Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP
During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable and comprehensibility not so, later definitions in the 1990s, such as Mitchell’s, tende...
Uložené v:
| Vydané v: | Machine learning Ročník 107; číslo 7; s. 1119 - 1140 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable and comprehensibility not so, later definitions in the 1990s, such as Mitchell’s, tended to use a one-dimensional approach to Machine Learning based solely on predictive accuracy, ultimately favouring statistical over symbolic Machine Learning approaches. In this paper we provide a definition of comprehensibility of hypotheses which can be estimated using human participant trials. We present two sets of experiments testing human comprehensibility of logic programs. In the first experiment we test human comprehensibility with and without predicate invention. Results indicate comprehensibility is affected not only by the complexity of the presented program but also by the existence of anonymous predicate symbols. In the second experiment we directly test whether any state-of-the-art ILP systems are ultra-strong learners in Michie’s sense, and select the Metagol system for use in humans trials. Results show participants were not able to learn the relational concept on their own from a set of examples but they were able to apply the relational definition provided by the ILP system correctly. This implies the existence of a class of relational concepts which are hard to acquire for humans, though easy to understand given an abstract explanation. We believe improved understanding of this class could have potential relevance to contexts involving human learning, teaching and verbal interaction. |
|---|---|
| AbstractList | During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable and comprehensibility not so, later definitions in the 1990s, such as Mitchell’s, tended to use a one-dimensional approach to Machine Learning based solely on predictive accuracy, ultimately favouring statistical over symbolic Machine Learning approaches. In this paper we provide a definition of comprehensibility of hypotheses which can be estimated using human participant trials. We present two sets of experiments testing human comprehensibility of logic programs. In the first experiment we test human comprehensibility with and without predicate invention. Results indicate comprehensibility is affected not only by the complexity of the presented program but also by the existence of anonymous predicate symbols. In the second experiment we directly test whether any state-of-the-art ILP systems are ultra-strong learners in Michie’s sense, and select the Metagol system for use in humans trials. Results show participants were not able to learn the relational concept on their own from a set of examples but they were able to apply the relational definition provided by the ILP system correctly. This implies the existence of a class of relational concepts which are hard to acquire for humans, though easy to understand given an abstract explanation. We believe improved understanding of this class could have potential relevance to contexts involving human learning, teaching and verbal interaction. |
| Author | Besold, Tarek Zeller, Christina Schmid, Ute Muggleton, Stephen H. Tamaddoni-Nezhad, Alireza |
| Author_xml | – sequence: 1 givenname: Stephen H. orcidid: 0000-0001-6061-6104 surname: Muggleton fullname: Muggleton, Stephen H. email: s.muggleton@imperial.ac.uk organization: Department of Computing, Imperial College London – sequence: 2 givenname: Ute surname: Schmid fullname: Schmid, Ute organization: Cognitive Systems Group, University of Bamberg – sequence: 3 givenname: Christina surname: Zeller fullname: Zeller, Christina organization: Cognitive Systems Group, University of Bamberg – sequence: 4 givenname: Alireza surname: Tamaddoni-Nezhad fullname: Tamaddoni-Nezhad, Alireza organization: Department of Computer Science, University of Surrey – sequence: 5 givenname: Tarek surname: Besold fullname: Besold, Tarek organization: Digital Media Lab, University of Bremen |
| BookMark | eNp9kFtLAzEQhYNUsK3-AN8CPkcnu7lsfZPipbCioH0O2Wy2Tdlma7JF-u9NWUEQ9GWGgfPNnDkTNPKdtwhdUrimAPImUpjNGAFaEC5BkvwEjSmXOQEu-AiNoSg4ETTjZ2gS4wYAMlGIMXpetn3Q5K0PnV_hZ23WzltcWh2886tbbLrtLti19dFVrnX9AXcN3oVuFfQ24vaoszX-dP0aL8rXc3Ta6Dbai-8-RcuH-_f5EylfHhfzu5IYBrJPVWZUcMF4BSzXYHXDWC1rCwWzhs1EkxlqC17pije0ooZRXVBrZF2lMRf5FF0Ne5OTj72Nvdp0--DTSZVBzpkUTBRJJQeVCV2MwTbKuF73rvPpZdcqCuqYnRqyUyk7dcxO5Ymkv8hdcFsdDv8y2cDEpPUrG348_Q19AVUsgzA |
| CitedBy_id | crossref_primary_10_1007_s10994_025_06750_z crossref_primary_10_1515_itit_2025_0007 crossref_primary_10_1007_s10994_021_06105_4 crossref_primary_10_1016_j_artint_2020_103438 crossref_primary_10_1007_s10994_023_06351_8 crossref_primary_10_1016_j_artint_2021_103458 crossref_primary_10_1145_3447581 crossref_primary_10_1007_s13218_022_00781_7 crossref_primary_10_1007_s13218_022_00786_2 crossref_primary_10_1007_s11634_020_00422_7 crossref_primary_10_3390_computers10110154 crossref_primary_10_1007_s10994_021_06048_w crossref_primary_10_1016_j_ijar_2021_06_003 crossref_primary_10_1002_hfm_20838 crossref_primary_10_1016_j_cmpb_2025_108604 crossref_primary_10_3389_fenvs_2019_00197 crossref_primary_10_1002_widm_1391 crossref_primary_10_3389_frai_2022_919534 crossref_primary_10_1007_s10994_021_06089_1 crossref_primary_10_1007_s10618_022_00867_8 crossref_primary_10_1016_j_ijar_2024_109206 crossref_primary_10_3390_bdcc2030023 crossref_primary_10_1007_s13218_019_00603_3 crossref_primary_10_1155_2022_4857250 crossref_primary_10_1007_s13218_021_00751_5 crossref_primary_10_1016_j_artint_2021_103521 crossref_primary_10_1007_s10994_020_05941_0 crossref_primary_10_1007_s13218_018_0565_5 crossref_primary_10_1109_TPAMI_2019_2958341 crossref_primary_10_1007_s13218_022_00771_9 crossref_primary_10_1007_s10994_019_05856_5 crossref_primary_10_1007_s11634_020_00419_2 crossref_primary_10_3389_fcomp_2024_1321238 crossref_primary_10_1007_s13218_020_00633_2 crossref_primary_10_1002_wsbm_1548 crossref_primary_10_1007_s13218_024_00835_y crossref_primary_10_1007_s11432_020_3569_0 crossref_primary_10_1109_THMS_2019_2947592 crossref_primary_10_1016_j_nbt_2023_02_001 crossref_primary_10_3389_fpsyg_2022_601523 crossref_primary_10_1109_ACCESS_2022_3207812 crossref_primary_10_1038_s44334_024_00006_9 crossref_primary_10_1007_s00354_019_00054_2 crossref_primary_10_3389_frai_2020_507973 |
| Cites_doi | 10.1093/mind/LIX.236.433 10.1016/B978-0-934613-41-5.50041-6 10.1145/2339530.2339556 10.1016/j.artint.2007.04.007 10.1007/978-3-319-63342-8_5 10.1007/BF03037228 10.1016/j.dss.2010.12.003 10.1007/3-540-57868-4_49 10.1145/2623330.2630823 10.1145/1408800.1408906 10.1126/science.298.5598.1569 10.1007/978-3-642-39799-8_67 10.1145/1518701.1519023 10.1037/h0024133 10.1007/3540635149_45 10.1007/s10994-014-5471-y 10.3233/978-1-60750-754-3-11 10.1007/s10994-011-5259-2 10.1016/j.cogsys.2010.12.002 10.1007/s10994-013-5358-3 10.1109/HICSS.1998.648319 10.1016/B978-0-934613-64-4.50040-2 10.1016/0004-3702(92)90087-E 10.1007/3-540-61291-2_55 10.1109/64.21896 10.1016/0004-3702(83)90008-5 10.1214/15-AOAS848 10.1145/2594473.2594475 10.1111/j.2041-210X.2010.00012.x 10.1007/BF03037227 10.1145/2939672.2939874 10.1609/aimag.v37i1.2648 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 Machine Learning is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: Machine Learning is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10994-018-5707-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 1140 |
| ExternalDocumentID | 10_1007_s10994_018_5707_3 |
| GrantInformation_xml | – fundername: Imperial College London |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c407t-c472165645b043a0eaf44d7de084ec496f2c1e85bab5f1b1c41a81ec7dbf1b363 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435533300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Tue Nov 04 21:34:30 EST 2025 Sat Nov 29 07:45:07 EST 2025 Tue Nov 18 21:30:37 EST 2025 Fri Feb 21 02:28:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Inductive logic programming Comprehensibility Ultra-strong machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-c472165645b043a0eaf44d7de084ec496f2c1e85bab5f1b1c41a81ec7dbf1b363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6061-6104 |
| OpenAccessLink | https://link.springer.com/10.1007/s10994-018-5707-3 |
| PQID | 2035476468 |
| PQPubID | 54194 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2035476468 crossref_citationtrail_10_1007_s10994_018_5707_3 crossref_primary_10_1007_s10994_018_5707_3 springer_journals_10_1007_s10994_018_5707_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Albarghouthi, A., Gulwani, S., & Kincaid, Z. (2013). Recursive program synthesis. In International conference on computer aided verification (pp. 934–950). Springer. Stahl, I. (1992). Constructive induction in inductive logic programming: An overview. Technical report, Fakultat Informatik, Universitat Stuttgart. Murphy, G. L., & Lassaline, M. E. (1997). Hierarchical structure in concepts and the basic level of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts, and categories (pp. 93–131). Cambridge: Psychology Press, MIT Press. Idestam-Almquist, P. (1996). Efficient induction of recursive definitions by structural analysis of saturations. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 192–205). Amsterdam: IOS Press. Allahyari, H., & Lavesson, N. (2011). User-oriented assessment of classification model understandability. In 11th Scandinavian conference on artificial intelligence. IOS Press. Furusawa, M., Inuzuka, N., Seki, H., & Itoh, H. (1997). Induction of logic programs with more than one recursive clause by analyzing saturations. In International conference on inductive logic programming (pp. 165–172). Springer. Aha, D. W., Lapointe, S., Ling, C. X., & Matwin, S. (1994). Inverting implication with small training sets. In European conference on machine learning (pp. 29–48). Springer. MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning2014942549314440610.1007/s10994-013-5358-31319.68121 SchmidUKitzelmannEInductive rule learning on the knowledge levelCognitive Systems Research201112323724810.1016/j.cogsys.2010.12.002 Schmid, U., Zeller, C., Besold, T., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2017). How does predicate invention affect human comprehensibility? In A. Russo & J. Cussens (Eds.) Proceedings of the 26th international conference on inductive logic programming (ILP 2016, September 4th–6th, London). Springer Mofizur, C. R., & Numao, M. (1996). Top-down induction of recursive programs from small number of sparse examples. In L. De Raedt (Ed.), Advances in inductive logic Programming (pp. 236–253). Amsterdam: IOS Press. Muggleton, S. H., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In Proceedings of the 5th international conference on machine learning (pp. 339–352). Kaufmann. Gaines, B. R. (1996). Transforming rules and trees into comprehensible knowledge structures. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 205–226). Palo Alto, CA: AAAI Press. SchielzethHSimple means to improve the interpretability of regression coefficientsMethods in Ecology and Evolution20101210311310.1111/j.2041-210X.2010.00012.x Askira-Gelman, I. (1998). Knowledge discovery: Comprehensibility of the results. In Proceedings of the thirty-first Hawaii international conference on system sciences (Vol. 5, pp. 247–255). IEEE. WickMRThompsonWBReconstructive expert system explanationArtificial Intelligence1992541–2337010.1016/0004-3702(92)90087-E BergadanoFGunettiDInductive logic programming: From machine learning to software engineering1996CambridgeMIT Press Lipton, Z. C. (2016). The mythos of model interpretability. CoRR, abs/1606.03490. SrinivasanAThe ALEPH manual2001OxfordMachine Learning at the Computing Laboratory, Oxford University ChandrasekaranBTannerMCJosephsonJRExplaining control strategies in problem solvingIEEE Expert19894191510.1109/64.21896 KitzelmannESchmidUInductive synthesis of functional programs: An explanation based generalization approachJournal of Machine Learning Research2006742945422743741222.68069 QuinlanJRLearning logical definitions from relationsMachine Learning19905239266 Doran, D., Schulz, S., & Besold, T. R. (2017). What does explainable ai really mean? A new conceptualization of perspectives. arXiv preprint arXiv:1710.00794. Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable decision sets: A joint framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1675–1684). ACM. Kitzelmann, E. (2008). Analytical inductive functional programming. In International symposium on logic-based program synthesis and transformation (pp. 87–102). Springer. LethamBRudinCMcCormickTHMadiganDInterpretable classifiers using rules and bayesian analysis: Building a better stroke prediction modelAnnals of Applied Statistics20159313501371341872610.1214/15-AOAS84806525989 MozinaMZabkarJBratkoIArgument based machine learningArtificial Intelligence200717110–15922937235448010.1016/j.artint.2007.04.0071168.68481 Rios, R., & Matwin, S. (1996). Efficient induction of recursive prolog definitions. In Conference of the Canadian Society for Computational Studies of Intelligence (pp. 240–248). Springer. Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regression. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 150–158). ACM. MuggletonSHFengCMuggletonSHEfficient induction of logic programsInductive logic programming1992LondonAcademic Press281298 MitchellTMKellerRMKedar-CabelliSTExplanation-based generalization: A unifying viewMachine Learning1986114780 ClanceyWJThe epistemology of a rule-based expert system: A framework for explanationArtificial Intelligence198320321525110.1016/0004-3702(83)90008-5 KahneyHSolowayESpohrerJCWhat do novice programmers know about recursion?Studying the novice programmer1989MahwahLawrence Erlbaum209228 MuggletonSHDe RaedtLPooleDBratkoIFlachPInoueKILP turns 20: Biography and future challengesMachine Learning2011861323289066210.1007/s10994-011-5259-21243.68014 Hobbs, J. R. (2004). Abduction in natural language understanding. In L. R. Horn & G. Ward (Eds.), Handbook of pragmatics (pp. 724–741). Blackwell. SterlingLShapiroEYThe art of Prolog: Advanced programming techniques1994CambridgeMIT Press0850.68137 MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic datalog: Predicate invention revisitedMachine Learning201510014973337214710.1007/s10994-014-5471-y1346.68119 Van Someren, M. (1995). A perspective on machine learning and comprehensibility from knowledge acquisition. In Proceedings of the workshop on comprehensibility in machine learning, IJCAI-95. Citeseer. HauserMDChomskyNFitchWTThe faculty of language: What is it, who has it, and how did it evolve?Science200229855981569157910.1126/science.298.5598.1569 Rouveirol, C., & Puget, J.-F. (1989). A simple and general solution for inverting resolution. In EWSL-89 (pp. 201–210). London: Pitman. FreitasAAComprehensible classification models: A position paperSIGKDD Explorations Newsletter201415111010.1145/2594473.2594475 QuinlanJRCameronRMInduction of logic programs: FOIL and related systemsNew Generation Computing19951328731210.1007/BF03037228 Kedar-Cabelli, S. T., & McCarty, L. T. (1987). Explanation-based generalization as resolution theorem proving. In P. Langley (Ed) Proceedings of the fourth international workshop on machine learning, Los Altos (pp. 383–389). Morgan Kaufmann. ForbusKDSoftware social organisms: Implications for measuring AI progressAI Magazine2016371859010.1609/aimag.v37i1.2648 MuggletonSHInverse entailment and ProgolNew Generation Computing19951324528610.1007/BF03037227 Rudin, C. (2014). Algorithms for interpretable machine learning. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14, New York, NY, USA (pp. 1519–1519). ACM. Shortliffe, E. H. (1974). A rule-based computer program for advising physicians regarding antimicrobial therapy selection. In Proceedings of the 1974 annual ACM conference-volume 2 (pp. 739–739). ACM. HuysmansJDejaegerKMuesCVanthienenJBaesensBAn empirical evaluation of the comprehensibility of decision table, tree and rule based predictive modelsDecision Support Systems201151114115410.1016/j.dss.2010.12.003 Lim, B. Y., Dey, A. K., & Avrahami, D. (2009). Why and why not explanations improve the intelligibility of context-aware intelligent systems. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’09, New York, NY, USA (pp. 2119–2128). ACM. LemkeEAKlausmeierHJHarrisCWRelationship of selected cognitive abilities to concept attainment and information processingJournal of Educational Psychology19675812710.1037/h0024133 Michie, D. (1988). Machine learning in the next five years. In Proceedings of the third European working session on learning (pp. 107–122). Pitman. Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. G. (2012). Making machine learning models interpretable. In Proceedings of the 20th european symposium on artificial neural networks, computational intelligence and machine learning ESANN 2012 (pp. 163–172). TuringAMComputing machinery and intelligenceMind1950592364334603706410.1093/mind/LIX.236.433 AA Freitas (5707_CR10) 2014; 15 5707_CR37 F Bergadano (5707_CR5) 1996 B Letham (5707_CR23) 2015; 9 SH Muggleton (5707_CR31) 1995; 13 5707_CR32 H Kahney (5707_CR17) 1989 L Sterling (5707_CR49) 1994 B Chandrasekaran (5707_CR6) 1989; 4 5707_CR27 5707_CR26 5707_CR8 5707_CR25 5707_CR29 AM Turing (5707_CR50) 1950; 59 5707_CR24 JR Quinlan (5707_CR38) 1990; 5 MD Hauser (5707_CR13) 2002; 298 5707_CR21 SH Muggleton (5707_CR35) 2014; 94 A Srinivasan (5707_CR47) 2001 5707_CR1 5707_CR2 WJ Clancey (5707_CR7) 1983; 20 5707_CR3 5707_CR4 5707_CR16 5707_CR14 SH Muggleton (5707_CR33) 2011; 86 SH Muggleton (5707_CR34) 1992 5707_CR19 5707_CR18 5707_CR52 5707_CR51 5707_CR12 5707_CR11 M Mozina (5707_CR30) 2007; 171 KD Forbus (5707_CR9) 2016; 37 U Schmid (5707_CR44) 2011; 12 5707_CR48 TM Mitchell (5707_CR28) 1986; 1 5707_CR42 5707_CR41 EA Lemke (5707_CR22) 1967; 58 5707_CR40 JR Quinlan (5707_CR39) 1995; 13 5707_CR46 5707_CR45 SH Muggleton (5707_CR36) 2015; 100 H Schielzeth (5707_CR43) 2010; 1 MR Wick (5707_CR53) 1992; 54 E Kitzelmann (5707_CR20) 2006; 7 J Huysmans (5707_CR15) 2011; 51 |
| References_xml | – reference: HauserMDChomskyNFitchWTThe faculty of language: What is it, who has it, and how did it evolve?Science200229855981569157910.1126/science.298.5598.1569 – reference: Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. G. (2012). Making machine learning models interpretable. In Proceedings of the 20th european symposium on artificial neural networks, computational intelligence and machine learning ESANN 2012 (pp. 163–172). – reference: Gaines, B. R. (1996). Transforming rules and trees into comprehensible knowledge structures. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 205–226). Palo Alto, CA: AAAI Press. – reference: Michie, D. (1988). Machine learning in the next five years. In Proceedings of the third European working session on learning (pp. 107–122). Pitman. – reference: FreitasAAComprehensible classification models: A position paperSIGKDD Explorations Newsletter201415111010.1145/2594473.2594475 – reference: Hobbs, J. R. (2004). Abduction in natural language understanding. In L. R. Horn & G. Ward (Eds.), Handbook of pragmatics (pp. 724–741). Blackwell. – reference: QuinlanJRCameronRMInduction of logic programs: FOIL and related systemsNew Generation Computing19951328731210.1007/BF03037228 – reference: ChandrasekaranBTannerMCJosephsonJRExplaining control strategies in problem solvingIEEE Expert19894191510.1109/64.21896 – reference: Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regression. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 150–158). ACM. – reference: Allahyari, H., & Lavesson, N. (2011). User-oriented assessment of classification model understandability. In 11th Scandinavian conference on artificial intelligence. IOS Press. – reference: MuggletonSHFengCMuggletonSHEfficient induction of logic programsInductive logic programming1992LondonAcademic Press281298 – reference: KahneyHSolowayESpohrerJCWhat do novice programmers know about recursion?Studying the novice programmer1989MahwahLawrence Erlbaum209228 – reference: Van Someren, M. (1995). A perspective on machine learning and comprehensibility from knowledge acquisition. In Proceedings of the workshop on comprehensibility in machine learning, IJCAI-95. Citeseer. – reference: LemkeEAKlausmeierHJHarrisCWRelationship of selected cognitive abilities to concept attainment and information processingJournal of Educational Psychology19675812710.1037/h0024133 – reference: SchielzethHSimple means to improve the interpretability of regression coefficientsMethods in Ecology and Evolution20101210311310.1111/j.2041-210X.2010.00012.x – reference: SrinivasanAThe ALEPH manual2001OxfordMachine Learning at the Computing Laboratory, Oxford University – reference: Doran, D., Schulz, S., & Besold, T. R. (2017). What does explainable ai really mean? A new conceptualization of perspectives. arXiv preprint arXiv:1710.00794. – reference: ForbusKDSoftware social organisms: Implications for measuring AI progressAI Magazine2016371859010.1609/aimag.v37i1.2648 – reference: Lipton, Z. C. (2016). The mythos of model interpretability. CoRR, abs/1606.03490. – reference: Aha, D. W., Lapointe, S., Ling, C. X., & Matwin, S. (1994). Inverting implication with small training sets. In European conference on machine learning (pp. 29–48). Springer. – reference: Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable decision sets: A joint framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1675–1684). ACM. – reference: WickMRThompsonWBReconstructive expert system explanationArtificial Intelligence1992541–2337010.1016/0004-3702(92)90087-E – reference: TuringAMComputing machinery and intelligenceMind1950592364334603706410.1093/mind/LIX.236.433 – reference: Idestam-Almquist, P. (1996). Efficient induction of recursive definitions by structural analysis of saturations. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 192–205). Amsterdam: IOS Press. – reference: Mofizur, C. R., & Numao, M. (1996). Top-down induction of recursive programs from small number of sparse examples. In L. De Raedt (Ed.), Advances in inductive logic Programming (pp. 236–253). Amsterdam: IOS Press. – reference: SchmidUKitzelmannEInductive rule learning on the knowledge levelCognitive Systems Research201112323724810.1016/j.cogsys.2010.12.002 – reference: Stahl, I. (1992). Constructive induction in inductive logic programming: An overview. Technical report, Fakultat Informatik, Universitat Stuttgart. – reference: Rouveirol, C., & Puget, J.-F. (1989). A simple and general solution for inverting resolution. In EWSL-89 (pp. 201–210). London: Pitman. – reference: Murphy, G. L., & Lassaline, M. E. (1997). Hierarchical structure in concepts and the basic level of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts, and categories (pp. 93–131). Cambridge: Psychology Press, MIT Press. – reference: KitzelmannESchmidUInductive synthesis of functional programs: An explanation based generalization approachJournal of Machine Learning Research2006742945422743741222.68069 – reference: HuysmansJDejaegerKMuesCVanthienenJBaesensBAn empirical evaluation of the comprehensibility of decision table, tree and rule based predictive modelsDecision Support Systems201151114115410.1016/j.dss.2010.12.003 – reference: LethamBRudinCMcCormickTHMadiganDInterpretable classifiers using rules and bayesian analysis: Building a better stroke prediction modelAnnals of Applied Statistics20159313501371341872610.1214/15-AOAS84806525989 – reference: QuinlanJRLearning logical definitions from relationsMachine Learning19905239266 – reference: Shortliffe, E. H. (1974). A rule-based computer program for advising physicians regarding antimicrobial therapy selection. In Proceedings of the 1974 annual ACM conference-volume 2 (pp. 739–739). ACM. – reference: Kitzelmann, E. (2008). Analytical inductive functional programming. In International symposium on logic-based program synthesis and transformation (pp. 87–102). Springer. – reference: BergadanoFGunettiDInductive logic programming: From machine learning to software engineering1996CambridgeMIT Press – reference: MuggletonSHInverse entailment and ProgolNew Generation Computing19951324528610.1007/BF03037227 – reference: MuggletonSHDe RaedtLPooleDBratkoIFlachPInoueKILP turns 20: Biography and future challengesMachine Learning2011861323289066210.1007/s10994-011-5259-21243.68014 – reference: Rios, R., & Matwin, S. (1996). Efficient induction of recursive prolog definitions. In Conference of the Canadian Society for Computational Studies of Intelligence (pp. 240–248). Springer. – reference: Lim, B. Y., Dey, A. K., & Avrahami, D. (2009). Why and why not explanations improve the intelligibility of context-aware intelligent systems. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’09, New York, NY, USA (pp. 2119–2128). ACM. – reference: MitchellTMKellerRMKedar-CabelliSTExplanation-based generalization: A unifying viewMachine Learning1986114780 – reference: MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic datalog: Predicate invention revisitedMachine Learning201510014973337214710.1007/s10994-014-5471-y1346.68119 – reference: MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning2014942549314440610.1007/s10994-013-5358-31319.68121 – reference: ClanceyWJThe epistemology of a rule-based expert system: A framework for explanationArtificial Intelligence198320321525110.1016/0004-3702(83)90008-5 – reference: SterlingLShapiroEYThe art of Prolog: Advanced programming techniques1994CambridgeMIT Press0850.68137 – reference: Furusawa, M., Inuzuka, N., Seki, H., & Itoh, H. (1997). Induction of logic programs with more than one recursive clause by analyzing saturations. In International conference on inductive logic programming (pp. 165–172). Springer. – reference: MozinaMZabkarJBratkoIArgument based machine learningArtificial Intelligence200717110–15922937235448010.1016/j.artint.2007.04.0071168.68481 – reference: Muggleton, S. H., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In Proceedings of the 5th international conference on machine learning (pp. 339–352). Kaufmann. – reference: Albarghouthi, A., Gulwani, S., & Kincaid, Z. (2013). Recursive program synthesis. In International conference on computer aided verification (pp. 934–950). Springer. – reference: Askira-Gelman, I. (1998). Knowledge discovery: Comprehensibility of the results. In Proceedings of the thirty-first Hawaii international conference on system sciences (Vol. 5, pp. 247–255). IEEE. – reference: Rudin, C. (2014). Algorithms for interpretable machine learning. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14, New York, NY, USA (pp. 1519–1519). ACM. – reference: Kedar-Cabelli, S. T., & McCarty, L. T. (1987). Explanation-based generalization as resolution theorem proving. In P. Langley (Ed) Proceedings of the fourth international workshop on machine learning, Los Altos (pp. 383–389). Morgan Kaufmann. – reference: Schmid, U., Zeller, C., Besold, T., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2017). How does predicate invention affect human comprehensibility? In A. Russo & J. Cussens (Eds.) Proceedings of the 26th international conference on inductive logic programming (ILP 2016, September 4th–6th, London). Springer – volume: 59 start-page: 433 issue: 236 year: 1950 ident: 5707_CR50 publication-title: Mind doi: 10.1093/mind/LIX.236.433 – ident: 5707_CR18 doi: 10.1016/B978-0-934613-41-5.50041-6 – ident: 5707_CR26 doi: 10.1145/2339530.2339556 – volume: 171 start-page: 922 issue: 10–15 year: 2007 ident: 5707_CR30 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2007.04.007 – start-page: 209 volume-title: Studying the novice programmer year: 1989 ident: 5707_CR17 – ident: 5707_CR45 doi: 10.1007/978-3-319-63342-8_5 – volume: 13 start-page: 287 year: 1995 ident: 5707_CR39 publication-title: New Generation Computing doi: 10.1007/BF03037228 – volume: 51 start-page: 141 issue: 1 year: 2011 ident: 5707_CR15 publication-title: Decision Support Systems doi: 10.1016/j.dss.2010.12.003 – ident: 5707_CR1 doi: 10.1007/3-540-57868-4_49 – volume-title: The ALEPH manual year: 2001 ident: 5707_CR47 – ident: 5707_CR42 doi: 10.1145/2623330.2630823 – ident: 5707_CR46 doi: 10.1145/1408800.1408906 – volume: 298 start-page: 1569 issue: 5598 year: 2002 ident: 5707_CR13 publication-title: Science doi: 10.1126/science.298.5598.1569 – ident: 5707_CR51 – ident: 5707_CR2 doi: 10.1007/978-3-642-39799-8_67 – ident: 5707_CR24 doi: 10.1145/1518701.1519023 – volume: 58 start-page: 27 issue: 1 year: 1967 ident: 5707_CR22 publication-title: Journal of Educational Psychology doi: 10.1037/h0024133 – volume: 7 start-page: 429 year: 2006 ident: 5707_CR20 publication-title: Journal of Machine Learning Research – ident: 5707_CR11 doi: 10.1007/3540635149_45 – ident: 5707_CR29 – volume: 100 start-page: 49 issue: 1 year: 2015 ident: 5707_CR36 publication-title: Machine Learning doi: 10.1007/s10994-014-5471-y – ident: 5707_CR41 – ident: 5707_CR3 doi: 10.3233/978-1-60750-754-3-11 – volume-title: Inductive logic programming: From machine learning to software engineering year: 1996 ident: 5707_CR5 – volume: 86 start-page: 3 issue: 1 year: 2011 ident: 5707_CR33 publication-title: Machine Learning doi: 10.1007/s10994-011-5259-2 – volume: 12 start-page: 237 issue: 3 year: 2011 ident: 5707_CR44 publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2010.12.002 – volume: 94 start-page: 25 year: 2014 ident: 5707_CR35 publication-title: Machine Learning doi: 10.1007/s10994-013-5358-3 – ident: 5707_CR8 – ident: 5707_CR52 – ident: 5707_CR4 doi: 10.1109/HICSS.1998.648319 – ident: 5707_CR32 doi: 10.1016/B978-0-934613-64-4.50040-2 – ident: 5707_CR14 – volume: 1 start-page: 47 issue: 1 year: 1986 ident: 5707_CR28 publication-title: Machine Learning – volume: 54 start-page: 33 issue: 1–2 year: 1992 ident: 5707_CR53 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(92)90087-E – start-page: 281 volume-title: Inductive logic programming year: 1992 ident: 5707_CR34 – ident: 5707_CR40 doi: 10.1007/3-540-61291-2_55 – volume: 4 start-page: 9 issue: 1 year: 1989 ident: 5707_CR6 publication-title: IEEE Expert doi: 10.1109/64.21896 – volume: 5 start-page: 239 year: 1990 ident: 5707_CR38 publication-title: Machine Learning – ident: 5707_CR48 – ident: 5707_CR25 – volume: 20 start-page: 215 issue: 3 year: 1983 ident: 5707_CR7 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(83)90008-5 – ident: 5707_CR19 – volume-title: The art of Prolog: Advanced programming techniques year: 1994 ident: 5707_CR49 – ident: 5707_CR37 – volume: 9 start-page: 1350 issue: 3 year: 2015 ident: 5707_CR23 publication-title: Annals of Applied Statistics doi: 10.1214/15-AOAS848 – volume: 15 start-page: 1 issue: 1 year: 2014 ident: 5707_CR10 publication-title: SIGKDD Explorations Newsletter doi: 10.1145/2594473.2594475 – volume: 1 start-page: 103 issue: 2 year: 2010 ident: 5707_CR43 publication-title: Methods in Ecology and Evolution doi: 10.1111/j.2041-210X.2010.00012.x – ident: 5707_CR27 – volume: 13 start-page: 245 year: 1995 ident: 5707_CR31 publication-title: New Generation Computing doi: 10.1007/BF03037227 – ident: 5707_CR21 doi: 10.1145/2939672.2939874 – ident: 5707_CR16 – volume: 37 start-page: 85 issue: 1 year: 2016 ident: 5707_CR9 publication-title: AI Magazine doi: 10.1609/aimag.v37i1.2648 – ident: 5707_CR12 |
| SSID | ssj0002686 |
| Score | 2.5568264 |
| Snippet | During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1119 |
| SubjectTerms | Accuracy Artificial Intelligence Computer Science Control Hypotheses Logic programs Machine learning Mechatronics Natural Language Processing (NLP) Performance prediction Robotics Simulation and Modeling Special Issue of the Inductive Logic Programming (ILP) 2016 |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBw8KYGmTdvUi4g4FN0Y6GC30iavUxjbXKfgf29elm4ouIuXQmkbmr73krwvr99HyHkRh1ooi2towUSmgMkAEsStuIk940d-bsUm4k5H9vtJ1wFupSurrMZEO1DrsUKM3CTpQSjiSETyevLOUDUKd1edhMY62eC-z9HPH2O2GIn9yCo9mkAKGc7k1a7m_Nc5S4rLJQtjhOp-zkvLxeav_VE77bTq_33hHbLtFpz0Zu4hu2QNRnukXok5UBfb-6TdG86mGXtGaHxA27bGEqijXx1cUaw9n8IrVPW0X3RcUFfdVVIrPgGaIqxLH566B6TXunu5vWdOa4Epk9LNzBFZfJBaJvdEkHmQFULoWIMnBSiRRIWvOMgwz_Kw4DlXgmeSg4p1bk6DKDgktdF4BEeE5sbEXEaYdOdCyUCCLswiK8l8DZB4skG86kunyhGRox7GMF1SKKNxUtNKisZJgwa5WDwymbNwrLq5WRkkdQFZpktrNMhlZdLl5T8bO17d2AnZws7O63ebpDabfsAp2VSfs7dyema98Ru1JeNp priority: 102 providerName: ProQuest |
| Title | Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP |
| URI | https://link.springer.com/article/10.1007/s10994-018-5707-3 https://www.proquest.com/docview/2035476468 |
| Volume | 107 |
| WOSCitedRecordID | wos000435533300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9088EX5ydO58iDT0qgH2mb-qayoehG2ZwMX0qbXqcwNlmr4H9vkrWbigr6EihN0zbJ5S53v_wO4Dj1nIQJ7ddIGGWRQMpt9JXfypSyJ-eRFetkE163y4dDPyjOcWcl2r0MSeqV-sNhN01ja3LqeMq5tgpVqe24ksZe_36x_FquTu8opcehSn2XoczvmvisjJYW5pegqNY17dq_vnITNgrTkpzP58IWrOBkG2pl2gZSSPEOdAbjfBbRvnKCj0hHoymRFESrozOiUOYzfMQSOftGpikpcFwZ0WkmMCHKgUuub4NdGLRbd5dXtMiqQIXcvOWyVHw9ikQmNpgdGRiljCVeggZnKJjvppYwkTtxFDupGZuCmRE3UXhJLC9t196DymQ6wX0gsRxMk7tqex0zwW2OSSrNKT-yEkTf4HUwyu4NRUE5rjJfjMMlWbLqrlC2EqruCu06nCweeZ7zbfxWuVGOWViIXhZahu0wz2WufP1pOUbL2z82dvCn2oewrv59DtxtQCWfveARrInX_CmbNaF60eoGvSas3nhUlh0rkGXgPDT1XH0HJUbdjQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS-QwFD64urC-eFvF8ZoHfdkl0EvapoKIeMFhLgir4Fttk1MVZEZnRsU_5W80J20cXNA3H3wplLYH0nznJDk5-T6ArTKJtFA2r6EFF7lCLkNMKW_lG98zOAoKKzaRdLvy4iI9nYAXdxaGyipdTLSBWvcV5cjNIj2MRBKLWO7d3XNSjaLdVSehUcGihc9PZsk23G0emv7dDoLjo7ODE16rCnBlFi8jcyW-GiJRKTwR5h7mpRA60ehJgUqkcRkoH2VU5EVU-oWvhJ9LH1WiC3MbxqGx-wOmRCgT4upvJfwt8gexVZY0jhtxmjm4XdTqqJ4l4fUljxJKDb4fB8eT2__2Y-0wdzz73X7QHMzUE2q2X3nAPExgbwFmnVgFq2PXb-ic344GOf9Hqf8r1rE1pMhqetmrHUa19QO8Rlcv_Mz6Jaur14bMimugZpS2Zs326SKcf0mjlmCy1-_hMrDCQNiXMSUVCqFkKFGXZhKZ5oFGTD3ZAM_1bKZqonXS-7jNxhTRBIbMWMkIDFnYgD9vn9xVLCOfvbzmAJDVAWeYjXu_AX8dhMaPPzS28rmxTfh1ctZpZ-1mt7UK09TwqlZ5DSZHgwdch5_qcXQzHGxYT2Bw-dXIegUDd0GN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dS9xAEB_0KtKXWr_oWVv3QV-UxXxsko0gUmoPj9PjQAXfYrI7OQW507urcv9a_zp3NlmPFvTNh74EQpKBzf5mZndmdn4A22USaaFsXEMLLnKFXIaYUtzKN7pncBQUlmwi6Xbl1VXam4M_7iwMlVU6m2gNtR4qipGbTXoYiSQWsdwv67KI3nHr6P6BE4MUZVodnUYFkQ5On8z2bXzYPjZzvRMErV8XP094zTDAldnITMyVetdQQ5XCE2HuYV4KoRONnhSoRBqXgfJRRkVeRKVf-Er4ufRRJbowt2EcGrnz8MF44Yh0rJPwFy8QxJZl0ihxxGkV4TKq1bE925DXlzxKKEz4t0-cLXT_yc1al9da-p9_1mf4VC-02Y9KM5ZhDgcrsORILFht01bh7PJuMsr5OaUE-uzM1pYiq9vO9g8Y1dyP8AZdHfGUDUtWV7WNmSXdQM0onM3ap701uHyXQa1DYzAc4BdghYG2L2MKNhRCyVCiLs3iMs0DjZh6sgmem-VM1Q3YiQfkLpu1jiZgZEZKRsDIwibsvnxyX3UfeevlTQeGrDZE42yGhCbsOTjNHr8qbONtYVuwaACVnba7na_wkcZdlTBvQmMy-o3fYEE9Tm7Ho-9WKRhcvzewngF_30pH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Strong+Machine+Learning%3A+comprehensibility+of+programs+learned+with+ILP&rft.jtitle=Machine+learning&rft.au=Muggleton%2C+Stephen+H.&rft.au=Schmid%2C+Ute&rft.au=Zeller%2C+Christina&rft.au=Tamaddoni-Nezhad%2C+Alireza&rft.date=2018-07-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=107&rft.issue=7&rft.spage=1119&rft.epage=1140&rft_id=info:doi/10.1007%2Fs10994-018-5707-3&rft.externalDocID=10_1007_s10994_018_5707_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |