients that needs further corroboration until its ability to provide credible information is verified and concordant with the goals of the physician and the patient alike.
Author Bains, Sandeep S.
Nace, James
Delanois, Ronald E.
Chen, Zhongming
Dubin, Jeremy A.
Hameed, Daniel
Mont, Michael A.
Author_xml – sequence: 1
  givenname: Jeremy A.
  surname: Dubin
  fullname: Dubin, Jeremy A.
– sequence: 2
  givenname: Sandeep S.
  surname: Bains
  fullname: Bains, Sandeep S.
– sequence: 3
  givenname: Zhongming
  orcidid: 0000-0001-9647-7193
  surname: Chen
  fullname: Chen, Zhongming
– sequence: 4
  givenname: Daniel
  surname: Hameed
  fullname: Hameed, Daniel
– sequence: 5
  givenname: James
  surname: Nace
  fullname: Nace, James
– sequence: 6
  givenname: Michael A.
  surname: Mont
  fullname: Mont, Michael A.
– sequence: 7
  givenname: Ronald E.
  orcidid: 0000-0002-5651-2625
  surname: Delanois
  fullname: Delanois, Ronald E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37040823$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFuEzEURS1URNPCD7BAXrKZ4dnjmTGITRRBWlQJJBKxtBzPm8bBsYPtIM3f4yjtposiy7IX91y9d67IhQ8eCXnLoGbAug-7Wse8rTnwpgZRA_QvyIy1Da-kgO6CzEDKpmoFNJfkKqUdAGNtK16Ry6YHAZI3M6LWyfp7qukyhHuH9Bdu6E_U0Wzp3Gs3JZtoDnSeEqby2yJdZ-tsnmgY6WKr8_LHilpPVyFrR78F6zOdl6liODid8vSavBy1S_jm4b0m669fVoub6u778nYxv6uMgD5XQ9tKkJ0RjDPel8OM7LoWYOhBs1E0vRZG4lDu2AN0jdhw7Npusxm5kB9Zc03en3sPMfw5Yspqb5NB57THcEyKy7K96IFDib57iB43exzUIdq9jpN6lFIC8hwwMaQUcVTGZp1t8Dlq6xQDdfKvdurkX538KxCq-C8of4I-tj8LfT5DWAT9tRhVMha9wcFGNFkNwT6Pf3qCG2e9Ndr9xul_8D9iTa_F
CitedBy_id crossref_primary_10_1016_j_arthro_2024_12_011
crossref_primary_10_1016_j_asmr_2024_100963
crossref_primary_10_1016_j_jhsa_2023_10_019
crossref_primary_10_1093_ced_llad456
crossref_primary_10_3389_fsurg_2023_1284015
crossref_primary_10_1155_aort_5534704
crossref_primary_10_4274_anatoljmed_2025_02886
crossref_primary_10_1016_j_arth_2023_06_030
crossref_primary_10_7759_cureus_60318
crossref_primary_10_2196_59607
crossref_primary_10_2196_76458
crossref_primary_10_1177_19386400241235834
crossref_primary_10_1016_j_arthro_2024_05_025
crossref_primary_10_1016_j_knee_2025_02_014
crossref_primary_10_1016_j_arthro_2024_10_042
crossref_primary_10_1093_asj_sjad260
crossref_primary_10_1007_s00590_024_03873_2
crossref_primary_10_1016_j_arth_2024_02_023
crossref_primary_10_2106_JBJS_23_00914
crossref_primary_10_1016_j_arth_2023_11_024
crossref_primary_10_1097_BPB_0000000000001287
crossref_primary_10_3233_JAD_230573
crossref_primary_10_1177_19386400241249810
crossref_primary_10_1001_jamanetworkopen_2024_57879
crossref_primary_10_1016_j_arthro_2024_09_047
crossref_primary_10_3389_fpubh_2024_1412063
crossref_primary_10_1227_neu_0000000000002856
crossref_primary_10_3390_app132011586
crossref_primary_10_1016_j_asmr_2024_100939
crossref_primary_10_1016_j_arth_2024_01_029
crossref_primary_10_1016_j_arth_2024_03_017
crossref_primary_10_1002_jeo2_12047
crossref_primary_10_1016_j_jse_2023_11_014
crossref_primary_10_1016_j_injury_2025_112400
crossref_primary_10_1097_BSD_0000000000001582
crossref_primary_10_1002_jeo2_70114
crossref_primary_10_1007_s43390_025_01169_x
crossref_primary_10_1053_j_sart_2024_11_005
crossref_primary_10_1177_10225536251350411
crossref_primary_10_1016_j_arth_2023_05_057
crossref_primary_10_1016_j_knee_2025_06_007
crossref_primary_10_1016_j_arth_2023_05_056
crossref_primary_10_1016_j_arth_2023_05_059
crossref_primary_10_1016_j_arth_2023_05_058
crossref_primary_10_1016_j_jisako_2025_100892
crossref_primary_10_1002_ksa_12711
crossref_primary_10_1016_j_arthro_2024_07_040
crossref_primary_10_1002_pra2_927
crossref_primary_10_1016_j_amjms_2023_08_001
crossref_primary_10_1371_journal_pone_0297521
crossref_primary_10_5435_JAAOSGlobal_D_24_00206
crossref_primary_10_1097_BPO_0000000000002695
crossref_primary_10_1177_17585732241283971
crossref_primary_10_1177_23259671241257516
crossref_primary_10_1097_BPO_0000000000002824
crossref_primary_10_1016_j_arthro_2025_03_066
crossref_primary_10_5435_JAAOS_D_24_00249
crossref_primary_10_1016_j_arth_2023_08_070
crossref_primary_10_1186_s13018_023_04467_0
crossref_primary_10_3389_fsurg_2024_1403540
crossref_primary_10_1177_15589447241247332
crossref_primary_10_1186_s40634_023_00700_1
crossref_primary_10_1007_s10916_024_02069_9
crossref_primary_10_1016_j_arth_2024_04_020
crossref_primary_10_1016_j_jhsa_2023_08_003
crossref_primary_10_1016_j_artd_2025_101772
crossref_primary_10_1016_j_arthro_2025_01_039
crossref_primary_10_1016_j_fas_2024_08_002
crossref_primary_10_7759_cureus_63287
crossref_primary_10_1007_s10796_025_10581_7
crossref_primary_10_1177_15589447241257643
crossref_primary_10_1177_10225536251368567
Cites_doi 10.2340/actadv.v103.9593
10.1007/s12178-020-09600-8
10.1016/j.arth.2019.05.055
10.1016/j.crad.2017.11.015
10.2196/jmir.5369
10.1016/j.arth.2020.11.015
10.1016/j.arth.2019.08.017
10.2196/12522
10.1093/her/16.6.671
10.1108/OIR-12-2011-0210
10.1145/3570220
10.2196/jmir.4127
10.1016/j.knee.2019.11.020
10.1016/j.arth.2020.10.024
10.1097/QMH.0000000000000165
10.5312/wjo.v12.i9.685
10.1016/j.arthro.2023.01.014
10.5792/ksrr.2016.28.1.1
10.1055/s-0035-1551650
10.2106/JBJS.N.01189
10.1007/s11606-019-05109-0
10.1002/asi.23311
10.1016/j.oraloncology.2009.03.017
10.5435/JAAOS-D-19-00688
10.1016/j.arth.2006.04.017
10.1038/d41586-023-00107-z
10.3389/fbioe.2018.00075
10.1371/journal.pone.0167911
10.2106/JBJS.J.01095
10.1016/j.arth.2023.01.032
10.1002/jor.25036
10.1016/j.diii.2019.02.007
10.1080/17453674.2018.1453714
10.1371/journal.pmed.1002699
10.3758/s13428-016-0722-4
10.4066/AMJ.2012.1530
10.2106/JBJS.I.00821
10.1016/j.compmedimag.2019.06.002
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.arth.2023.04.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1532-8406
EndPage 1202
ExternalDocumentID 37040823
10_1016_j_arth_2023_04_007
S0883540323003522
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OF~
OR-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
UNMZH
UV1
WUQ
Z5R
ZGI
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-d558086c4121272721c866500d70a1f437a4c8edc8ef700634b2e656bbf248913
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018458500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0883-5403
1532-8406
IngestDate Tue Oct 21 14:16:44 EDT 2025
Thu Apr 03 07:04:48 EDT 2025
Sat Nov 29 07:15:33 EST 2025
Tue Nov 18 20:19:53 EST 2025
Fri Feb 23 02:35:50 EST 2024
Tue Oct 14 19:34:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords utility
google
total joint arthroplasty
web search
ChatGPT
Language English
License Copyright © 2023. Published by Elsevier Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-d558086c4121272721c866500d70a1f437a4c8edc8ef700634b2e656bbf248913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9647-7193
0000-0002-5651-2625
PMID 37040823
PQID 2800147020
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2800147020
pubmed_primary_37040823
crossref_citationtrail_10_1016_j_arth_2023_04_007
crossref_primary_10_1016_j_arth_2023_04_007
elsevier_sciencedirect_doi_10_1016_j_arth_2023_04_007
elsevier_clinicalkey_doi_10_1016_j_arth_2023_04_007
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of arthroplasty
PublicationTitleAlternate J Arthroplasty
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cassidy, Baker (bib24) 2016
Rothwell (bib28) 2013
Hariri (bib33) 2013
Shen, Driscoll, Islam, Bovonratwet, Haas, Su (bib40) 2021; 36
Tripathi, Singh, Kumar, Pandey, Jain (bib25) 2019
Gilat, Cole (bib36) 2023; 39
Welsh (bib26) 2022; 66
Choi (bib43) 2016; 28
Helm, Swiergosz, Haeberle, Karnuta, Schaffer, Krebs (bib32) 2020; 13
Kim, MacKinnon (bib4) 2018; 73
Guo, Zhang, Wang, Jiang, Nie, Ding (bib39) 2023
Antony, McGuinness, O’Connor, Moran (bib5) 2016
Wang, Cheung, Kozar, Huang (bib13) 2020; 28
Karnuta, Haeberle, Luu, Roth, Molloy, Nystrom (bib9) 2021; 36
Guarino, Stokel-Walker (bib15) 2023; 613
Fraval, Chong, Holcdorf, Plunkett, Tran (bib23) 2012; 5
Haeberle, Helm, Navarro, Karnuta, Schaffer, Callaghan (bib12) 2019; 34
Devlin, Chang, Lee, Toutanova (bib21) 2019; 1
Hadden, Prince, Barnes (bib41) 2018; 27
Starman, Gettys, Capo, Fleischli, Norton, Karunakar (bib30) 2010; 92
Chen, Gao, Shi, Allen, Yang (bib6) 2019; 75
Chung, Han, Lee, Oh, Kim, Yoon (bib3) 2018; 89
Cline, Haynes (bib19) 2001; 16
Dehghani, Johnson, Garten, Boghrati, Hoover, Balasubramanian (bib34) 2017; 49
Yi, Wei, Kim, Sair, Hui, Hager (bib10) 2020; 27
Daraz, Morrow, Ponce, Beuschel, Farah, Katabi (bib18) 2019; 34
Mont, Krebs, Backstein, Browne, Mason, Taunton (bib11) 2019; 34
Peters, Shirley, Erickson (bib37) 2006; 21
Bidmon, Terlutter (bib35) 2015; 17
Bien, Rajpurkar, Ball, Irvin, Park, Jones (bib7) 2018; 15
Karimi, Shah, Hecht, Burkhart, Acuña, Kamath (bib42) 2023
Polesie, Larkö (bib48) 2023; 103
Nayak (bib20) 2019
(bib22) 2016
Fraval, Chandrananth, Chong, Tran, Coventry (bib47) 2015; 16
Roblot, Giret, Bou Antoun, Morillot, Chassin, Cotten (bib8) 2019; 100
Ellis, Mallozzi, Mathews, Moss, Ouellet, Jarzem (bib44) 2015; 5
Parvizi, Miller, Gandhi (bib38) 2011; 93
Kanthawala, Vermeesch, Given, Huh (bib27) 2016; 18
López-Jornet, Camacho-Alonso (bib29) 2009; 45
Neuprez, Delcour, Fatemi, Gillet, Crielaard, Bruyère (bib45) 2016; 11
Sun, Zhang, Gwizdka, Trace (bib16) 2019; 21
Zhang, Sun, Xie (bib17) 2015; 66
Cabitza, Locoro, Banfi (bib31) 2018; 6
Lalehzarian, Gowd, Liu (bib2) 2021; 12
Susnjak (bib14) 2022
Groot, Ogink, Lans, Twining, Kapoor, DiGiovanni (bib1) 2022; 40
Daraz, Morrow, Ponce (bib46) 2019; 34
Tripathi (10.1016/j.arth.2023.04.007_bib25) 2019
Polesie (10.1016/j.arth.2023.04.007_bib48) 2023; 103
Choi (10.1016/j.arth.2023.04.007_bib43) 2016; 28
Zhang (10.1016/j.arth.2023.04.007_bib17) 2015; 66
Fraval (10.1016/j.arth.2023.04.007_bib23) 2012; 5
Parvizi (10.1016/j.arth.2023.04.007_bib38) 2011; 93
Susnjak (10.1016/j.arth.2023.04.007_bib14) 2022
Cassidy (10.1016/j.arth.2023.04.007_bib24) 2016; 98
Chung (10.1016/j.arth.2023.04.007_bib3) 2018; 89
Cline (10.1016/j.arth.2023.04.007_bib19) 2001; 16
Hadden (10.1016/j.arth.2023.04.007_bib41) 2018; 27
Nayak (10.1016/j.arth.2023.04.007_bib20) 2019
Chen (10.1016/j.arth.2023.04.007_bib6) 2019; 75
Guarino (10.1016/j.arth.2023.04.007_bib15) 2023; 613
López-Jornet (10.1016/j.arth.2023.04.007_bib29) 2009; 45
Mont (10.1016/j.arth.2023.04.007_bib11) 2019; 34
Devlin (10.1016/j.arth.2023.04.007_bib21) 2019; 1
Ellis (10.1016/j.arth.2023.04.007_bib44) 2015; 5
Kim (10.1016/j.arth.2023.04.007_bib4) 2018; 73
Hariri (10.1016/j.arth.2023.04.007_bib33) 2013; 37
Lalehzarian (10.1016/j.arth.2023.04.007_bib2) 2021; 12
Welsh (10.1016/j.arth.2023.04.007_bib26) 2022; 66
Peters (10.1016/j.arth.2023.04.007_bib37) 2006; 21
Karimi (10.1016/j.arth.2023.04.007_bib42) 2023
Haeberle (10.1016/j.arth.2023.04.007_bib12) 2019; 34
Gilat (10.1016/j.arth.2023.04.007_bib36) 2023; 39
Antony (10.1016/j.arth.2023.04.007_bib5) 2016
Bien (10.1016/j.arth.2023.04.007_bib7) 2018; 15
Yi (10.1016/j.arth.2023.04.007_bib10) 2020; 27
Fraval (10.1016/j.arth.2023.04.007_bib47) 2015; 16
Karnuta (10.1016/j.arth.2023.04.007_bib9) 2021; 36
(10.1016/j.arth.2023.04.007_bib22) 2016
Helm (10.1016/j.arth.2023.04.007_bib32) 2020; 13
Guo (10.1016/j.arth.2023.04.007_bib39) 2023
Daraz (10.1016/j.arth.2023.04.007_bib46) 2019; 34
Neuprez (10.1016/j.arth.2023.04.007_bib45) 2016; 11
Roblot (10.1016/j.arth.2023.04.007_bib8) 2019; 100
Wang (10.1016/j.arth.2023.04.007_bib13) 2020; 28
Groot (10.1016/j.arth.2023.04.007_bib1) 2022; 40
Kanthawala (10.1016/j.arth.2023.04.007_bib27) 2016; 18
Cabitza (10.1016/j.arth.2023.04.007_bib31) 2018; 6
Sun (10.1016/j.arth.2023.04.007_bib16) 2019; 21
Daraz (10.1016/j.arth.2023.04.007_bib18) 2019; 34
Shen (10.1016/j.arth.2023.04.007_bib40) 2021; 36
Bidmon (10.1016/j.arth.2023.04.007_bib35) 2015; 17
Dehghani (10.1016/j.arth.2023.04.007_bib34) 2017; 49
Rothwell (10.1016/j.arth.2023.04.007_bib28) 2013
Starman (10.1016/j.arth.2023.04.007_bib30) 2010; 92
37573082 - J Arthroplasty. 2023 Sep;38(9):e18
37573083 - J Arthroplasty. 2023 Sep;38(9):e19-e20
37573084 - J Arthroplasty. 2023 Sep;38(9):e21
37573081 - J Arthroplasty. 2023 Sep;38(9):e17
References_xml – volume: 11
  start-page: e0167911
  year: 2016
  ident: bib45
  article-title: Patients’ expectations impact their satisfaction following total hip or knee arthroplasty
  publication-title: PLoS One
– volume: 16
  start-page: 671
  year: 2001
  end-page: 692
  ident: bib19
  article-title: Consumer health information seeking on the Internet: the state of the art
  publication-title: Health Edu Res
– volume: 13
  start-page: 69
  year: 2020
  end-page: 76
  ident: bib32
  article-title: Machine learning and artificial intelligence: definitions, applications, and future directions
  publication-title: Curr Rev Musculoskelet Med
– volume: 6
  start-page: 75
  year: 2018
  ident: bib31
  article-title: Machine learning in orthopedics: a literature review
  publication-title: Front Bioeng Biotechnol
– year: 2016
  ident: bib22
  article-title: Number of search engine users in the United States from 2014 to 2020 (in millions) Statista Res Department
– volume: 34
  start-page: 1884
  year: 2019
  end-page: 1891
  ident: bib18
  article-title: Can patients trust online health information? A meta-narrative systematic review addressing the quality of health information on the internet
  publication-title: J Gen Intern Med
– year: 2023
  ident: bib42
  article-title: Readability of online patient education materials for total joint arthroplasty: a systematic review
  publication-title: J Arthroplasty
– volume: 15
  start-page: e1002699
  year: 2018
  ident: bib7
  article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet
  publication-title: PLoS Med
– volume: 66
  start-page: 2071
  year: 2015
  end-page: 2084
  ident: bib17
  article-title: Quality of health information for consumers on the web: a systematic review of indicators, criteria, tools, and evaluation results
  publication-title: J Assoc Inf Sci Technology
– start-page: 325
  year: 2016
  end-page: 338
  ident: bib24
  article-title: Orthopaedic patient information on the World Wide Web: an essential review
  publication-title: JBJS
– volume: 92
  start-page: 1612
  year: 2010
  end-page: 1618
  ident: bib30
  article-title: Quality and content of Internet-based information for ten common orthopaedic sports medicine diagnoses
  publication-title: JBJS
– volume: 17
  start-page: e156
  year: 2015
  ident: bib35
  article-title: Gender differences in searching for health information on the internet and the virtual patient-physician relationship in Germany: exploratory results on how men and women differ and why
  publication-title: J Med Internet Res
– volume: 34
  start-page: 2201
  year: 2019
  end-page: 2203
  ident: bib12
  article-title: Artificial intelligence and machine learning in lower extremity arthroplasty: a review
  publication-title: J Arthroplasty
– volume: 21
  start-page: e12522
  year: 2019
  ident: bib16
  article-title: Consumer evaluation of the quality of online health information: systematic literature review of relevant criteria and indicators
  publication-title: J Med Internet Res
– volume: 49
  start-page: 538
  year: 2017
  end-page: 547
  ident: bib34
  article-title: TACIT: an open-source text analysis, crawling, and interpretation tool
  publication-title: Behav Res Methods
– volume: 34
  start-page: 2199
  year: 2019
  end-page: 2200
  ident: bib11
  article-title: Influencing our lives in joint arthroplasty
  publication-title: J Arthroplasty
– volume: 36
  start-page: 1224
  year: 2021
  end-page: 1231
  ident: bib40
  article-title: Modern internet search analytics and total joint arthroplasty: what are patients asking and reading online?
  publication-title: J Arthroplasty
– year: 2023
  ident: bib39
  article-title: How close is ChatGPT to human experts? Comparison corpus, evaluation, and detection. arXiv preprint arXiv:2301.07597
– volume: 613
  start-page: 620
  year: 2023
  end-page: 621
  ident: bib15
  article-title: ChatGPT listed as author on research papers: many scientists disapprove
  publication-title: Nature
– start-page: 295
  year: 2019
  ident: bib20
  article-title: Understanding searches better than ever before. The keyword
– volume: 45
  start-page: e95
  year: 2009
  end-page: e98
  ident: bib29
  article-title: The quality of internet sites providing information relating to oral cancer
  publication-title: Oral Oncol
– volume: 18
  start-page: e5369
  year: 2016
  ident: bib27
  article-title: Answers to health questions: internet search results versus online health community responses
  publication-title: J Med Internet Res
– volume: 73
  start-page: 439
  year: 2018
  end-page: 445
  ident: bib4
  article-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks
  publication-title: Clin Radiol
– volume: 27
  start-page: 98
  year: 2018
  end-page: 103
  ident: bib41
  article-title: Health literacy demands of patient-reported evaluation tools in orthopedics: a mixed-methods case study
  publication-title: Qual Manag Health Care
– start-page: 1195
  year: 2016
  end-page: 1200
  ident: bib5
  article-title: December. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks
  publication-title: 2016 23rd Int Conf Pattern Recognition (Icpr)
– volume: 16
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib47
  article-title: Internet based patient education improves informed consent for elective orthopaedic surgery: a randomized controlled trial
  publication-title: BMC Musculoskelet Disord
– volume: 28
  start-page: e415
  year: 2020
  ident: bib13
  article-title: Machine learning applications in orthopedic imaging
  publication-title: J Am Acad Orthop Surg
– volume: 100
  start-page: 243
  year: 2019
  end-page: 249
  ident: bib8
  article-title: Artificial intelligence to diagnose meniscus tears on MRI
  publication-title: Diagn Interv Imaging
– volume: 34
  start-page: 1884
  year: 2019
  end-page: 1891
  ident: bib46
  article-title: Can patients trust online health information? A meta-narrative systematic review addressing the quality of health information on the
  publication-title: Gen Intern Med
– volume: 27
  start-page: 535
  year: 2020
  end-page: 542
  ident: bib10
  article-title: Automated detection & classification of knee arthroplasty using deep learning
  publication-title: Knee
– volume: 103
  year: 2023
  ident: bib48
  article-title: Use of large language models: editorial comments
  publication-title: Acta Dermato-Venereologica
– volume: 93
  start-page: 1075
  year: 2011
  end-page: 1084
  ident: bib38
  article-title: Multimodal pain management after total joint arthroplasty
  publication-title: JBJS
– volume: 21
  start-page: 132
  year: 2006
  end-page: 138
  ident: bib37
  article-title: The effect of a new multimodal perioperative anesthetic regimen on postoperative pain, side effects, rehabilitation, and length of hospital stay after total joint arthroplasty
  publication-title: J Arthroplasty
– volume: 40
  start-page: 475
  year: 2022
  end-page: 483
  ident: bib1
  article-title: Machine learning prediction models in orthopedic surgery: a systematic review in transparent reporting
  publication-title: J Orthop Research®
– volume: 12
  start-page: 685
  year: 2021
  ident: bib2
  article-title: Machine learning in orthopaedic surgery
  publication-title: World J Orthop
– start-page: 54
  year: 2019
  end-page: 65
  ident: bib25
  article-title: Bidirectional Transformer Based Multi-Task Learning for Natural Language Understanding
  publication-title: Natural Language processing and information systems. NLDB 2019. Lecture notes in computer science
– start-page: 287
  year: 2013
  end-page: 303
  ident: bib33
  article-title: Do natural language search engines really understand what users want? a comparative study on three natural language search engines and google
  publication-title: Online Information Review
– volume: 75
  start-page: 84
  year: 2019
  end-page: 92
  ident: bib6
  article-title: Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss
  publication-title: Comput Med Imaging Graph
– year: 2022
  ident: bib14
  article-title: ChatGPT: the end of online exam integrity?
  publication-title: arXiv preprint arXiv:2212.09292
– year: 2013
  ident: bib28
  article-title: In mixed company: communicating in small groups
– volume: 89
  start-page: 468
  year: 2018
  end-page: 473
  ident: bib3
  article-title: Automated detection and classification of the proximal humerus fracture by using deep learning algorithm
  publication-title: Acta Orthop
– volume: 5
  start-page: 633
  year: 2012
  ident: bib23
  article-title: Internet use by orthopaedic outpatients–current trends and practices
  publication-title: Australas Med J
– volume: 36
  start-page: S290
  year: 2021
  end-page: S294.e1
  ident: bib9
  article-title: Artificial intelligence to identify arthroplasty implants from radiographs of the hip
  publication-title: J Arthroplasty
– volume: 39
  start-page: 1119
  year: 2023
  end-page: 1120
  ident: bib36
  article-title: How will artificial intelligence affect scientific writing, reviewing and editing? The future is here
  publication-title: Arthroscopy
– volume: 66
  start-page: 34
  year: 2022
  end-page: 35
  ident: bib26
  article-title: The end of programming
  publication-title: Commun ACM
– volume: 28
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib43
  article-title: Patient satisfaction after total knee arthroplasty
  publication-title: Knee Surg Relat Res
– volume: 5
  start-page: 436
  year: 2015
  end-page: 451
  ident: bib44
  article-title: The relationship between preoperative expectations and the short-term postoperative satisfaction and functional outcome in lumbar spine surgery: a systematic review
  publication-title: Glob Spine J
– volume: 1
  start-page: 4171
  year: 2019
  end-page: 4186
  ident: bib21
  article-title: Bert: pre-training of deep bidirectional transformers for language understanding
  publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
– year: 2013
  ident: 10.1016/j.arth.2023.04.007_bib28
– volume: 103
  year: 2023
  ident: 10.1016/j.arth.2023.04.007_bib48
  article-title: Use of large language models: editorial comments
  publication-title: Acta Dermato-Venereologica
  doi: 10.2340/actadv.v103.9593
– volume: 13
  start-page: 69
  year: 2020
  ident: 10.1016/j.arth.2023.04.007_bib32
  article-title: Machine learning and artificial intelligence: definitions, applications, and future directions
  publication-title: Curr Rev Musculoskelet Med
  doi: 10.1007/s12178-020-09600-8
– volume: 34
  start-page: 2201
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib12
  article-title: Artificial intelligence and machine learning in lower extremity arthroplasty: a review
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2019.05.055
– volume: 73
  start-page: 439
  year: 2018
  ident: 10.1016/j.arth.2023.04.007_bib4
  article-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2017.11.015
– start-page: 1195
  year: 2016
  ident: 10.1016/j.arth.2023.04.007_bib5
  article-title: December. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks
– volume: 18
  start-page: e5369
  year: 2016
  ident: 10.1016/j.arth.2023.04.007_bib27
  article-title: Answers to health questions: internet search results versus online health community responses
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.5369
– volume: 36
  start-page: S290
  year: 2021
  ident: 10.1016/j.arth.2023.04.007_bib9
  article-title: Artificial intelligence to identify arthroplasty implants from radiographs of the hip
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2020.11.015
– volume: 34
  start-page: 2199
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib11
  article-title: Influencing our lives in joint arthroplasty
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2019.08.017
– volume: 21
  start-page: e12522
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib16
  article-title: Consumer evaluation of the quality of online health information: systematic literature review of relevant criteria and indicators
  publication-title: J Med Internet Res
  doi: 10.2196/12522
– volume: 16
  start-page: 671
  issue: 6
  year: 2001
  ident: 10.1016/j.arth.2023.04.007_bib19
  article-title: Consumer health information seeking on the Internet: the state of the art
  publication-title: Health Edu Res
  doi: 10.1093/her/16.6.671
– volume: 37
  start-page: 287
  issue: 2
  year: 2013
  ident: 10.1016/j.arth.2023.04.007_bib33
  article-title: Do natural language search engines really understand what users want? a comparative study on three natural language search engines and google
  publication-title: Online Information Review
  doi: 10.1108/OIR-12-2011-0210
– volume: 66
  start-page: 34
  year: 2022
  ident: 10.1016/j.arth.2023.04.007_bib26
  article-title: The end of programming
  publication-title: Commun ACM
  doi: 10.1145/3570220
– volume: 17
  start-page: e156
  year: 2015
  ident: 10.1016/j.arth.2023.04.007_bib35
  article-title: Gender differences in searching for health information on the internet and the virtual patient-physician relationship in Germany: exploratory results on how men and women differ and why
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.4127
– year: 2016
  ident: 10.1016/j.arth.2023.04.007_bib22
– volume: 27
  start-page: 535
  year: 2020
  ident: 10.1016/j.arth.2023.04.007_bib10
  article-title: Automated detection & classification of knee arthroplasty using deep learning
  publication-title: Knee
  doi: 10.1016/j.knee.2019.11.020
– volume: 36
  start-page: 1224
  year: 2021
  ident: 10.1016/j.arth.2023.04.007_bib40
  article-title: Modern internet search analytics and total joint arthroplasty: what are patients asking and reading online?
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2020.10.024
– start-page: 54
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib25
  article-title: Bidirectional Transformer Based Multi-Task Learning for Natural Language Understanding
– start-page: 295
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib20
– volume: 27
  start-page: 98
  year: 2018
  ident: 10.1016/j.arth.2023.04.007_bib41
  article-title: Health literacy demands of patient-reported evaluation tools in orthopedics: a mixed-methods case study
  publication-title: Qual Manag Health Care
  doi: 10.1097/QMH.0000000000000165
– year: 2023
  ident: 10.1016/j.arth.2023.04.007_bib39
– volume: 12
  start-page: 685
  year: 2021
  ident: 10.1016/j.arth.2023.04.007_bib2
  article-title: Machine learning in orthopaedic surgery
  publication-title: World J Orthop
  doi: 10.5312/wjo.v12.i9.685
– volume: 16
  start-page: 1
  year: 2015
  ident: 10.1016/j.arth.2023.04.007_bib47
  article-title: Internet based patient education improves informed consent for elective orthopaedic surgery: a randomized controlled trial
  publication-title: BMC Musculoskelet Disord
– volume: 1
  start-page: 4171
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib21
  article-title: Bert: pre-training of deep bidirectional transformers for language understanding
– volume: 39
  start-page: 1119
  year: 2023
  ident: 10.1016/j.arth.2023.04.007_bib36
  article-title: How will artificial intelligence affect scientific writing, reviewing and editing? The future is here
  publication-title: Arthroscopy
  doi: 10.1016/j.arthro.2023.01.014
– volume: 28
  start-page: 1
  year: 2016
  ident: 10.1016/j.arth.2023.04.007_bib43
  article-title: Patient satisfaction after total knee arthroplasty
  publication-title: Knee Surg Relat Res
  doi: 10.5792/ksrr.2016.28.1.1
– volume: 5
  start-page: 436
  year: 2015
  ident: 10.1016/j.arth.2023.04.007_bib44
  article-title: The relationship between preoperative expectations and the short-term postoperative satisfaction and functional outcome in lumbar spine surgery: a systematic review
  publication-title: Glob Spine J
  doi: 10.1055/s-0035-1551650
– volume: 98
  start-page: 325
  issue: 4
  year: 2016
  ident: 10.1016/j.arth.2023.04.007_bib24
  article-title: Orthopaedic patient information on the World Wide Web: an essential review
  publication-title: JBJS
  doi: 10.2106/JBJS.N.01189
– volume: 34
  start-page: 1884
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib46
  article-title: Can patients trust online health information? A meta-narrative systematic review addressing the quality of health information on the
  publication-title: Gen Intern Med
  doi: 10.1007/s11606-019-05109-0
– volume: 66
  start-page: 2071
  year: 2015
  ident: 10.1016/j.arth.2023.04.007_bib17
  article-title: Quality of health information for consumers on the web: a systematic review of indicators, criteria, tools, and evaluation results
  publication-title: J Assoc Inf Sci Technology
  doi: 10.1002/asi.23311
– volume: 45
  start-page: e95
  year: 2009
  ident: 10.1016/j.arth.2023.04.007_bib29
  article-title: The quality of internet sites providing information relating to oral cancer
  publication-title: Oral Oncol
  doi: 10.1016/j.oraloncology.2009.03.017
– volume: 28
  start-page: e415
  year: 2020
  ident: 10.1016/j.arth.2023.04.007_bib13
  article-title: Machine learning applications in orthopedic imaging
  publication-title: J Am Acad Orthop Surg
  doi: 10.5435/JAAOS-D-19-00688
– volume: 21
  start-page: 132
  year: 2006
  ident: 10.1016/j.arth.2023.04.007_bib37
  article-title: The effect of a new multimodal perioperative anesthetic regimen on postoperative pain, side effects, rehabilitation, and length of hospital stay after total joint arthroplasty
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2006.04.017
– volume: 613
  start-page: 620
  year: 2023
  ident: 10.1016/j.arth.2023.04.007_bib15
  article-title: ChatGPT listed as author on research papers: many scientists disapprove
  publication-title: Nature
  doi: 10.1038/d41586-023-00107-z
– volume: 6
  start-page: 75
  year: 2018
  ident: 10.1016/j.arth.2023.04.007_bib31
  article-title: Machine learning in orthopedics: a literature review
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2018.00075
– volume: 11
  start-page: e0167911
  year: 2016
  ident: 10.1016/j.arth.2023.04.007_bib45
  article-title: Patients’ expectations impact their satisfaction following total hip or knee arthroplasty
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0167911
– volume: 93
  start-page: 1075
  year: 2011
  ident: 10.1016/j.arth.2023.04.007_bib38
  article-title: Multimodal pain management after total joint arthroplasty
  publication-title: JBJS
  doi: 10.2106/JBJS.J.01095
– year: 2023
  ident: 10.1016/j.arth.2023.04.007_bib42
  article-title: Readability of online patient education materials for total joint arthroplasty: a systematic review
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2023.01.032
– volume: 40
  start-page: 475
  year: 2022
  ident: 10.1016/j.arth.2023.04.007_bib1
  article-title: Machine learning prediction models in orthopedic surgery: a systematic review in transparent reporting
  publication-title: J Orthop Research®
  doi: 10.1002/jor.25036
– volume: 100
  start-page: 243
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib8
  article-title: Artificial intelligence to diagnose meniscus tears on MRI
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2019.02.007
– volume: 89
  start-page: 468
  year: 2018
  ident: 10.1016/j.arth.2023.04.007_bib3
  article-title: Automated detection and classification of the proximal humerus fracture by using deep learning algorithm
  publication-title: Acta Orthop
  doi: 10.1080/17453674.2018.1453714
– volume: 15
  start-page: e1002699
  year: 2018
  ident: 10.1016/j.arth.2023.04.007_bib7
  article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002699
– volume: 34
  start-page: 1884
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib18
  article-title: Can patients trust online health information? A meta-narrative systematic review addressing the quality of health information on the internet
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-019-05109-0
– volume: 49
  start-page: 538
  year: 2017
  ident: 10.1016/j.arth.2023.04.007_bib34
  article-title: TACIT: an open-source text analysis, crawling, and interpretation tool
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-016-0722-4
– volume: 5
  start-page: 633
  year: 2012
  ident: 10.1016/j.arth.2023.04.007_bib23
  article-title: Internet use by orthopaedic outpatients–current trends and practices
  publication-title: Australas Med J
  doi: 10.4066/AMJ.2012.1530
– volume: 92
  start-page: 1612
  year: 2010
  ident: 10.1016/j.arth.2023.04.007_bib30
  article-title: Quality and content of Internet-based information for ten common orthopaedic sports medicine diagnoses
  publication-title: JBJS
  doi: 10.2106/JBJS.I.00821
– volume: 75
  start-page: 84
  year: 2019
  ident: 10.1016/j.arth.2023.04.007_bib6
  article-title: Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.06.002
– year: 2022
  ident: 10.1016/j.arth.2023.04.007_bib14
  article-title: ChatGPT: the end of online exam integrity?
  publication-title: arXiv preprint arXiv:2212.09292
– reference: 37573083 - J Arthroplasty. 2023 Sep;38(9):e19-e20
– reference: 37573081 - J Arthroplasty. 2023 Sep;38(9):e17
– reference: 37573082 - J Arthroplasty. 2023 Sep;38(9):e18
– reference: 37573084 - J Arthroplasty. 2023 Sep;38(9):e21
SSID ssj0011554
Score 2.6088142
Snippet Rapid technological advancements have laid the foundations for the use of artificial intelligence in medicine. The promise of machine learning (ML) lies in its...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1195
SubjectTerms Arthroplasty, Replacement, Hip
Arthroplasty, Replacement, Knee
Artificial Intelligence
ChatGPT
google
Humans
Search Engine
total joint arthroplasty
utility
web search
Title Using a Google Web Search Analysis to Assess the Utility of ChatGPT in Total Joint Arthroplasty
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0883540323003522
https://dx.doi.org/10.1016/j.arth.2023.04.007
https://www.ncbi.nlm.nih.gov/pubmed/37040823
https://www.proquest.com/docview/2800147020
Volume 38
WOSCitedRecordID wos001018458500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1532-8406
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011554
  issn: 0883-5403
  databaseCode: AIEXJ
  dateStart: 19951101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9tAFB7cpIdeSks3dwlT6E3IaB_5aEKatocQsEtNL8NoltTBlYyjhPyR_N-8pxktSUm6QDE2RtbYj3mf3zZvIeSDZiIqdCp9I7PMT4wJfRFlU19kYaZCFUhlkmbYBDs6ypfL6fFodNXWwlysWVnml5fTzX9lNVwDZmPp7F-wu_tSuADvgenwCmyH1z9ivE0CEN5hVZ2stfdNF57NKe4bkIC9aQ97rdlZr9ZdYoaoD48XGARZVHUTIlyVNUbwcZoCGNr1jVPgvq6ssWjF7dsaA7lw8770FitXZpM-dupC3XOMY-uNN-8-2nclI99_VOXJz1a52ji71qovjR_GLKK4y291gbS2mOZGrifIuyZPIx4K5zgfgJANJC22qhto7TBqCrd_1Qg2OHE6wS2YIC0T2y-9139dVuIcKUACwC3DNrGg2Xcjlk5BWO7OPh8sv3THU2iEWffEUuyqsWzi4O1fusviucujaSybxRPy2DGQziyUnpKRLp8R3sCICmphRAFG1MKItjCidUUtjCjAiDoY0cpQByO6KmkDI9rAiA5h9Jx8_Xiw2P_ku2EcvgSfv_ZVmubg_sokxJkA8AgltkoMAsUCEZokZiKRuVbwNAwN36SINDgLRWGiBM_CX5Cdsir1K0JhwwQ2umORKhIjVVEkyqSSmSArFAiVMQnbDePSdarHgSlr3qYknnLcZI6bzIOEwyaPidet2dg-LffeHbd84G0FMuhMDqC5d1XarXL2qbU7f7vufctqDsIbT-REqavzMx7lGKJg4LKNyUuLgY76mAU4DD5-_U-0viGP-j_eW7JTb8_1O_JQXtSrs-0eecCW-Z5D9TVNushq
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+Google+Web+Search+Analysis+to+Assess+the+Utility+of+ChatGPT+in+Total+Joint+Arthroplasty&rft.jtitle=The+Journal+of+arthroplasty&rft.au=Dubin%2C+Jeremy+A.&rft.au=Bains%2C+Sandeep+S.&rft.au=Chen%2C+Zhongming&rft.au=Hameed%2C+Daniel&rft.date=2023-07-01&rft.pub=Elsevier+Inc&rft.issn=0883-5403&rft.volume=38&rft.issue=7&rft.spage=1195&rft.epage=1202&rft_id=info:doi/10.1016%2Fj.arth.2023.04.007&rft.externalDocID=S0883540323003522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-5403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-5403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-5403&client=summon