Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP

During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable and comprehensibility not so, later definitions in the 1990s, such as Mitchell’s, tende...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Machine learning Ročník 107; číslo 7; s. 1119 - 1140
Hlavní autori: Muggleton, Stephen H., Schmid, Ute, Zeller, Christina, Tamaddoni-Nezhad, Alireza, Besold, Tarek
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2018
Springer Nature B.V
Predmet:
ISSN:0885-6125, 1573-0565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable and comprehensibility not so, later definitions in the 1990s, such as Mitchell’s, tended to use a one-dimensional approach to Machine Learning based solely on predictive accuracy, ultimately favouring statistical over symbolic Machine Learning approaches. In this paper we provide a definition of comprehensibility of hypotheses which can be estimated using human participant trials. We present two sets of experiments testing human comprehensibility of logic programs. In the first experiment we test human comprehensibility with and without predicate invention. Results indicate comprehensibility is affected not only by the complexity of the presented program but also by the existence of anonymous predicate symbols. In the second experiment we directly test whether any state-of-the-art ILP systems are ultra-strong learners in Michie’s sense, and select the Metagol system for use in humans trials. Results show participants were not able to learn the relational concept on their own from a set of examples but they were able to apply the relational definition provided by the ILP system correctly. This implies the existence of a class of relational concepts which are hard to acquire for humans, though easy to understand given an abstract explanation. We believe improved understanding of this class could have potential relevance to contexts involving human learning, teaching and verbal interaction.
AbstractList During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable and comprehensibility not so, later definitions in the 1990s, such as Mitchell’s, tended to use a one-dimensional approach to Machine Learning based solely on predictive accuracy, ultimately favouring statistical over symbolic Machine Learning approaches. In this paper we provide a definition of comprehensibility of hypotheses which can be estimated using human participant trials. We present two sets of experiments testing human comprehensibility of logic programs. In the first experiment we test human comprehensibility with and without predicate invention. Results indicate comprehensibility is affected not only by the complexity of the presented program but also by the existence of anonymous predicate symbols. In the second experiment we directly test whether any state-of-the-art ILP systems are ultra-strong learners in Michie’s sense, and select the Metagol system for use in humans trials. Results show participants were not able to learn the relational concept on their own from a set of examples but they were able to apply the relational definition provided by the ILP system correctly. This implies the existence of a class of relational concepts which are hard to acquire for humans, though easy to understand given an abstract explanation. We believe improved understanding of this class could have potential relevance to contexts involving human learning, teaching and verbal interaction.
Author Besold, Tarek
Zeller, Christina
Schmid, Ute
Muggleton, Stephen H.
Tamaddoni-Nezhad, Alireza
Author_xml – sequence: 1
  givenname: Stephen H.
  orcidid: 0000-0001-6061-6104
  surname: Muggleton
  fullname: Muggleton, Stephen H.
  email: s.muggleton@imperial.ac.uk
  organization: Department of Computing, Imperial College London
– sequence: 2
  givenname: Ute
  surname: Schmid
  fullname: Schmid, Ute
  organization: Cognitive Systems Group, University of Bamberg
– sequence: 3
  givenname: Christina
  surname: Zeller
  fullname: Zeller, Christina
  organization: Cognitive Systems Group, University of Bamberg
– sequence: 4
  givenname: Alireza
  surname: Tamaddoni-Nezhad
  fullname: Tamaddoni-Nezhad, Alireza
  organization: Department of Computer Science, University of Surrey
– sequence: 5
  givenname: Tarek
  surname: Besold
  fullname: Besold, Tarek
  organization: Digital Media Lab, University of Bremen
BookMark eNp9kFtLAzEQhYNUsK3-AN8CPkcnu7lsfZPipbCioH0O2Wy2Tdlma7JF-u9NWUEQ9GWGgfPNnDkTNPKdtwhdUrimAPImUpjNGAFaEC5BkvwEjSmXOQEu-AiNoSg4ETTjZ2gS4wYAMlGIMXpetn3Q5K0PnV_hZ23WzltcWh2886tbbLrtLti19dFVrnX9AXcN3oVuFfQ24vaoszX-dP0aL8rXc3Ta6Dbai-8-RcuH-_f5EylfHhfzu5IYBrJPVWZUcMF4BSzXYHXDWC1rCwWzhs1EkxlqC17pije0ooZRXVBrZF2lMRf5FF0Ne5OTj72Nvdp0--DTSZVBzpkUTBRJJQeVCV2MwTbKuF73rvPpZdcqCuqYnRqyUyk7dcxO5Ymkv8hdcFsdDv8y2cDEpPUrG348_Q19AVUsgzA
CitedBy_id crossref_primary_10_1007_s10994_025_06750_z
crossref_primary_10_1515_itit_2025_0007
crossref_primary_10_1007_s10994_021_06105_4
crossref_primary_10_1016_j_artint_2020_103438
crossref_primary_10_1007_s10994_023_06351_8
crossref_primary_10_1016_j_artint_2021_103458
crossref_primary_10_1145_3447581
crossref_primary_10_1007_s13218_022_00781_7
crossref_primary_10_1007_s13218_022_00786_2
crossref_primary_10_1007_s11634_020_00422_7
crossref_primary_10_3390_computers10110154
crossref_primary_10_1007_s10994_021_06048_w
crossref_primary_10_1016_j_ijar_2021_06_003
crossref_primary_10_1002_hfm_20838
crossref_primary_10_1016_j_cmpb_2025_108604
crossref_primary_10_3389_fenvs_2019_00197
crossref_primary_10_1002_widm_1391
crossref_primary_10_3389_frai_2022_919534
crossref_primary_10_1007_s10994_021_06089_1
crossref_primary_10_1007_s10618_022_00867_8
crossref_primary_10_1016_j_ijar_2024_109206
crossref_primary_10_3390_bdcc2030023
crossref_primary_10_1007_s13218_019_00603_3
crossref_primary_10_1155_2022_4857250
crossref_primary_10_1007_s13218_021_00751_5
crossref_primary_10_1016_j_artint_2021_103521
crossref_primary_10_1007_s10994_020_05941_0
crossref_primary_10_1007_s13218_018_0565_5
crossref_primary_10_1109_TPAMI_2019_2958341
crossref_primary_10_1007_s13218_022_00771_9
crossref_primary_10_1007_s10994_019_05856_5
crossref_primary_10_1007_s11634_020_00419_2
crossref_primary_10_3389_fcomp_2024_1321238
crossref_primary_10_1007_s13218_020_00633_2
crossref_primary_10_1002_wsbm_1548
crossref_primary_10_1007_s13218_024_00835_y
crossref_primary_10_1007_s11432_020_3569_0
crossref_primary_10_1109_THMS_2019_2947592
crossref_primary_10_1016_j_nbt_2023_02_001
crossref_primary_10_3389_fpsyg_2022_601523
crossref_primary_10_1109_ACCESS_2022_3207812
crossref_primary_10_1038_s44334_024_00006_9
crossref_primary_10_1007_s00354_019_00054_2
crossref_primary_10_3389_frai_2020_507973
Cites_doi 10.1093/mind/LIX.236.433
10.1016/B978-0-934613-41-5.50041-6
10.1145/2339530.2339556
10.1016/j.artint.2007.04.007
10.1007/978-3-319-63342-8_5
10.1007/BF03037228
10.1016/j.dss.2010.12.003
10.1007/3-540-57868-4_49
10.1145/2623330.2630823
10.1145/1408800.1408906
10.1126/science.298.5598.1569
10.1007/978-3-642-39799-8_67
10.1145/1518701.1519023
10.1037/h0024133
10.1007/3540635149_45
10.1007/s10994-014-5471-y
10.3233/978-1-60750-754-3-11
10.1007/s10994-011-5259-2
10.1016/j.cogsys.2010.12.002
10.1007/s10994-013-5358-3
10.1109/HICSS.1998.648319
10.1016/B978-0-934613-64-4.50040-2
10.1016/0004-3702(92)90087-E
10.1007/3-540-61291-2_55
10.1109/64.21896
10.1016/0004-3702(83)90008-5
10.1214/15-AOAS848
10.1145/2594473.2594475
10.1111/j.2041-210X.2010.00012.x
10.1007/BF03037227
10.1145/2939672.2939874
10.1609/aimag.v37i1.2648
ContentType Journal Article
Copyright The Author(s) 2018
Machine Learning is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2018
– notice: Machine Learning is a copyright of Springer, (2018). All Rights Reserved.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-018-5707-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1140
ExternalDocumentID 10_1007_s10994_018_5707_3
GrantInformation_xml – fundername: Imperial College London
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c407t-c472165645b043a0eaf44d7de084ec496f2c1e85bab5f1b1c41a81ec7dbf1b363
IEDL.DBID RSV
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435533300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 04 21:34:30 EST 2025
Sat Nov 29 07:45:07 EST 2025
Tue Nov 18 21:30:37 EST 2025
Fri Feb 21 02:28:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Inductive logic programming
Comprehensibility
Ultra-strong machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-c472165645b043a0eaf44d7de084ec496f2c1e85bab5f1b1c41a81ec7dbf1b363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6061-6104
OpenAccessLink https://link.springer.com/10.1007/s10994-018-5707-3
PQID 2035476468
PQPubID 54194
PageCount 22
ParticipantIDs proquest_journals_2035476468
crossref_citationtrail_10_1007_s10994_018_5707_3
crossref_primary_10_1007_s10994_018_5707_3
springer_journals_10_1007_s10994_018_5707_3
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Albarghouthi, A., Gulwani, S., & Kincaid, Z. (2013). Recursive program synthesis. In International conference on computer aided verification (pp. 934–950). Springer.
Stahl, I. (1992). Constructive induction in inductive logic programming: An overview. Technical report, Fakultat Informatik, Universitat Stuttgart.
Murphy, G. L., & Lassaline, M. E. (1997). Hierarchical structure in concepts and the basic level of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts, and categories (pp. 93–131). Cambridge: Psychology Press, MIT Press.
Idestam-Almquist, P. (1996). Efficient induction of recursive definitions by structural analysis of saturations. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 192–205). Amsterdam: IOS Press.
Allahyari, H., & Lavesson, N. (2011). User-oriented assessment of classification model understandability. In 11th Scandinavian conference on artificial intelligence. IOS Press.
Furusawa, M., Inuzuka, N., Seki, H., & Itoh, H. (1997). Induction of logic programs with more than one recursive clause by analyzing saturations. In International conference on inductive logic programming (pp. 165–172). Springer.
Aha, D. W., Lapointe, S., Ling, C. X., & Matwin, S. (1994). Inverting implication with small training sets. In European conference on machine learning (pp. 29–48). Springer.
MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning2014942549314440610.1007/s10994-013-5358-31319.68121
SchmidUKitzelmannEInductive rule learning on the knowledge levelCognitive Systems Research201112323724810.1016/j.cogsys.2010.12.002
Schmid, U., Zeller, C., Besold, T., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2017). How does predicate invention affect human comprehensibility? In A. Russo & J. Cussens (Eds.) Proceedings of the 26th international conference on inductive logic programming (ILP 2016, September 4th–6th, London). Springer
Mofizur, C. R., & Numao, M. (1996). Top-down induction of recursive programs from small number of sparse examples. In L. De Raedt (Ed.), Advances in inductive logic Programming (pp. 236–253). Amsterdam: IOS Press.
Muggleton, S. H., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In Proceedings of the 5th international conference on machine learning (pp. 339–352). Kaufmann.
Gaines, B. R. (1996). Transforming rules and trees into comprehensible knowledge structures. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 205–226). Palo Alto, CA: AAAI Press.
SchielzethHSimple means to improve the interpretability of regression coefficientsMethods in Ecology and Evolution20101210311310.1111/j.2041-210X.2010.00012.x
Askira-Gelman, I. (1998). Knowledge discovery: Comprehensibility of the results. In Proceedings of the thirty-first Hawaii international conference on system sciences (Vol. 5, pp. 247–255). IEEE.
WickMRThompsonWBReconstructive expert system explanationArtificial Intelligence1992541–2337010.1016/0004-3702(92)90087-E
BergadanoFGunettiDInductive logic programming: From machine learning to software engineering1996CambridgeMIT Press
Lipton, Z. C. (2016). The mythos of model interpretability. CoRR, abs/1606.03490.
SrinivasanAThe ALEPH manual2001OxfordMachine Learning at the Computing Laboratory, Oxford University
ChandrasekaranBTannerMCJosephsonJRExplaining control strategies in problem solvingIEEE Expert19894191510.1109/64.21896
KitzelmannESchmidUInductive synthesis of functional programs: An explanation based generalization approachJournal of Machine Learning Research2006742945422743741222.68069
QuinlanJRLearning logical definitions from relationsMachine Learning19905239266
Doran, D., Schulz, S., & Besold, T. R. (2017). What does explainable ai really mean? A new conceptualization of perspectives. arXiv preprint arXiv:1710.00794.
Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable decision sets: A joint framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1675–1684). ACM.
Kitzelmann, E. (2008). Analytical inductive functional programming. In International symposium on logic-based program synthesis and transformation (pp. 87–102). Springer.
LethamBRudinCMcCormickTHMadiganDInterpretable classifiers using rules and bayesian analysis: Building a better stroke prediction modelAnnals of Applied Statistics20159313501371341872610.1214/15-AOAS84806525989
MozinaMZabkarJBratkoIArgument based machine learningArtificial Intelligence200717110–15922937235448010.1016/j.artint.2007.04.0071168.68481
Rios, R., & Matwin, S. (1996). Efficient induction of recursive prolog definitions. In Conference of the Canadian Society for Computational Studies of Intelligence (pp. 240–248). Springer.
Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regression. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 150–158). ACM.
MuggletonSHFengCMuggletonSHEfficient induction of logic programsInductive logic programming1992LondonAcademic Press281298
MitchellTMKellerRMKedar-CabelliSTExplanation-based generalization: A unifying viewMachine Learning1986114780
ClanceyWJThe epistemology of a rule-based expert system: A framework for explanationArtificial Intelligence198320321525110.1016/0004-3702(83)90008-5
KahneyHSolowayESpohrerJCWhat do novice programmers know about recursion?Studying the novice programmer1989MahwahLawrence Erlbaum209228
MuggletonSHDe RaedtLPooleDBratkoIFlachPInoueKILP turns 20: Biography and future challengesMachine Learning2011861323289066210.1007/s10994-011-5259-21243.68014
Hobbs, J. R. (2004). Abduction in natural language understanding. In L. R. Horn & G. Ward (Eds.), Handbook of pragmatics (pp. 724–741). Blackwell.
SterlingLShapiroEYThe art of Prolog: Advanced programming techniques1994CambridgeMIT Press0850.68137
MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic datalog: Predicate invention revisitedMachine Learning201510014973337214710.1007/s10994-014-5471-y1346.68119
Van Someren, M. (1995). A perspective on machine learning and comprehensibility from knowledge acquisition. In Proceedings of the workshop on comprehensibility in machine learning, IJCAI-95. Citeseer.
HauserMDChomskyNFitchWTThe faculty of language: What is it, who has it, and how did it evolve?Science200229855981569157910.1126/science.298.5598.1569
Rouveirol, C., & Puget, J.-F. (1989). A simple and general solution for inverting resolution. In EWSL-89 (pp. 201–210). London: Pitman.
FreitasAAComprehensible classification models: A position paperSIGKDD Explorations Newsletter201415111010.1145/2594473.2594475
QuinlanJRCameronRMInduction of logic programs: FOIL and related systemsNew Generation Computing19951328731210.1007/BF03037228
Kedar-Cabelli, S. T., & McCarty, L. T. (1987). Explanation-based generalization as resolution theorem proving. In P. Langley (Ed) Proceedings of the fourth international workshop on machine learning, Los Altos (pp. 383–389). Morgan Kaufmann.
ForbusKDSoftware social organisms: Implications for measuring AI progressAI Magazine2016371859010.1609/aimag.v37i1.2648
MuggletonSHInverse entailment and ProgolNew Generation Computing19951324528610.1007/BF03037227
Rudin, C. (2014). Algorithms for interpretable machine learning. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14, New York, NY, USA (pp. 1519–1519). ACM.
Shortliffe, E. H. (1974). A rule-based computer program for advising physicians regarding antimicrobial therapy selection. In Proceedings of the 1974 annual ACM conference-volume 2 (pp. 739–739). ACM.
HuysmansJDejaegerKMuesCVanthienenJBaesensBAn empirical evaluation of the comprehensibility of decision table, tree and rule based predictive modelsDecision Support Systems201151114115410.1016/j.dss.2010.12.003
Lim, B. Y., Dey, A. K., & Avrahami, D. (2009). Why and why not explanations improve the intelligibility of context-aware intelligent systems. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’09, New York, NY, USA (pp. 2119–2128). ACM.
LemkeEAKlausmeierHJHarrisCWRelationship of selected cognitive abilities to concept attainment and information processingJournal of Educational Psychology19675812710.1037/h0024133
Michie, D. (1988). Machine learning in the next five years. In Proceedings of the third European working session on learning (pp. 107–122). Pitman.
Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. G. (2012). Making machine learning models interpretable. In Proceedings of the 20th european symposium on artificial neural networks, computational intelligence and machine learning ESANN 2012 (pp. 163–172).
TuringAMComputing machinery and intelligenceMind1950592364334603706410.1093/mind/LIX.236.433
AA Freitas (5707_CR10) 2014; 15
5707_CR37
F Bergadano (5707_CR5) 1996
B Letham (5707_CR23) 2015; 9
SH Muggleton (5707_CR31) 1995; 13
5707_CR32
H Kahney (5707_CR17) 1989
L Sterling (5707_CR49) 1994
B Chandrasekaran (5707_CR6) 1989; 4
5707_CR27
5707_CR26
5707_CR8
5707_CR25
5707_CR29
AM Turing (5707_CR50) 1950; 59
5707_CR24
JR Quinlan (5707_CR38) 1990; 5
MD Hauser (5707_CR13) 2002; 298
5707_CR21
SH Muggleton (5707_CR35) 2014; 94
A Srinivasan (5707_CR47) 2001
5707_CR1
5707_CR2
WJ Clancey (5707_CR7) 1983; 20
5707_CR3
5707_CR4
5707_CR16
5707_CR14
SH Muggleton (5707_CR33) 2011; 86
SH Muggleton (5707_CR34) 1992
5707_CR19
5707_CR18
5707_CR52
5707_CR51
5707_CR12
5707_CR11
M Mozina (5707_CR30) 2007; 171
KD Forbus (5707_CR9) 2016; 37
U Schmid (5707_CR44) 2011; 12
5707_CR48
TM Mitchell (5707_CR28) 1986; 1
5707_CR42
5707_CR41
EA Lemke (5707_CR22) 1967; 58
5707_CR40
JR Quinlan (5707_CR39) 1995; 13
5707_CR46
5707_CR45
SH Muggleton (5707_CR36) 2015; 100
H Schielzeth (5707_CR43) 2010; 1
MR Wick (5707_CR53) 1992; 54
E Kitzelmann (5707_CR20) 2006; 7
J Huysmans (5707_CR15) 2011; 51
References_xml – reference: HauserMDChomskyNFitchWTThe faculty of language: What is it, who has it, and how did it evolve?Science200229855981569157910.1126/science.298.5598.1569
– reference: Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. G. (2012). Making machine learning models interpretable. In Proceedings of the 20th european symposium on artificial neural networks, computational intelligence and machine learning ESANN 2012 (pp. 163–172).
– reference: Gaines, B. R. (1996). Transforming rules and trees into comprehensible knowledge structures. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 205–226). Palo Alto, CA: AAAI Press.
– reference: Michie, D. (1988). Machine learning in the next five years. In Proceedings of the third European working session on learning (pp. 107–122). Pitman.
– reference: FreitasAAComprehensible classification models: A position paperSIGKDD Explorations Newsletter201415111010.1145/2594473.2594475
– reference: Hobbs, J. R. (2004). Abduction in natural language understanding. In L. R. Horn & G. Ward (Eds.), Handbook of pragmatics (pp. 724–741). Blackwell.
– reference: QuinlanJRCameronRMInduction of logic programs: FOIL and related systemsNew Generation Computing19951328731210.1007/BF03037228
– reference: ChandrasekaranBTannerMCJosephsonJRExplaining control strategies in problem solvingIEEE Expert19894191510.1109/64.21896
– reference: Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regression. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 150–158). ACM.
– reference: Allahyari, H., & Lavesson, N. (2011). User-oriented assessment of classification model understandability. In 11th Scandinavian conference on artificial intelligence. IOS Press.
– reference: MuggletonSHFengCMuggletonSHEfficient induction of logic programsInductive logic programming1992LondonAcademic Press281298
– reference: KahneyHSolowayESpohrerJCWhat do novice programmers know about recursion?Studying the novice programmer1989MahwahLawrence Erlbaum209228
– reference: Van Someren, M. (1995). A perspective on machine learning and comprehensibility from knowledge acquisition. In Proceedings of the workshop on comprehensibility in machine learning, IJCAI-95. Citeseer.
– reference: LemkeEAKlausmeierHJHarrisCWRelationship of selected cognitive abilities to concept attainment and information processingJournal of Educational Psychology19675812710.1037/h0024133
– reference: SchielzethHSimple means to improve the interpretability of regression coefficientsMethods in Ecology and Evolution20101210311310.1111/j.2041-210X.2010.00012.x
– reference: SrinivasanAThe ALEPH manual2001OxfordMachine Learning at the Computing Laboratory, Oxford University
– reference: Doran, D., Schulz, S., & Besold, T. R. (2017). What does explainable ai really mean? A new conceptualization of perspectives. arXiv preprint arXiv:1710.00794.
– reference: ForbusKDSoftware social organisms: Implications for measuring AI progressAI Magazine2016371859010.1609/aimag.v37i1.2648
– reference: Lipton, Z. C. (2016). The mythos of model interpretability. CoRR, abs/1606.03490.
– reference: Aha, D. W., Lapointe, S., Ling, C. X., & Matwin, S. (1994). Inverting implication with small training sets. In European conference on machine learning (pp. 29–48). Springer.
– reference: Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable decision sets: A joint framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1675–1684). ACM.
– reference: WickMRThompsonWBReconstructive expert system explanationArtificial Intelligence1992541–2337010.1016/0004-3702(92)90087-E
– reference: TuringAMComputing machinery and intelligenceMind1950592364334603706410.1093/mind/LIX.236.433
– reference: Idestam-Almquist, P. (1996). Efficient induction of recursive definitions by structural analysis of saturations. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 192–205). Amsterdam: IOS Press.
– reference: Mofizur, C. R., & Numao, M. (1996). Top-down induction of recursive programs from small number of sparse examples. In L. De Raedt (Ed.), Advances in inductive logic Programming (pp. 236–253). Amsterdam: IOS Press.
– reference: SchmidUKitzelmannEInductive rule learning on the knowledge levelCognitive Systems Research201112323724810.1016/j.cogsys.2010.12.002
– reference: Stahl, I. (1992). Constructive induction in inductive logic programming: An overview. Technical report, Fakultat Informatik, Universitat Stuttgart.
– reference: Rouveirol, C., & Puget, J.-F. (1989). A simple and general solution for inverting resolution. In EWSL-89 (pp. 201–210). London: Pitman.
– reference: Murphy, G. L., & Lassaline, M. E. (1997). Hierarchical structure in concepts and the basic level of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts, and categories (pp. 93–131). Cambridge: Psychology Press, MIT Press.
– reference: KitzelmannESchmidUInductive synthesis of functional programs: An explanation based generalization approachJournal of Machine Learning Research2006742945422743741222.68069
– reference: HuysmansJDejaegerKMuesCVanthienenJBaesensBAn empirical evaluation of the comprehensibility of decision table, tree and rule based predictive modelsDecision Support Systems201151114115410.1016/j.dss.2010.12.003
– reference: LethamBRudinCMcCormickTHMadiganDInterpretable classifiers using rules and bayesian analysis: Building a better stroke prediction modelAnnals of Applied Statistics20159313501371341872610.1214/15-AOAS84806525989
– reference: QuinlanJRLearning logical definitions from relationsMachine Learning19905239266
– reference: Shortliffe, E. H. (1974). A rule-based computer program for advising physicians regarding antimicrobial therapy selection. In Proceedings of the 1974 annual ACM conference-volume 2 (pp. 739–739). ACM.
– reference: Kitzelmann, E. (2008). Analytical inductive functional programming. In International symposium on logic-based program synthesis and transformation (pp. 87–102). Springer.
– reference: BergadanoFGunettiDInductive logic programming: From machine learning to software engineering1996CambridgeMIT Press
– reference: MuggletonSHInverse entailment and ProgolNew Generation Computing19951324528610.1007/BF03037227
– reference: MuggletonSHDe RaedtLPooleDBratkoIFlachPInoueKILP turns 20: Biography and future challengesMachine Learning2011861323289066210.1007/s10994-011-5259-21243.68014
– reference: Rios, R., & Matwin, S. (1996). Efficient induction of recursive prolog definitions. In Conference of the Canadian Society for Computational Studies of Intelligence (pp. 240–248). Springer.
– reference: Lim, B. Y., Dey, A. K., & Avrahami, D. (2009). Why and why not explanations improve the intelligibility of context-aware intelligent systems. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’09, New York, NY, USA (pp. 2119–2128). ACM.
– reference: MitchellTMKellerRMKedar-CabelliSTExplanation-based generalization: A unifying viewMachine Learning1986114780
– reference: MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic datalog: Predicate invention revisitedMachine Learning201510014973337214710.1007/s10994-014-5471-y1346.68119
– reference: MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning2014942549314440610.1007/s10994-013-5358-31319.68121
– reference: ClanceyWJThe epistemology of a rule-based expert system: A framework for explanationArtificial Intelligence198320321525110.1016/0004-3702(83)90008-5
– reference: SterlingLShapiroEYThe art of Prolog: Advanced programming techniques1994CambridgeMIT Press0850.68137
– reference: Furusawa, M., Inuzuka, N., Seki, H., & Itoh, H. (1997). Induction of logic programs with more than one recursive clause by analyzing saturations. In International conference on inductive logic programming (pp. 165–172). Springer.
– reference: MozinaMZabkarJBratkoIArgument based machine learningArtificial Intelligence200717110–15922937235448010.1016/j.artint.2007.04.0071168.68481
– reference: Muggleton, S. H., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In Proceedings of the 5th international conference on machine learning (pp. 339–352). Kaufmann.
– reference: Albarghouthi, A., Gulwani, S., & Kincaid, Z. (2013). Recursive program synthesis. In International conference on computer aided verification (pp. 934–950). Springer.
– reference: Askira-Gelman, I. (1998). Knowledge discovery: Comprehensibility of the results. In Proceedings of the thirty-first Hawaii international conference on system sciences (Vol. 5, pp. 247–255). IEEE.
– reference: Rudin, C. (2014). Algorithms for interpretable machine learning. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14, New York, NY, USA (pp. 1519–1519). ACM.
– reference: Kedar-Cabelli, S. T., & McCarty, L. T. (1987). Explanation-based generalization as resolution theorem proving. In P. Langley (Ed) Proceedings of the fourth international workshop on machine learning, Los Altos (pp. 383–389). Morgan Kaufmann.
– reference: Schmid, U., Zeller, C., Besold, T., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2017). How does predicate invention affect human comprehensibility? In A. Russo & J. Cussens (Eds.) Proceedings of the 26th international conference on inductive logic programming (ILP 2016, September 4th–6th, London). Springer
– volume: 59
  start-page: 433
  issue: 236
  year: 1950
  ident: 5707_CR50
  publication-title: Mind
  doi: 10.1093/mind/LIX.236.433
– ident: 5707_CR18
  doi: 10.1016/B978-0-934613-41-5.50041-6
– ident: 5707_CR26
  doi: 10.1145/2339530.2339556
– volume: 171
  start-page: 922
  issue: 10–15
  year: 2007
  ident: 5707_CR30
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2007.04.007
– start-page: 209
  volume-title: Studying the novice programmer
  year: 1989
  ident: 5707_CR17
– ident: 5707_CR45
  doi: 10.1007/978-3-319-63342-8_5
– volume: 13
  start-page: 287
  year: 1995
  ident: 5707_CR39
  publication-title: New Generation Computing
  doi: 10.1007/BF03037228
– volume: 51
  start-page: 141
  issue: 1
  year: 2011
  ident: 5707_CR15
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2010.12.003
– ident: 5707_CR1
  doi: 10.1007/3-540-57868-4_49
– volume-title: The ALEPH manual
  year: 2001
  ident: 5707_CR47
– ident: 5707_CR42
  doi: 10.1145/2623330.2630823
– ident: 5707_CR46
  doi: 10.1145/1408800.1408906
– volume: 298
  start-page: 1569
  issue: 5598
  year: 2002
  ident: 5707_CR13
  publication-title: Science
  doi: 10.1126/science.298.5598.1569
– ident: 5707_CR51
– ident: 5707_CR2
  doi: 10.1007/978-3-642-39799-8_67
– ident: 5707_CR24
  doi: 10.1145/1518701.1519023
– volume: 58
  start-page: 27
  issue: 1
  year: 1967
  ident: 5707_CR22
  publication-title: Journal of Educational Psychology
  doi: 10.1037/h0024133
– volume: 7
  start-page: 429
  year: 2006
  ident: 5707_CR20
  publication-title: Journal of Machine Learning Research
– ident: 5707_CR11
  doi: 10.1007/3540635149_45
– ident: 5707_CR29
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  ident: 5707_CR36
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– ident: 5707_CR41
– ident: 5707_CR3
  doi: 10.3233/978-1-60750-754-3-11
– volume-title: Inductive logic programming: From machine learning to software engineering
  year: 1996
  ident: 5707_CR5
– volume: 86
  start-page: 3
  issue: 1
  year: 2011
  ident: 5707_CR33
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– volume: 12
  start-page: 237
  issue: 3
  year: 2011
  ident: 5707_CR44
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2010.12.002
– volume: 94
  start-page: 25
  year: 2014
  ident: 5707_CR35
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– ident: 5707_CR8
– ident: 5707_CR52
– ident: 5707_CR4
  doi: 10.1109/HICSS.1998.648319
– ident: 5707_CR32
  doi: 10.1016/B978-0-934613-64-4.50040-2
– ident: 5707_CR14
– volume: 1
  start-page: 47
  issue: 1
  year: 1986
  ident: 5707_CR28
  publication-title: Machine Learning
– volume: 54
  start-page: 33
  issue: 1–2
  year: 1992
  ident: 5707_CR53
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(92)90087-E
– start-page: 281
  volume-title: Inductive logic programming
  year: 1992
  ident: 5707_CR34
– ident: 5707_CR40
  doi: 10.1007/3-540-61291-2_55
– volume: 4
  start-page: 9
  issue: 1
  year: 1989
  ident: 5707_CR6
  publication-title: IEEE Expert
  doi: 10.1109/64.21896
– volume: 5
  start-page: 239
  year: 1990
  ident: 5707_CR38
  publication-title: Machine Learning
– ident: 5707_CR48
– ident: 5707_CR25
– volume: 20
  start-page: 215
  issue: 3
  year: 1983
  ident: 5707_CR7
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(83)90008-5
– ident: 5707_CR19
– volume-title: The art of Prolog: Advanced programming techniques
  year: 1994
  ident: 5707_CR49
– ident: 5707_CR37
– volume: 9
  start-page: 1350
  issue: 3
  year: 2015
  ident: 5707_CR23
  publication-title: Annals of Applied Statistics
  doi: 10.1214/15-AOAS848
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 5707_CR10
  publication-title: SIGKDD Explorations Newsletter
  doi: 10.1145/2594473.2594475
– volume: 1
  start-page: 103
  issue: 2
  year: 2010
  ident: 5707_CR43
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/j.2041-210X.2010.00012.x
– ident: 5707_CR27
– volume: 13
  start-page: 245
  year: 1995
  ident: 5707_CR31
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– ident: 5707_CR21
  doi: 10.1145/2939672.2939874
– ident: 5707_CR16
– volume: 37
  start-page: 85
  issue: 1
  year: 2016
  ident: 5707_CR9
  publication-title: AI Magazine
  doi: 10.1609/aimag.v37i1.2648
– ident: 5707_CR12
SSID ssj0002686
Score 2.5568264
Snippet During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1119
SubjectTerms Accuracy
Artificial Intelligence
Computer Science
Control
Hypotheses
Logic programs
Machine learning
Mechatronics
Natural Language Processing (NLP)
Performance prediction
Robotics
Simulation and Modeling
Special Issue of the Inductive Logic Programming (ILP) 2016
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBw8KYGmTdvUi4g4FN0Y6GC30iavUxjbXKfgf29elm4ouIuXQmkbmr73krwvr99HyHkRh1ooi2towUSmgMkAEsStuIk940d-bsUm4k5H9vtJ1wFupSurrMZEO1DrsUKM3CTpQSjiSETyevLOUDUKd1edhMY62eC-z9HPH2O2GIn9yCo9mkAKGc7k1a7m_Nc5S4rLJQtjhOp-zkvLxeav_VE77bTq_33hHbLtFpz0Zu4hu2QNRnukXok5UBfb-6TdG86mGXtGaHxA27bGEqijXx1cUaw9n8IrVPW0X3RcUFfdVVIrPgGaIqxLH566B6TXunu5vWdOa4Epk9LNzBFZfJBaJvdEkHmQFULoWIMnBSiRRIWvOMgwz_Kw4DlXgmeSg4p1bk6DKDgktdF4BEeE5sbEXEaYdOdCyUCCLswiK8l8DZB4skG86kunyhGRox7GMF1SKKNxUtNKisZJgwa5WDwymbNwrLq5WRkkdQFZpktrNMhlZdLl5T8bO17d2AnZws7O63ebpDabfsAp2VSfs7dyema98Ru1JeNp
  priority: 102
  providerName: ProQuest
Title Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP
URI https://link.springer.com/article/10.1007/s10994-018-5707-3
https://www.proquest.com/docview/2035476468
Volume 107
WOSCitedRecordID wos000435533300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9088EX5ydO58iDT0qgH2mb-qayoehG2ZwMX0qbXqcwNlmr4H9vkrWbigr6EihN0zbJ5S53v_wO4Dj1nIQJ7ddIGGWRQMpt9JXfypSyJ-eRFetkE163y4dDPyjOcWcl2r0MSeqV-sNhN01ja3LqeMq5tgpVqe24ksZe_36x_FquTu8opcehSn2XoczvmvisjJYW5pegqNY17dq_vnITNgrTkpzP58IWrOBkG2pl2gZSSPEOdAbjfBbRvnKCj0hHoymRFESrozOiUOYzfMQSOftGpikpcFwZ0WkmMCHKgUuub4NdGLRbd5dXtMiqQIXcvOWyVHw9ikQmNpgdGRiljCVeggZnKJjvppYwkTtxFDupGZuCmRE3UXhJLC9t196DymQ6wX0gsRxMk7tqex0zwW2OSSrNKT-yEkTf4HUwyu4NRUE5rjJfjMMlWbLqrlC2EqruCu06nCweeZ7zbfxWuVGOWViIXhZahu0wz2WufP1pOUbL2z82dvCn2oewrv59DtxtQCWfveARrInX_CmbNaF60eoGvSas3nhUlh0rkGXgPDT1XH0HJUbdjQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS-QwFD64urC-eFvF8ZoHfdkl0EvapoKIeMFhLgir4Fttk1MVZEZnRsU_5W80J20cXNA3H3wplLYH0nznJDk5-T6ArTKJtFA2r6EFF7lCLkNMKW_lG98zOAoKKzaRdLvy4iI9nYAXdxaGyipdTLSBWvcV5cjNIj2MRBKLWO7d3XNSjaLdVSehUcGihc9PZsk23G0emv7dDoLjo7ODE16rCnBlFi8jcyW-GiJRKTwR5h7mpRA60ehJgUqkcRkoH2VU5EVU-oWvhJ9LH1WiC3MbxqGx-wOmRCgT4upvJfwt8gexVZY0jhtxmjm4XdTqqJ4l4fUljxJKDb4fB8eT2__2Y-0wdzz73X7QHMzUE2q2X3nAPExgbwFmnVgFq2PXb-ic344GOf9Hqf8r1rE1pMhqetmrHUa19QO8Rlcv_Mz6Jaur14bMimugZpS2Zs326SKcf0mjlmCy1-_hMrDCQNiXMSUVCqFkKFGXZhKZ5oFGTD3ZAM_1bKZqonXS-7jNxhTRBIbMWMkIDFnYgD9vn9xVLCOfvbzmAJDVAWeYjXu_AX8dhMaPPzS28rmxTfh1ctZpZ-1mt7UK09TwqlZ5DSZHgwdch5_qcXQzHGxYT2Bw-dXIegUDd0GN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dS9xAEB_0KtKXWr_oWVv3QV-UxXxsko0gUmoPj9PjQAXfYrI7OQW507urcv9a_zp3NlmPFvTNh74EQpKBzf5mZndmdn4A22USaaFsXEMLLnKFXIaYUtzKN7pncBQUlmwi6Xbl1VXam4M_7iwMlVU6m2gNtR4qipGbTXoYiSQWsdwv67KI3nHr6P6BE4MUZVodnUYFkQ5On8z2bXzYPjZzvRMErV8XP094zTDAldnITMyVetdQQ5XCE2HuYV4KoRONnhSoRBqXgfJRRkVeRKVf-Er4ufRRJbowt2EcGrnz8MF44Yh0rJPwFy8QxJZl0ihxxGkV4TKq1bE925DXlzxKKEz4t0-cLXT_yc1al9da-p9_1mf4VC-02Y9KM5ZhDgcrsORILFht01bh7PJuMsr5OaUE-uzM1pYiq9vO9g8Y1dyP8AZdHfGUDUtWV7WNmSXdQM0onM3ap701uHyXQa1DYzAc4BdghYG2L2MKNhRCyVCiLs3iMs0DjZh6sgmem-VM1Q3YiQfkLpu1jiZgZEZKRsDIwibsvnxyX3UfeevlTQeGrDZE42yGhCbsOTjNHr8qbONtYVuwaACVnba7na_wkcZdlTBvQmMy-o3fYEE9Tm7Ho-9WKRhcvzewngF_30pH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Strong+Machine+Learning%3A+comprehensibility+of+programs+learned+with+ILP&rft.jtitle=Machine+learning&rft.au=Muggleton%2C+Stephen+H.&rft.au=Schmid%2C+Ute&rft.au=Zeller%2C+Christina&rft.au=Tamaddoni-Nezhad%2C+Alireza&rft.date=2018-07-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=107&rft.issue=7&rft.spage=1119&rft.epage=1140&rft_id=info:doi/10.1007%2Fs10994-018-5707-3&rft.externalDocID=10_1007_s10994_018_5707_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon