SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG

•Capturing the temporal dependency in the sequence of sleep stages, especially the long-term temporal context.•Improve EEG representation learning with channel convolution and one-dimensional attention mechanism.•Design data augmentation algorithms to improve the ability of the model to learn EEG in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods and programs in biomedicine Ročník 220; s. 106806
Hlavní autoři: Zhao, Caihong, Li, Jinbao, Guo, Yahong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Ireland Elsevier B.V 01.06.2022
Témata:
ISSN:0169-2607, 1872-7565, 1872-7565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Capturing the temporal dependency in the sequence of sleep stages, especially the long-term temporal context.•Improve EEG representation learning with channel convolution and one-dimensional attention mechanism.•Design data augmentation algorithms to improve the ability of the model to learn EEG in different sleep stages Background and objective: Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages. Methods: In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples. Results: We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation. Conclusions: The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
AbstractList Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages. In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples. We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation. The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
•Capturing the temporal dependency in the sequence of sleep stages, especially the long-term temporal context.•Improve EEG representation learning with channel convolution and one-dimensional attention mechanism.•Design data augmentation algorithms to improve the ability of the model to learn EEG in different sleep stages Background and objective: Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages. Methods: In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples. Results: We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation. Conclusions: The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.BACKGROUND AND OBJECTIVESingle-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.METHODSIn this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.RESULTSWe evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.CONCLUSIONSThe network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
ArticleNumber 106806
Author Guo, Yahong
Li, Jinbao
Zhao, Caihong
Author_xml – sequence: 1
  givenname: Caihong
  surname: Zhao
  fullname: Zhao, Caihong
  organization: School of Electronic and Engineer, Heilongjiang University, Harbin, 150080, China
– sequence: 2
  givenname: Jinbao
  surname: Li
  fullname: Li, Jinbao
  email: lijinb@sdas.org
  organization: Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
– sequence: 3
  givenname: Yahong
  surname: Guo
  fullname: Guo, Yahong
  email: guoyh@qlu.edu.cn
  organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35461126$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFF-CAfOSSxXbWTlJxqVZLQargAJyNM5kUbx17sb1A3x5HaS89lJNHo-8byf9_Rk588EjIa87WnHH1br-G6dCvBROiLFTL1DOy4m0jqkYqeUJWBeoqoVhzSs5S2jPGhJTqBTmt5UZxLtSK_PjqEA_b4DP-zZ8xX9BLmnE6hGgchWVNPeY_Id7SMURqjjlMJlugaTZpyubG-hvam4QDTWV0WMFP4z06uttdvSTPR-MSvrp_z8n3D7tv24_V9ZerT9vL6wo2rMmVMaIXtRxML5nox7JsoQZgkqt-HIzsoB4AWjbWyNG0fOzYIFGNpulmhNfn5O1y9xDDryOmrCebAJ0zHsMxaaHkRrSMdZuCvrlHj_2Egz5EO5l4px9SKUC7ABBDShFHDTaXP5c4orFOc6bnAvRezwXouQC9FFBU8Uh9uP6k9H6RsAT022LUCSx6wMFGhKyHYJ_WLx7p4Ky3YNwt3v1P_gemqbLs
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107264
crossref_primary_10_3389_fnins_2023_1176551
crossref_primary_10_1109_JBHI_2024_3498871
crossref_primary_10_1109_JBHI_2024_3457969
crossref_primary_10_1016_j_smrv_2024_101897
crossref_primary_10_1016_j_bspc_2025_108538
crossref_primary_10_1109_JBHI_2025_3525626
crossref_primary_10_1109_TCDS_2024_3358022
crossref_primary_10_1016_j_cmpb_2024_108405
crossref_primary_10_1152_jn_00465_2023
crossref_primary_10_1016_j_bspc_2023_105615
crossref_primary_10_1109_JBHI_2023_3284160
crossref_primary_10_3389_fncom_2024_1505746
crossref_primary_10_1038_s41598_025_07630_1
crossref_primary_10_3389_fnins_2022_1088116
crossref_primary_10_1007_s10462_024_10926_9
crossref_primary_10_1016_j_eswa_2025_128220
crossref_primary_10_1016_j_bbe_2024_09_005
crossref_primary_10_1016_j_sleep_2024_03_024
crossref_primary_10_1016_j_bspc_2025_107553
crossref_primary_10_1016_j_heliyon_2024_e41147
crossref_primary_10_3390_brainsci15090985
crossref_primary_10_1016_j_bspc_2024_106020
crossref_primary_10_3390_diagnostics12102510
crossref_primary_10_1016_j_bspc_2023_105351
crossref_primary_10_1109_JBHI_2024_3403878
crossref_primary_10_1007_s13369_024_09623_0
crossref_primary_10_1016_j_jbi_2024_104689
crossref_primary_10_1155_2022_4610747
crossref_primary_10_1007_s40031_025_01275_4
crossref_primary_10_1088_1741_2552_aca2de
crossref_primary_10_1016_j_cmpb_2023_107930
crossref_primary_10_1016_j_asoc_2024_112298
crossref_primary_10_1016_j_bspc_2023_104688
crossref_primary_10_1016_j_bbe_2024_06_004
crossref_primary_10_1109_JBHI_2023_3332503
crossref_primary_10_1016_j_cmpb_2023_107992
crossref_primary_10_1109_TIM_2025_3556900
crossref_primary_10_1109_TNSRE_2023_3330963
crossref_primary_10_3390_brainsci14111087
crossref_primary_10_1109_JIOT_2024_3477732
crossref_primary_10_1088_1361_6579_acff35
crossref_primary_10_1109_JSEN_2024_3371456
crossref_primary_10_1007_s12539_025_00721_7
crossref_primary_10_1007_s10489_025_06484_4
crossref_primary_10_1007_s44163_025_00356_z
Cites_doi 10.1016/j.compbiomed.2021.104246
10.1007/s13534-018-00093-6
10.1016/j.knosys.2021.107078
10.1007/s10489-021-02597-8
10.1109/JBHI.2020.2978004
10.1016/j.bspc.2017.12.001
10.1109/10.867928
10.1109/TNSRE.2021.3117970
10.1016/j.compbiomed.2018.04.025
10.1016/j.cmpb.2021.106063
10.3390/brainsci11040456
10.1016/j.bspc.2020.102037
10.1016/j.eswa.2018.12.023
10.3390/s21051562
10.1093/jamia/ocy064
10.1016/j.compbiomed.2020.103691
10.1007/s13369-019-04197-8
10.1016/j.compbiomed.2022.105224
10.1016/j.cmpb.2015.10.013
10.1109/JBHI.2019.2937558
10.1109/TNSRE.2021.3076234
10.1109/TCBB.2019.2912955
10.1109/TPAMI.2021.3070057
10.1038/s41467-018-07229-3
10.1109/ACCESS.2019.2900345
10.1109/TBME.2018.2872652
10.1016/S1389-9457(01)00149-6
10.3390/ijerph18063087
10.1109/TNSRE.2019.2896659
10.1371/journal.pone.0216456
10.5664/jcsm.2172
10.1109/TNSRE.2017.2721116
10.1161/01.CIR.101.23.e215
10.1016/j.bspc.2020.102203
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2022.106806
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 35461126
10_1016_j_cmpb_2022_106806
S0169260722001882
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-aa2b235dab502bfc408c3cc0516bfda59c3dcc80f3e1ea81f90d5e6fa79516b13
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795817800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 10:04:29 EDT 2025
Wed Feb 19 02:25:51 EST 2025
Sat Nov 29 07:24:17 EST 2025
Tue Nov 18 21:50:52 EST 2025
Fri Feb 23 02:40:08 EST 2024
Tue Oct 14 19:32:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Sleep stage sequence
Automatic sleep staging
Single-channel EEG
Temporal context
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-aa2b235dab502bfc408c3cc0516bfda59c3dcc80f3e1ea81f90d5e6fa79516b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35461126
PQID 2654280094
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2654280094
pubmed_primary_35461126
crossref_citationtrail_10_1016_j_cmpb_2022_106806
crossref_primary_10_1016_j_cmpb_2022_106806
elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_106806
elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_106806
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eldele, Chen, Liu, Wu, Kwoh, Li, Guan (bib0013) 2021; 29
Sun, Chen, Li, Fan, Chen (bib0019) 2020; 24
Phan, Andreotti, Cooray, Chén, Vos (bib0024) 2019; 66
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0029) 2000; 101
Neng, Lu, Xu (bib0048) 2021; 11
Sors, Bonnet, Mirek, Vercueil, Payen (bib0022) 2018; 42
Zhang, Cui, Mueller, Tao, Kim, Rueschman, Mariani, Mobley, Redline (bib0034) 2018; 25
None (bib0035) 1997; 20
Qu, Wang, Hong, Chi, Feng, Grunstein, Gordon (bib0044) 2020; 24
Woo, Park, Lee, Kweon (bib0039) 2018; volume 11211
Supratak, Dong, Wu, Guo (bib0026) 2017; 25
Phan, Chen, Tran, Koch, Mertins, De Vos (bib0045) 2021
Paisarnsrisomsuk, Ruiz, Alvarez (bib0043) 2020
Perslev, Jensen, Darkner, Jennum, Igel (bib0037) 2019
Stephansen, Olesen, Olsen, Ambati, Leary, Moore, Carrillo, Lin, Han, Yan (bib0003) 2018; 9
Sharma, Tiwari, Acharya (bib0047) 2021; 18
Vilamala, Madsen, Hansen (bib0021) 2017
Sokolovsky, Guerrero, Paisarnsrisomsuk, Ruiz, Alvarez (bib0033) 2020; 17
Mousavi, Afghah, Acharya (bib0025) 2019; 14
Phan, Andreotti, Cooray, Chén, Vos (bib0012) 2018
Supratak, Guo (bib0040) 2020
Imtiaz (bib0007) 2021; 21
Sharma, Darji, Thakrar, Acharya (bib0004) 2022; 143
Chollet (bib0038) 2017
Seo, Back, Lee, Park, Kim, Lee (bib0020) 2020; 61
Berry, Budhiraja, Gottlieb, Gozal, Iber, Kapur, Marcus, Mehra, Parthasarathy, Quan (bib0008) 2012; 8
Li, Yan, Mahini, Wei, Wang, Mathiak, Liu, Cong (bib0032) 2021; 63
Sharma, Patel, Choudhary, Acharya (bib0016) 2020; 45
Khalighi, Sousa, Santos, Nunes (bib0028) 2016; 124
Andreotti, Phan, Cooray, Lo, Hu, De Vos (bib0014) 2018
Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (bib0030) 2000; 47
Sharma, Goyal, Achuth, Acharya (bib0015) 2018; 98
Dhok, Pimpalkhute, Chandurkar, Bhurane, Sharma, Acharya (bib0017) 2020
Jiang, Lu, Ma, Wang (bib0041) 2019; 121
Phan, Andreotti, Cooray, Chén, De Vos (bib0023) 2019; 27
Fiorillo, Favaro, Faraci (bib0046) 2021; 29
Mendonça, Mostafa, Morgado-Dias, Ravelo-García, Penzel (bib0005) 2019; 7
Sharma, Patel, Acharya (bib0010) 2021; 224
Hirshkowitz (bib0002) 2015
Sharma, Kumbhani, Yadav, Acharya (bib0006) 2022; 52
Xiang, Zeng, Yang (bib0042) 2020
Loh, Ooi, Dhok, Sharma, Bhurane, Acharya (bib0018) 2022; 52
Rechtshaffen (bib0031) 1968; 204
Sharma, Dhiman, Acharya (bib0001) 2021; 131
Casson (bib0009) 2019; 9
Sharma, Bhurane, Acharya (bib0011) 2022
Khalili, Asl (bib0027) 2021; 204
Terzano, Parrino, Sherieri, Chervin, Chokroverty, Guilleminault, Hirshkowitz, Mahowald, Moldofsky, Rosa, Thomas, Walters (bib0036) 2001; 2
Sharma (10.1016/j.cmpb.2022.106806_sbref0015) 2018; 98
Sun (10.1016/j.cmpb.2022.106806_bib0019) 2020; 24
Phan (10.1016/j.cmpb.2022.106806_bib0012) 2018
Kemp (10.1016/j.cmpb.2022.106806_bib0030) 2000; 47
Andreotti (10.1016/j.cmpb.2022.106806_bib0014) 2018
Sharma (10.1016/j.cmpb.2022.106806_bib0004) 2022; 143
Paisarnsrisomsuk (10.1016/j.cmpb.2022.106806_bib0043) 2020
Eldele (10.1016/j.cmpb.2022.106806_bib0013) 2021; 29
Mousavi (10.1016/j.cmpb.2022.106806_bib0025) 2019; 14
Xiang (10.1016/j.cmpb.2022.106806_bib0042) 2020
Vilamala (10.1016/j.cmpb.2022.106806_bib0021) 2017
Sharma (10.1016/j.cmpb.2022.106806_bib0001) 2021; 131
Sharma (10.1016/j.cmpb.2022.106806_sbref0047) 2021; 18
Perslev (10.1016/j.cmpb.2022.106806_bib0037) 2019
Rechtshaffen (10.1016/j.cmpb.2022.106806_bib0031) 1968; 204
Hirshkowitz (10.1016/j.cmpb.2022.106806_bib0002) 2015
Supratak (10.1016/j.cmpb.2022.106806_bib0040) 2020
Chollet (10.1016/j.cmpb.2022.106806_bib0038) 2017
Mendonça (10.1016/j.cmpb.2022.106806_bib0005) 2019; 7
Fiorillo (10.1016/j.cmpb.2022.106806_bib0046) 2021; 29
Phan (10.1016/j.cmpb.2022.106806_bib0023) 2019; 27
Sharma (10.1016/j.cmpb.2022.106806_bib0006) 2022; 52
Casson (10.1016/j.cmpb.2022.106806_bib0009) 2019; 9
None (10.1016/j.cmpb.2022.106806_bib0035) 1997; 20
Goldberger (10.1016/j.cmpb.2022.106806_bib0029) 2000; 101
Dhok (10.1016/j.cmpb.2022.106806_sbref0017) 2020
Phan (10.1016/j.cmpb.2022.106806_bib0024) 2019; 66
Terzano (10.1016/j.cmpb.2022.106806_bib0036) 2001; 2
Phan (10.1016/j.cmpb.2022.106806_bib0045) 2021
Neng (10.1016/j.cmpb.2022.106806_bib0048) 2021; 11
Berry (10.1016/j.cmpb.2022.106806_bib0008) 2012; 8
Woo (10.1016/j.cmpb.2022.106806_sbref0039) 2018; volume 11211
Li (10.1016/j.cmpb.2022.106806_bib0032) 2021; 63
Qu (10.1016/j.cmpb.2022.106806_bib0044) 2020; 24
Zhang (10.1016/j.cmpb.2022.106806_bib0034) 2018; 25
Sharma (10.1016/j.cmpb.2022.106806_bib0011) 2022
Supratak (10.1016/j.cmpb.2022.106806_bib0026) 2017; 25
Stephansen (10.1016/j.cmpb.2022.106806_bib0003) 2018; 9
Sharma (10.1016/j.cmpb.2022.106806_bib0016) 2020; 45
Loh (10.1016/j.cmpb.2022.106806_sbref0018) 2022; 52
Jiang (10.1016/j.cmpb.2022.106806_bib0041) 2019; 121
Khalighi (10.1016/j.cmpb.2022.106806_bib0028) 2016; 124
Sharma (10.1016/j.cmpb.2022.106806_bib0010) 2021; 224
Sors (10.1016/j.cmpb.2022.106806_bib0022) 2018; 42
Imtiaz (10.1016/j.cmpb.2022.106806_bib0007) 2021; 21
Seo (10.1016/j.cmpb.2022.106806_bib0020) 2020; 61
Khalili (10.1016/j.cmpb.2022.106806_bib0027) 2021; 204
Sokolovsky (10.1016/j.cmpb.2022.106806_bib0033) 2020; 17
References_xml – volume: 204
  year: 1968
  ident: bib0031
  article-title: A manual of standardized terminology, techniques and scoring systems for sleep stages of human subjects
– volume: 14
  start-page: e0216456
  year: 2019
  ident: bib0025
  article-title: Sleepeegnet: automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PLoS One
– volume: 27
  start-page: 400
  year: 2019
  end-page: 410
  ident: bib0023
  article-title: Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 63
  start-page: 102203
  year: 2021
  ident: bib0032
  article-title: End-to-end sleep staging using convolutional neural network in raw single-channel EEG
  publication-title: Biomed. Signal Process. Control.
– year: 2021
  ident: bib0045
  article-title: Xsleepnet: multi-view sequential model for automatic sleep staging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 121
  start-page: 188
  year: 2019
  end-page: 203
  ident: bib0041
  article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and hmm-based refinement
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: bib0017
  article-title: Automated phase classification in cyclic alternating patterns in sleep stages using wigner-ville distribution based features
  publication-title: Comput. Biol. Med.
– volume: 11
  year: 2021
  ident: bib0048
  article-title: Ccrrsleepnet: a hybrid relational inductive biases network for automatic sleep stage classification on raw single-channel eeg
  publication-title: Brain Sci.
– volume: 9
  start-page: 01
  year: 2019
  ident: bib0009
  article-title: Wearable eeg and beyond
  publication-title: Biomed. Eng. Lett.
– start-page: 641
  year: 2020
  end-page: 644
  ident: bib0040
  article-title: Tinysleepnet: An Efficient Deep Learning Model for Sleep Stage Scoring Based on Raw Single-channel Eeg
  publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC)
– volume: 9
  year: 2018
  ident: bib0003
  article-title: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
  publication-title: Nat. Commun.
– volume: 124
  year: 2016
  ident: bib0028
  article-title: Isruc-sleep: a comprehensive public dataset for sleep researchers
  publication-title: Comput. Methods Programs Biomed.
– start-page: 171
  year: 2018
  end-page: 174
  ident: bib0014
  article-title: Multichannel Sleep Stage Classification and Transfer Learning Using Convolutional Neural Networks
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 52
  year: 2022
  ident: bib0018
  article-title: Automated detection of cyclic alternating pattern and classification of sleep stages using deep neural network
  publication-title: Appl. Intell.
– volume: 18
  start-page: 3087
  year: 2021
  ident: bib0047
  article-title: Automatic sleep stage scoring in healthy and sleep disorder patients using optimal wavelet filter bank technique with eeg signals
  publication-title: Int. J. Environ. Res. Public Health
– volume: 143
  start-page: 105224
  year: 2022
  ident: bib0004
  article-title: Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 24527
  year: 2019
  end-page: 24546
  ident: bib0005
  article-title: A review of approaches for sleep quality analysis
  publication-title: IEEE Access
– start-page: e12939
  year: 2022
  ident: bib0011
  article-title: An expert system for automated classification of phases in cyclic alternating patterns of sleep using optimal wavelet-based entropy features
  publication-title: Expert Syst.
– volume: 24
  start-page: 1351
  year: 2020
  end-page: 1366
  ident: bib0019
  article-title: A hierarchical neural network for sleep stage classification based on comprehensive feature learning and multi-flow sequence learning
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 42
  start-page: 107
  year: 2018
  end-page: 114
  ident: bib0022
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel eeg
  publication-title: Biomed. Signal Process. Control
– volume: 224
  start-page: 107078
  year: 2021
  ident: bib0010
  article-title: Automated identification of insomnia using optimal bi-orthogonal wavelet transform technique with single-channel eeg signals
  publication-title: Knowl. Based Syst.
– volume: 8
  start-page: 597
  year: 2012
  end-page: 619
  ident: bib0008
  article-title: Rules for scoring respiratory events in sleep: update of the 2007 aasm manual for the scoring of sleep and associated events
  publication-title: J. Clin. Sleep Med.
– start-page: 1452
  year: 2018
  end-page: 1455
  ident: bib0012
  article-title: Automatic Sleep Stage Classification Using Single-channel Eeg: Learning Sequential Features with Attention-based Recurrent Neural Networks
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– year: 2015
  ident: bib0002
  article-title: The history of polysomnography: Tool of scientific discovery
– volume: 2
  start-page: 537
  year: 2001
  end-page: 553
  ident: bib0036
  article-title: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep
  publication-title: Sleep Med.
– volume: 52
  start-page: 1325
  year: 2022
  end-page: 1337
  ident: bib0006
  article-title: Automated sleep apnea detection using optimal duration-frequency concentrated wavelet-based features of pulse oximetry signals
  publication-title: Appl. Intell. (Dordrecht, Netherlands)
– volume: 98
  year: 2018
  ident: bib0015
  article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank
  publication-title: Comput. Biol. Med.
– start-page: 338
  year: 2020
  end-page: 343
  ident: bib0043
  article-title: Improved Deep Learning Classification of Human Sleep Stages
  publication-title: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)
– volume: 61
  start-page: 102037
  year: 2020
  ident: bib0020
  article-title: Intra- and inter-epoch temporal context network (iitnet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG
  publication-title: Biomed. Signal Process. Control.
– volume: 21
  start-page: 1562
  year: 2021
  ident: bib0007
  article-title: A systematic review of sensing technologies for wearable sleep staging
  publication-title: Sensors
– start-page: 1800
  year: 2017
  end-page: 1807
  ident: bib0038
  article-title: Xception: Deep Learning with Depthwise Separable Convolutions
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: volume 11211
  start-page: 3
  year: 2018
  end-page: 19
  ident: bib0039
  article-title: CBAM: Convolutional Block Attention Module
  publication-title: Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VII
– volume: 131
  start-page: 104246
  year: 2021
  ident: bib0001
  article-title: Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ecg signals
  publication-title: Comput. Biol. Med.
– volume: 45
  start-page: 2531
  year: 2020
  end-page: 2544
  ident: bib0016
  article-title: Automated detection of sleep stages using energy-localized orthogonal wavelet filter banks
  publication-title: Arabian J. Sci. Eng.
– start-page: 4417
  year: 2019
  end-page: 4428
  ident: bib0037
  article-title: U-time: a Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging
  publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada
– volume: 25
  start-page: 1998
  year: 2017
  end-page: 2008
  ident: bib0026
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib0029
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 20
  start-page: 1077
  year: 1997
  end-page: 1085
  ident: bib0035
  article-title: The sleep heart health study: design, rationale, and methods
  publication-title: Sleep
– volume: 17
  start-page: 1835
  year: 2020
  end-page: 1845
  ident: bib0033
  article-title: Deep learning for automated feature discovery and classification of sleep stages
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 25
  start-page: 1351
  year: 2018
  end-page: 1358
  ident: bib0034
  article-title: The national sleep research resource: towards a sleep data commons
  publication-title: J. Am. Med. Inform. Assoc.
– volume: 204
  start-page: 106063
  year: 2021
  ident: bib0027
  article-title: Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG
  publication-title: Comput. Methods Programs Biomed.
– volume: 47
  start-page: 1185
  year: 2000
  end-page: 1194
  ident: bib0030
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib0042
  article-title: A Novel Sleep Stage Classification via Combination of Fast Representation Learning and Semantic-to-signal Learning
  publication-title: 2020 International Joint Conference on Neural Networks (IJCNN)
– volume: 29
  start-page: 809
  year: 2021
  end-page: 818
  ident: bib0013
  article-title: An attention-based deep learning approach for sleep stage classification with single-channel eeg
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0021
  article-title: Deep Convolutional Neural Networks for Interpretable Analysis of Eeg Sleep Stage Scoring
  publication-title: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)
– volume: 29
  start-page: 2076
  year: 2021
  end-page: 2085
  ident: bib0046
  article-title: Deepsleepnet-lite: a simplified automatic sleep stage scoring model with uncertainty estimates
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 66
  start-page: 1285
  year: 2019
  end-page: 1296
  ident: bib0024
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 24
  start-page: 2833
  year: 2020
  end-page: 2843
  ident: bib0044
  article-title: A residual based attention model for eeg based sleep staging
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 131
  start-page: 104246
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0001
  article-title: Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ecg signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104246
– volume: 9
  start-page: 01
  year: 2019
  ident: 10.1016/j.cmpb.2022.106806_bib0009
  article-title: Wearable eeg and beyond
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-018-00093-6
– volume: 224
  start-page: 107078
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0010
  article-title: Automated identification of insomnia using optimal bi-orthogonal wavelet transform technique with single-channel eeg signals
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107078
– volume: 52
  year: 2022
  ident: 10.1016/j.cmpb.2022.106806_sbref0018
  article-title: Automated detection of cyclic alternating pattern and classification of sleep stages using deep neural network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02597-8
– volume: 24
  start-page: 2833
  issue: 10
  year: 2020
  ident: 10.1016/j.cmpb.2022.106806_bib0044
  article-title: A residual based attention model for eeg based sleep staging
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2978004
– volume: 42
  start-page: 107
  year: 2018
  ident: 10.1016/j.cmpb.2022.106806_bib0022
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel eeg
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.12.001
– volume: 47
  start-page: 1185
  issue: 9
  year: 2000
  ident: 10.1016/j.cmpb.2022.106806_bib0030
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.867928
– volume: 29
  start-page: 2076
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0046
  article-title: Deepsleepnet-lite: a simplified automatic sleep stage scoring model with uncertainty estimates
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3117970
– volume: 98
  year: 2018
  ident: 10.1016/j.cmpb.2022.106806_sbref0015
  article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.04.025
– volume: 204
  start-page: 106063
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0027
  article-title: Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106063
– volume: 11
  issue: 4
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0048
  article-title: Ccrrsleepnet: a hybrid relational inductive biases network for automatic sleep stage classification on raw single-channel eeg
  publication-title: Brain Sci.
  doi: 10.3390/brainsci11040456
– volume: 61
  start-page: 102037
  year: 2020
  ident: 10.1016/j.cmpb.2022.106806_bib0020
  article-title: Intra- and inter-epoch temporal context network (iitnet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102037
– start-page: 1
  year: 2020
  ident: 10.1016/j.cmpb.2022.106806_bib0042
  article-title: A Novel Sleep Stage Classification via Combination of Fast Representation Learning and Semantic-to-signal Learning
– volume: 20
  start-page: 1077
  issue: 12
  year: 1997
  ident: 10.1016/j.cmpb.2022.106806_bib0035
  article-title: The sleep heart health study: design, rationale, and methods
  publication-title: Sleep
– volume: 121
  start-page: 188
  year: 2019
  ident: 10.1016/j.cmpb.2022.106806_bib0041
  article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and hmm-based refinement
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.023
– volume: 21
  start-page: 1562
  issue: 5
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0007
  article-title: A systematic review of sensing technologies for wearable sleep staging
  publication-title: Sensors
  doi: 10.3390/s21051562
– volume: 25
  start-page: 1351
  issue: 10
  year: 2018
  ident: 10.1016/j.cmpb.2022.106806_bib0034
  article-title: The national sleep research resource: towards a sleep data commons
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy064
– start-page: 171
  year: 2018
  ident: 10.1016/j.cmpb.2022.106806_bib0014
  article-title: Multichannel Sleep Stage Classification and Transfer Learning Using Convolutional Neural Networks
– year: 2020
  ident: 10.1016/j.cmpb.2022.106806_sbref0017
  article-title: Automated phase classification in cyclic alternating patterns in sleep stages using wigner-ville distribution based features
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103691
– volume: 45
  start-page: 2531
  issue: 4
  year: 2020
  ident: 10.1016/j.cmpb.2022.106806_bib0016
  article-title: Automated detection of sleep stages using energy-localized orthogonal wavelet filter banks
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-019-04197-8
– start-page: 641
  year: 2020
  ident: 10.1016/j.cmpb.2022.106806_bib0040
  article-title: Tinysleepnet: An Efficient Deep Learning Model for Sleep Stage Scoring Based on Raw Single-channel Eeg
– volume: 143
  start-page: 105224
  year: 2022
  ident: 10.1016/j.cmpb.2022.106806_bib0004
  article-title: Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105224
– volume: 124
  year: 2016
  ident: 10.1016/j.cmpb.2022.106806_bib0028
  article-title: Isruc-sleep: a comprehensive public dataset for sleep researchers
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.10.013
– volume: 24
  start-page: 1351
  issue: 5
  year: 2020
  ident: 10.1016/j.cmpb.2022.106806_bib0019
  article-title: A hierarchical neural network for sleep stage classification based on comprehensive feature learning and multi-flow sequence learning
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2937558
– volume: 29
  start-page: 809
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0013
  article-title: An attention-based deep learning approach for sleep stage classification with single-channel eeg
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3076234
– start-page: e12939
  year: 2022
  ident: 10.1016/j.cmpb.2022.106806_bib0011
  article-title: An expert system for automated classification of phases in cyclic alternating patterns of sleep using optimal wavelet-based entropy features
  publication-title: Expert Syst.
– start-page: 1452
  year: 2018
  ident: 10.1016/j.cmpb.2022.106806_bib0012
  article-title: Automatic Sleep Stage Classification Using Single-channel Eeg: Learning Sequential Features with Attention-based Recurrent Neural Networks
– start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2022.106806_bib0021
  article-title: Deep Convolutional Neural Networks for Interpretable Analysis of Eeg Sleep Stage Scoring
– volume: 17
  start-page: 1835
  issue: 6
  year: 2020
  ident: 10.1016/j.cmpb.2022.106806_bib0033
  article-title: Deep learning for automated feature discovery and classification of sleep stages
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2019.2912955
– year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0045
  article-title: Xsleepnet: multi-view sequential model for automatic sleep staging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3070057
– start-page: 4417
  year: 2019
  ident: 10.1016/j.cmpb.2022.106806_bib0037
  article-title: U-time: a Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging
– volume: volume 11211
  start-page: 3
  year: 2018
  ident: 10.1016/j.cmpb.2022.106806_sbref0039
  article-title: CBAM: Convolutional Block Attention Module
– year: 2015
  ident: 10.1016/j.cmpb.2022.106806_bib0002
– volume: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.cmpb.2022.106806_bib0003
  article-title: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07229-3
– volume: 204
  year: 1968
  ident: 10.1016/j.cmpb.2022.106806_bib0031
– volume: 7
  start-page: 24527
  year: 2019
  ident: 10.1016/j.cmpb.2022.106806_bib0005
  article-title: A review of approaches for sleep quality analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900345
– start-page: 338
  year: 2020
  ident: 10.1016/j.cmpb.2022.106806_bib0043
  article-title: Improved Deep Learning Classification of Human Sleep Stages
– volume: 66
  start-page: 1285
  issue: 5
  year: 2019
  ident: 10.1016/j.cmpb.2022.106806_bib0024
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2872652
– volume: 2
  start-page: 537
  issue: 6
  year: 2001
  ident: 10.1016/j.cmpb.2022.106806_bib0036
  article-title: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep
  publication-title: Sleep Med.
  doi: 10.1016/S1389-9457(01)00149-6
– volume: 18
  start-page: 3087
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_sbref0047
  article-title: Automatic sleep stage scoring in healthy and sleep disorder patients using optimal wavelet filter bank technique with eeg signals
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18063087
– volume: 27
  start-page: 400
  issue: 3
  year: 2019
  ident: 10.1016/j.cmpb.2022.106806_bib0023
  article-title: Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2896659
– volume: 14
  start-page: e0216456
  issue: 5
  year: 2019
  ident: 10.1016/j.cmpb.2022.106806_bib0025
  article-title: Sleepeegnet: automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216456
– volume: 8
  start-page: 597
  issue: 5
  year: 2012
  ident: 10.1016/j.cmpb.2022.106806_bib0008
  article-title: Rules for scoring respiratory events in sleep: update of the 2007 aasm manual for the scoring of sleep and associated events
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.2172
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: 10.1016/j.cmpb.2022.106806_bib0026
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.cmpb.2022.106806_bib0029
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 63
  start-page: 102203
  year: 2021
  ident: 10.1016/j.cmpb.2022.106806_bib0032
  article-title: End-to-end sleep staging using convolutional neural network in raw single-channel EEG
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102203
– start-page: 1800
  year: 2017
  ident: 10.1016/j.cmpb.2022.106806_bib0038
  article-title: Xception: Deep Learning with Depthwise Separable Convolutions
– volume: 52
  start-page: 1325
  issue: 2
  year: 2022
  ident: 10.1016/j.cmpb.2022.106806_bib0006
  article-title: Automated sleep apnea detection using optimal duration-frequency concentrated wavelet-based features of pulse oximetry signals
  publication-title: Appl. Intell. (Dordrecht, Netherlands)
SSID ssj0002556
Score 2.5309007
Snippet •Capturing the temporal dependency in the sequence of sleep stages, especially the long-term temporal context.•Improve EEG representation learning with channel...
Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106806
SubjectTerms Automatic sleep staging
Electroencephalography - methods
Humans
Polysomnography - methods
Single-channel EEG
Sleep
Sleep stage sequence
Sleep Stages
Temporal context
Title SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722001882
https://dx.doi.org/10.1016/j.cmpb.2022.106806
https://www.ncbi.nlm.nih.gov/pubmed/35461126
https://www.proquest.com/docview/2654280094
Volume 220
WOSCitedRecordID wos000795817800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DSFeEN-Uj8lIiJcqVeJ8OOGtQhkwjYJEJxVejOM4WqeQljUd_fO5i51snbYxHnixKtduIt-v5_P5d3eEvOZR4jEuC0e60ASM5U5cFMoB65UnMmBKJabYBB-P4-k0-dLr_W5jYU5LXlXxep0s_quooQ-EjaGz_yDu7kehAz6D0KEFsUN7I8F_LbVeNEmn1vVYG8_fwGagKhtqOnwxqAz925AoV_XcZG5d4lx0LzSli3CHywfoTCi1gxHClS4Hafr-vEHbVoWwpaiXNvFAQ_pqqLYmvn_j_v77kTQOWjk7mtudEzlBDbFgf1Zlct7RglbNyG-yG2g9FHC47ZhUVqnGHKz40NSEGOpL-qwmZsw9p0s9LAsSXarmjcfheKh-LrIhPnJ4Nngzp_b4s9g7PDgQk3Q6ebP45WC5MbyWt7VXtsgO42ECGn1n9DGd7nebOGZmw7N6-5o23spQAy8-9iqb5qozS2O7TO6Ru_bQQUcGLPdJT1cPyO1PViwPyY8LmHlLR7RFDLWIoRYxFBBDO8TQBjHUIoY2iKGbiKGAmEfkcC-dvPvg2NIbjoITfu1IyTLmh7nMQpdlBXTGylcKNHiUFbkME-XnSsVu4WtPy9grEjcPdVRInuAQz39Mtqt5pZ8SqnxXa1Xo0FdewLNIhtItgkjKjKtcsahPvHbxhLJ56bE8SilaAuKxwAUXuODCLHifDLo5C5OV5drRfisT0cYbww4pAE3Xzgq7WdYaNVbmX-e9asUuQFXj_Zus9Hy1FAyLw8XI5e2TJwYP3dv7YRBhNN-zG8x-Tu6c_c1ekO36ZKVfklvqtJ4tT3bJFp_GuxbPfwDhWMDa
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SleepContextNet%3A+A+temporal+context+network+for+automatic+sleep+staging+based+single-channel+EEG&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Zhao%2C+Caihong&rft.au=Li%2C+Jinbao&rft.au=Guo%2C+Yahong&rft.date=2022-06-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=220&rft.spage=106806&rft_id=info:doi/10.1016%2Fj.cmpb.2022.106806&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon