SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG
•Capturing the temporal dependency in the sequence of sleep stages, especially the long-term temporal context.•Improve EEG representation learning with channel convolution and one-dimensional attention mechanism.•Design data augmentation algorithms to improve the ability of the model to learn EEG in...
Uloženo v:
| Vydáno v: | Computer methods and programs in biomedicine Ročník 220; s. 106806 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Ireland
Elsevier B.V
01.06.2022
|
| Témata: | |
| ISSN: | 0169-2607, 1872-7565, 1872-7565 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Capturing the temporal dependency in the sequence of sleep stages, especially the long-term temporal context.•Improve EEG representation learning with channel convolution and one-dimensional attention mechanism.•Design data augmentation algorithms to improve the ability of the model to learn EEG in different sleep stages
Background and objective: Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.
Methods: In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.
Results: We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.
Conclusions: The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system. |
|---|---|
| AbstractList | Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.
In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.
We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.
The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system. •Capturing the temporal dependency in the sequence of sleep stages, especially the long-term temporal context.•Improve EEG representation learning with channel convolution and one-dimensional attention mechanism.•Design data augmentation algorithms to improve the ability of the model to learn EEG in different sleep stages Background and objective: Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages. Methods: In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples. Results: We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation. Conclusions: The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system. Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.BACKGROUND AND OBJECTIVESingle-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.METHODSIn this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.RESULTSWe evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.CONCLUSIONSThe network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system. |
| ArticleNumber | 106806 |
| Author | Guo, Yahong Li, Jinbao Zhao, Caihong |
| Author_xml | – sequence: 1 givenname: Caihong surname: Zhao fullname: Zhao, Caihong organization: School of Electronic and Engineer, Heilongjiang University, Harbin, 150080, China – sequence: 2 givenname: Jinbao surname: Li fullname: Li, Jinbao email: lijinb@sdas.org organization: Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China – sequence: 3 givenname: Yahong surname: Guo fullname: Guo, Yahong email: guoyh@qlu.edu.cn organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35461126$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFu1DAQhi1URLeFF-CAfOSSxXbWTlJxqVZLQargAJyNM5kUbx17sb1A3x5HaS89lJNHo-8byf9_Rk588EjIa87WnHH1br-G6dCvBROiLFTL1DOy4m0jqkYqeUJWBeoqoVhzSs5S2jPGhJTqBTmt5UZxLtSK_PjqEA_b4DP-zZ8xX9BLmnE6hGgchWVNPeY_Id7SMURqjjlMJlugaTZpyubG-hvam4QDTWV0WMFP4z06uttdvSTPR-MSvrp_z8n3D7tv24_V9ZerT9vL6wo2rMmVMaIXtRxML5nox7JsoQZgkqt-HIzsoB4AWjbWyNG0fOzYIFGNpulmhNfn5O1y9xDDryOmrCebAJ0zHsMxaaHkRrSMdZuCvrlHj_2Egz5EO5l4px9SKUC7ABBDShFHDTaXP5c4orFOc6bnAvRezwXouQC9FFBU8Uh9uP6k9H6RsAT022LUCSx6wMFGhKyHYJ_WLx7p4Ky3YNwt3v1P_gemqbLs |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107264 crossref_primary_10_3389_fnins_2023_1176551 crossref_primary_10_1109_JBHI_2024_3498871 crossref_primary_10_1109_JBHI_2024_3457969 crossref_primary_10_1016_j_smrv_2024_101897 crossref_primary_10_1016_j_bspc_2025_108538 crossref_primary_10_1109_JBHI_2025_3525626 crossref_primary_10_1109_TCDS_2024_3358022 crossref_primary_10_1016_j_cmpb_2024_108405 crossref_primary_10_1152_jn_00465_2023 crossref_primary_10_1016_j_bspc_2023_105615 crossref_primary_10_1109_JBHI_2023_3284160 crossref_primary_10_3389_fncom_2024_1505746 crossref_primary_10_1038_s41598_025_07630_1 crossref_primary_10_3389_fnins_2022_1088116 crossref_primary_10_1007_s10462_024_10926_9 crossref_primary_10_1016_j_eswa_2025_128220 crossref_primary_10_1016_j_bbe_2024_09_005 crossref_primary_10_1016_j_sleep_2024_03_024 crossref_primary_10_1016_j_bspc_2025_107553 crossref_primary_10_1016_j_heliyon_2024_e41147 crossref_primary_10_3390_brainsci15090985 crossref_primary_10_1016_j_bspc_2024_106020 crossref_primary_10_3390_diagnostics12102510 crossref_primary_10_1016_j_bspc_2023_105351 crossref_primary_10_1109_JBHI_2024_3403878 crossref_primary_10_1007_s13369_024_09623_0 crossref_primary_10_1016_j_jbi_2024_104689 crossref_primary_10_1155_2022_4610747 crossref_primary_10_1007_s40031_025_01275_4 crossref_primary_10_1088_1741_2552_aca2de crossref_primary_10_1016_j_cmpb_2023_107930 crossref_primary_10_1016_j_asoc_2024_112298 crossref_primary_10_1016_j_bspc_2023_104688 crossref_primary_10_1016_j_bbe_2024_06_004 crossref_primary_10_1109_JBHI_2023_3332503 crossref_primary_10_1016_j_cmpb_2023_107992 crossref_primary_10_1109_TIM_2025_3556900 crossref_primary_10_1109_TNSRE_2023_3330963 crossref_primary_10_3390_brainsci14111087 crossref_primary_10_1109_JIOT_2024_3477732 crossref_primary_10_1088_1361_6579_acff35 crossref_primary_10_1109_JSEN_2024_3371456 crossref_primary_10_1007_s12539_025_00721_7 crossref_primary_10_1007_s10489_025_06484_4 crossref_primary_10_1007_s44163_025_00356_z |
| Cites_doi | 10.1016/j.compbiomed.2021.104246 10.1007/s13534-018-00093-6 10.1016/j.knosys.2021.107078 10.1007/s10489-021-02597-8 10.1109/JBHI.2020.2978004 10.1016/j.bspc.2017.12.001 10.1109/10.867928 10.1109/TNSRE.2021.3117970 10.1016/j.compbiomed.2018.04.025 10.1016/j.cmpb.2021.106063 10.3390/brainsci11040456 10.1016/j.bspc.2020.102037 10.1016/j.eswa.2018.12.023 10.3390/s21051562 10.1093/jamia/ocy064 10.1016/j.compbiomed.2020.103691 10.1007/s13369-019-04197-8 10.1016/j.compbiomed.2022.105224 10.1016/j.cmpb.2015.10.013 10.1109/JBHI.2019.2937558 10.1109/TNSRE.2021.3076234 10.1109/TCBB.2019.2912955 10.1109/TPAMI.2021.3070057 10.1038/s41467-018-07229-3 10.1109/ACCESS.2019.2900345 10.1109/TBME.2018.2872652 10.1016/S1389-9457(01)00149-6 10.3390/ijerph18063087 10.1109/TNSRE.2019.2896659 10.1371/journal.pone.0216456 10.5664/jcsm.2172 10.1109/TNSRE.2017.2721116 10.1161/01.CIR.101.23.e215 10.1016/j.bspc.2020.102203 |
| ContentType | Journal Article |
| Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cmpb.2022.106806 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| ExternalDocumentID | 35461126 10_1016_j_cmpb_2022_106806 S0169260722001882 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR RIG 9DU AAYXX CITATION AFCTW CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c407t-aa2b235dab502bfc408c3cc0516bfda59c3dcc80f3e1ea81f90d5e6fa79516b13 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795817800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Sun Sep 28 10:04:29 EDT 2025 Wed Feb 19 02:25:51 EST 2025 Sat Nov 29 07:24:17 EST 2025 Tue Nov 18 21:50:52 EST 2025 Fri Feb 23 02:40:08 EST 2024 Tue Oct 14 19:32:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sleep stage sequence Automatic sleep staging Single-channel EEG Temporal context |
| Language | English |
| License | Copyright © 2022. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c407t-aa2b235dab502bfc408c3cc0516bfda59c3dcc80f3e1ea81f90d5e6fa79516b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 35461126 |
| PQID | 2654280094 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2654280094 pubmed_primary_35461126 crossref_citationtrail_10_1016_j_cmpb_2022_106806 crossref_primary_10_1016_j_cmpb_2022_106806 elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_106806 elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_106806 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 2022-Jun 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Eldele, Chen, Liu, Wu, Kwoh, Li, Guan (bib0013) 2021; 29 Sun, Chen, Li, Fan, Chen (bib0019) 2020; 24 Phan, Andreotti, Cooray, Chén, Vos (bib0024) 2019; 66 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0029) 2000; 101 Neng, Lu, Xu (bib0048) 2021; 11 Sors, Bonnet, Mirek, Vercueil, Payen (bib0022) 2018; 42 Zhang, Cui, Mueller, Tao, Kim, Rueschman, Mariani, Mobley, Redline (bib0034) 2018; 25 None (bib0035) 1997; 20 Qu, Wang, Hong, Chi, Feng, Grunstein, Gordon (bib0044) 2020; 24 Woo, Park, Lee, Kweon (bib0039) 2018; volume 11211 Supratak, Dong, Wu, Guo (bib0026) 2017; 25 Phan, Chen, Tran, Koch, Mertins, De Vos (bib0045) 2021 Paisarnsrisomsuk, Ruiz, Alvarez (bib0043) 2020 Perslev, Jensen, Darkner, Jennum, Igel (bib0037) 2019 Stephansen, Olesen, Olsen, Ambati, Leary, Moore, Carrillo, Lin, Han, Yan (bib0003) 2018; 9 Sharma, Tiwari, Acharya (bib0047) 2021; 18 Vilamala, Madsen, Hansen (bib0021) 2017 Sokolovsky, Guerrero, Paisarnsrisomsuk, Ruiz, Alvarez (bib0033) 2020; 17 Mousavi, Afghah, Acharya (bib0025) 2019; 14 Phan, Andreotti, Cooray, Chén, Vos (bib0012) 2018 Supratak, Guo (bib0040) 2020 Imtiaz (bib0007) 2021; 21 Sharma, Darji, Thakrar, Acharya (bib0004) 2022; 143 Chollet (bib0038) 2017 Seo, Back, Lee, Park, Kim, Lee (bib0020) 2020; 61 Berry, Budhiraja, Gottlieb, Gozal, Iber, Kapur, Marcus, Mehra, Parthasarathy, Quan (bib0008) 2012; 8 Li, Yan, Mahini, Wei, Wang, Mathiak, Liu, Cong (bib0032) 2021; 63 Sharma, Patel, Choudhary, Acharya (bib0016) 2020; 45 Khalighi, Sousa, Santos, Nunes (bib0028) 2016; 124 Andreotti, Phan, Cooray, Lo, Hu, De Vos (bib0014) 2018 Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (bib0030) 2000; 47 Sharma, Goyal, Achuth, Acharya (bib0015) 2018; 98 Dhok, Pimpalkhute, Chandurkar, Bhurane, Sharma, Acharya (bib0017) 2020 Jiang, Lu, Ma, Wang (bib0041) 2019; 121 Phan, Andreotti, Cooray, Chén, De Vos (bib0023) 2019; 27 Fiorillo, Favaro, Faraci (bib0046) 2021; 29 Mendonça, Mostafa, Morgado-Dias, Ravelo-García, Penzel (bib0005) 2019; 7 Sharma, Patel, Acharya (bib0010) 2021; 224 Hirshkowitz (bib0002) 2015 Sharma, Kumbhani, Yadav, Acharya (bib0006) 2022; 52 Xiang, Zeng, Yang (bib0042) 2020 Loh, Ooi, Dhok, Sharma, Bhurane, Acharya (bib0018) 2022; 52 Rechtshaffen (bib0031) 1968; 204 Sharma, Dhiman, Acharya (bib0001) 2021; 131 Casson (bib0009) 2019; 9 Sharma, Bhurane, Acharya (bib0011) 2022 Khalili, Asl (bib0027) 2021; 204 Terzano, Parrino, Sherieri, Chervin, Chokroverty, Guilleminault, Hirshkowitz, Mahowald, Moldofsky, Rosa, Thomas, Walters (bib0036) 2001; 2 Sharma (10.1016/j.cmpb.2022.106806_sbref0015) 2018; 98 Sun (10.1016/j.cmpb.2022.106806_bib0019) 2020; 24 Phan (10.1016/j.cmpb.2022.106806_bib0012) 2018 Kemp (10.1016/j.cmpb.2022.106806_bib0030) 2000; 47 Andreotti (10.1016/j.cmpb.2022.106806_bib0014) 2018 Sharma (10.1016/j.cmpb.2022.106806_bib0004) 2022; 143 Paisarnsrisomsuk (10.1016/j.cmpb.2022.106806_bib0043) 2020 Eldele (10.1016/j.cmpb.2022.106806_bib0013) 2021; 29 Mousavi (10.1016/j.cmpb.2022.106806_bib0025) 2019; 14 Xiang (10.1016/j.cmpb.2022.106806_bib0042) 2020 Vilamala (10.1016/j.cmpb.2022.106806_bib0021) 2017 Sharma (10.1016/j.cmpb.2022.106806_bib0001) 2021; 131 Sharma (10.1016/j.cmpb.2022.106806_sbref0047) 2021; 18 Perslev (10.1016/j.cmpb.2022.106806_bib0037) 2019 Rechtshaffen (10.1016/j.cmpb.2022.106806_bib0031) 1968; 204 Hirshkowitz (10.1016/j.cmpb.2022.106806_bib0002) 2015 Supratak (10.1016/j.cmpb.2022.106806_bib0040) 2020 Chollet (10.1016/j.cmpb.2022.106806_bib0038) 2017 Mendonça (10.1016/j.cmpb.2022.106806_bib0005) 2019; 7 Fiorillo (10.1016/j.cmpb.2022.106806_bib0046) 2021; 29 Phan (10.1016/j.cmpb.2022.106806_bib0023) 2019; 27 Sharma (10.1016/j.cmpb.2022.106806_bib0006) 2022; 52 Casson (10.1016/j.cmpb.2022.106806_bib0009) 2019; 9 None (10.1016/j.cmpb.2022.106806_bib0035) 1997; 20 Goldberger (10.1016/j.cmpb.2022.106806_bib0029) 2000; 101 Dhok (10.1016/j.cmpb.2022.106806_sbref0017) 2020 Phan (10.1016/j.cmpb.2022.106806_bib0024) 2019; 66 Terzano (10.1016/j.cmpb.2022.106806_bib0036) 2001; 2 Phan (10.1016/j.cmpb.2022.106806_bib0045) 2021 Neng (10.1016/j.cmpb.2022.106806_bib0048) 2021; 11 Berry (10.1016/j.cmpb.2022.106806_bib0008) 2012; 8 Woo (10.1016/j.cmpb.2022.106806_sbref0039) 2018; volume 11211 Li (10.1016/j.cmpb.2022.106806_bib0032) 2021; 63 Qu (10.1016/j.cmpb.2022.106806_bib0044) 2020; 24 Zhang (10.1016/j.cmpb.2022.106806_bib0034) 2018; 25 Sharma (10.1016/j.cmpb.2022.106806_bib0011) 2022 Supratak (10.1016/j.cmpb.2022.106806_bib0026) 2017; 25 Stephansen (10.1016/j.cmpb.2022.106806_bib0003) 2018; 9 Sharma (10.1016/j.cmpb.2022.106806_bib0016) 2020; 45 Loh (10.1016/j.cmpb.2022.106806_sbref0018) 2022; 52 Jiang (10.1016/j.cmpb.2022.106806_bib0041) 2019; 121 Khalighi (10.1016/j.cmpb.2022.106806_bib0028) 2016; 124 Sharma (10.1016/j.cmpb.2022.106806_bib0010) 2021; 224 Sors (10.1016/j.cmpb.2022.106806_bib0022) 2018; 42 Imtiaz (10.1016/j.cmpb.2022.106806_bib0007) 2021; 21 Seo (10.1016/j.cmpb.2022.106806_bib0020) 2020; 61 Khalili (10.1016/j.cmpb.2022.106806_bib0027) 2021; 204 Sokolovsky (10.1016/j.cmpb.2022.106806_bib0033) 2020; 17 |
| References_xml | – volume: 204 year: 1968 ident: bib0031 article-title: A manual of standardized terminology, techniques and scoring systems for sleep stages of human subjects – volume: 14 start-page: e0216456 year: 2019 ident: bib0025 article-title: Sleepeegnet: automated sleep stage scoring with sequence to sequence deep learning approach publication-title: PLoS One – volume: 27 start-page: 400 year: 2019 end-page: 410 ident: bib0023 article-title: Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 63 start-page: 102203 year: 2021 ident: bib0032 article-title: End-to-end sleep staging using convolutional neural network in raw single-channel EEG publication-title: Biomed. Signal Process. Control. – year: 2021 ident: bib0045 article-title: Xsleepnet: multi-view sequential model for automatic sleep staging publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 121 start-page: 188 year: 2019 end-page: 203 ident: bib0041 article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and hmm-based refinement publication-title: Expert Syst. Appl. – year: 2020 ident: bib0017 article-title: Automated phase classification in cyclic alternating patterns in sleep stages using wigner-ville distribution based features publication-title: Comput. Biol. Med. – volume: 11 year: 2021 ident: bib0048 article-title: Ccrrsleepnet: a hybrid relational inductive biases network for automatic sleep stage classification on raw single-channel eeg publication-title: Brain Sci. – volume: 9 start-page: 01 year: 2019 ident: bib0009 article-title: Wearable eeg and beyond publication-title: Biomed. Eng. Lett. – start-page: 641 year: 2020 end-page: 644 ident: bib0040 article-title: Tinysleepnet: An Efficient Deep Learning Model for Sleep Stage Scoring Based on Raw Single-channel Eeg publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC) – volume: 9 year: 2018 ident: bib0003 article-title: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy publication-title: Nat. Commun. – volume: 124 year: 2016 ident: bib0028 article-title: Isruc-sleep: a comprehensive public dataset for sleep researchers publication-title: Comput. Methods Programs Biomed. – start-page: 171 year: 2018 end-page: 174 ident: bib0014 article-title: Multichannel Sleep Stage Classification and Transfer Learning Using Convolutional Neural Networks publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 52 year: 2022 ident: bib0018 article-title: Automated detection of cyclic alternating pattern and classification of sleep stages using deep neural network publication-title: Appl. Intell. – volume: 18 start-page: 3087 year: 2021 ident: bib0047 article-title: Automatic sleep stage scoring in healthy and sleep disorder patients using optimal wavelet filter bank technique with eeg signals publication-title: Int. J. Environ. Res. Public Health – volume: 143 start-page: 105224 year: 2022 ident: bib0004 article-title: Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals publication-title: Comput. Biol. Med. – volume: 7 start-page: 24527 year: 2019 end-page: 24546 ident: bib0005 article-title: A review of approaches for sleep quality analysis publication-title: IEEE Access – start-page: e12939 year: 2022 ident: bib0011 article-title: An expert system for automated classification of phases in cyclic alternating patterns of sleep using optimal wavelet-based entropy features publication-title: Expert Syst. – volume: 24 start-page: 1351 year: 2020 end-page: 1366 ident: bib0019 article-title: A hierarchical neural network for sleep stage classification based on comprehensive feature learning and multi-flow sequence learning publication-title: IEEE J. Biomed. Health Inform. – volume: 42 start-page: 107 year: 2018 end-page: 114 ident: bib0022 article-title: A convolutional neural network for sleep stage scoring from raw single-channel eeg publication-title: Biomed. Signal Process. Control – volume: 224 start-page: 107078 year: 2021 ident: bib0010 article-title: Automated identification of insomnia using optimal bi-orthogonal wavelet transform technique with single-channel eeg signals publication-title: Knowl. Based Syst. – volume: 8 start-page: 597 year: 2012 end-page: 619 ident: bib0008 article-title: Rules for scoring respiratory events in sleep: update of the 2007 aasm manual for the scoring of sleep and associated events publication-title: J. Clin. Sleep Med. – start-page: 1452 year: 2018 end-page: 1455 ident: bib0012 article-title: Automatic Sleep Stage Classification Using Single-channel Eeg: Learning Sequential Features with Attention-based Recurrent Neural Networks publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – year: 2015 ident: bib0002 article-title: The history of polysomnography: Tool of scientific discovery – volume: 2 start-page: 537 year: 2001 end-page: 553 ident: bib0036 article-title: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep publication-title: Sleep Med. – volume: 52 start-page: 1325 year: 2022 end-page: 1337 ident: bib0006 article-title: Automated sleep apnea detection using optimal duration-frequency concentrated wavelet-based features of pulse oximetry signals publication-title: Appl. Intell. (Dordrecht, Netherlands) – volume: 98 year: 2018 ident: bib0015 article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank publication-title: Comput. Biol. Med. – start-page: 338 year: 2020 end-page: 343 ident: bib0043 article-title: Improved Deep Learning Classification of Human Sleep Stages publication-title: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) – volume: 61 start-page: 102037 year: 2020 ident: bib0020 article-title: Intra- and inter-epoch temporal context network (iitnet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG publication-title: Biomed. Signal Process. Control. – volume: 21 start-page: 1562 year: 2021 ident: bib0007 article-title: A systematic review of sensing technologies for wearable sleep staging publication-title: Sensors – start-page: 1800 year: 2017 end-page: 1807 ident: bib0038 article-title: Xception: Deep Learning with Depthwise Separable Convolutions publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: volume 11211 start-page: 3 year: 2018 end-page: 19 ident: bib0039 article-title: CBAM: Convolutional Block Attention Module publication-title: Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VII – volume: 131 start-page: 104246 year: 2021 ident: bib0001 article-title: Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ecg signals publication-title: Comput. Biol. Med. – volume: 45 start-page: 2531 year: 2020 end-page: 2544 ident: bib0016 article-title: Automated detection of sleep stages using energy-localized orthogonal wavelet filter banks publication-title: Arabian J. Sci. Eng. – start-page: 4417 year: 2019 end-page: 4428 ident: bib0037 article-title: U-time: a Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada – volume: 25 start-page: 1998 year: 2017 end-page: 2008 ident: bib0026 article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib0029 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 20 start-page: 1077 year: 1997 end-page: 1085 ident: bib0035 article-title: The sleep heart health study: design, rationale, and methods publication-title: Sleep – volume: 17 start-page: 1835 year: 2020 end-page: 1845 ident: bib0033 article-title: Deep learning for automated feature discovery and classification of sleep stages publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 25 start-page: 1351 year: 2018 end-page: 1358 ident: bib0034 article-title: The national sleep research resource: towards a sleep data commons publication-title: J. Am. Med. Inform. Assoc. – volume: 204 start-page: 106063 year: 2021 ident: bib0027 article-title: Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG publication-title: Comput. Methods Programs Biomed. – volume: 47 start-page: 1185 year: 2000 end-page: 1194 ident: bib0030 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg publication-title: IEEE Trans. Biomed. Eng. – start-page: 1 year: 2020 end-page: 8 ident: bib0042 article-title: A Novel Sleep Stage Classification via Combination of Fast Representation Learning and Semantic-to-signal Learning publication-title: 2020 International Joint Conference on Neural Networks (IJCNN) – volume: 29 start-page: 809 year: 2021 end-page: 818 ident: bib0013 article-title: An attention-based deep learning approach for sleep stage classification with single-channel eeg publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 1 year: 2017 end-page: 6 ident: bib0021 article-title: Deep Convolutional Neural Networks for Interpretable Analysis of Eeg Sleep Stage Scoring publication-title: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP) – volume: 29 start-page: 2076 year: 2021 end-page: 2085 ident: bib0046 article-title: Deepsleepnet-lite: a simplified automatic sleep stage scoring model with uncertainty estimates publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 66 start-page: 1285 year: 2019 end-page: 1296 ident: bib0024 article-title: Joint classification and prediction CNN framework for automatic sleep stage classification publication-title: IEEE Trans. Biomed. Eng. – volume: 24 start-page: 2833 year: 2020 end-page: 2843 ident: bib0044 article-title: A residual based attention model for eeg based sleep staging publication-title: IEEE J. Biomed. Health Inform. – volume: 131 start-page: 104246 year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0001 article-title: Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ecg signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104246 – volume: 9 start-page: 01 year: 2019 ident: 10.1016/j.cmpb.2022.106806_bib0009 article-title: Wearable eeg and beyond publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-018-00093-6 – volume: 224 start-page: 107078 year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0010 article-title: Automated identification of insomnia using optimal bi-orthogonal wavelet transform technique with single-channel eeg signals publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107078 – volume: 52 year: 2022 ident: 10.1016/j.cmpb.2022.106806_sbref0018 article-title: Automated detection of cyclic alternating pattern and classification of sleep stages using deep neural network publication-title: Appl. Intell. doi: 10.1007/s10489-021-02597-8 – volume: 24 start-page: 2833 issue: 10 year: 2020 ident: 10.1016/j.cmpb.2022.106806_bib0044 article-title: A residual based attention model for eeg based sleep staging publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2978004 – volume: 42 start-page: 107 year: 2018 ident: 10.1016/j.cmpb.2022.106806_bib0022 article-title: A convolutional neural network for sleep stage scoring from raw single-channel eeg publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.12.001 – volume: 47 start-page: 1185 issue: 9 year: 2000 ident: 10.1016/j.cmpb.2022.106806_bib0030 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.867928 – volume: 29 start-page: 2076 year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0046 article-title: Deepsleepnet-lite: a simplified automatic sleep stage scoring model with uncertainty estimates publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3117970 – volume: 98 year: 2018 ident: 10.1016/j.cmpb.2022.106806_sbref0015 article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.04.025 – volume: 204 start-page: 106063 year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0027 article-title: Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106063 – volume: 11 issue: 4 year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0048 article-title: Ccrrsleepnet: a hybrid relational inductive biases network for automatic sleep stage classification on raw single-channel eeg publication-title: Brain Sci. doi: 10.3390/brainsci11040456 – volume: 61 start-page: 102037 year: 2020 ident: 10.1016/j.cmpb.2022.106806_bib0020 article-title: Intra- and inter-epoch temporal context network (iitnet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2020.102037 – start-page: 1 year: 2020 ident: 10.1016/j.cmpb.2022.106806_bib0042 article-title: A Novel Sleep Stage Classification via Combination of Fast Representation Learning and Semantic-to-signal Learning – volume: 20 start-page: 1077 issue: 12 year: 1997 ident: 10.1016/j.cmpb.2022.106806_bib0035 article-title: The sleep heart health study: design, rationale, and methods publication-title: Sleep – volume: 121 start-page: 188 year: 2019 ident: 10.1016/j.cmpb.2022.106806_bib0041 article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and hmm-based refinement publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.023 – volume: 21 start-page: 1562 issue: 5 year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0007 article-title: A systematic review of sensing technologies for wearable sleep staging publication-title: Sensors doi: 10.3390/s21051562 – volume: 25 start-page: 1351 issue: 10 year: 2018 ident: 10.1016/j.cmpb.2022.106806_bib0034 article-title: The national sleep research resource: towards a sleep data commons publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy064 – start-page: 171 year: 2018 ident: 10.1016/j.cmpb.2022.106806_bib0014 article-title: Multichannel Sleep Stage Classification and Transfer Learning Using Convolutional Neural Networks – year: 2020 ident: 10.1016/j.cmpb.2022.106806_sbref0017 article-title: Automated phase classification in cyclic alternating patterns in sleep stages using wigner-ville distribution based features publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103691 – volume: 45 start-page: 2531 issue: 4 year: 2020 ident: 10.1016/j.cmpb.2022.106806_bib0016 article-title: Automated detection of sleep stages using energy-localized orthogonal wavelet filter banks publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-019-04197-8 – start-page: 641 year: 2020 ident: 10.1016/j.cmpb.2022.106806_bib0040 article-title: Tinysleepnet: An Efficient Deep Learning Model for Sleep Stage Scoring Based on Raw Single-channel Eeg – volume: 143 start-page: 105224 year: 2022 ident: 10.1016/j.cmpb.2022.106806_bib0004 article-title: Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105224 – volume: 124 year: 2016 ident: 10.1016/j.cmpb.2022.106806_bib0028 article-title: Isruc-sleep: a comprehensive public dataset for sleep researchers publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.10.013 – volume: 24 start-page: 1351 issue: 5 year: 2020 ident: 10.1016/j.cmpb.2022.106806_bib0019 article-title: A hierarchical neural network for sleep stage classification based on comprehensive feature learning and multi-flow sequence learning publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2937558 – volume: 29 start-page: 809 year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0013 article-title: An attention-based deep learning approach for sleep stage classification with single-channel eeg publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3076234 – start-page: e12939 year: 2022 ident: 10.1016/j.cmpb.2022.106806_bib0011 article-title: An expert system for automated classification of phases in cyclic alternating patterns of sleep using optimal wavelet-based entropy features publication-title: Expert Syst. – start-page: 1452 year: 2018 ident: 10.1016/j.cmpb.2022.106806_bib0012 article-title: Automatic Sleep Stage Classification Using Single-channel Eeg: Learning Sequential Features with Attention-based Recurrent Neural Networks – start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2022.106806_bib0021 article-title: Deep Convolutional Neural Networks for Interpretable Analysis of Eeg Sleep Stage Scoring – volume: 17 start-page: 1835 issue: 6 year: 2020 ident: 10.1016/j.cmpb.2022.106806_bib0033 article-title: Deep learning for automated feature discovery and classification of sleep stages publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2019.2912955 – year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0045 article-title: Xsleepnet: multi-view sequential model for automatic sleep staging publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3070057 – start-page: 4417 year: 2019 ident: 10.1016/j.cmpb.2022.106806_bib0037 article-title: U-time: a Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging – volume: volume 11211 start-page: 3 year: 2018 ident: 10.1016/j.cmpb.2022.106806_sbref0039 article-title: CBAM: Convolutional Block Attention Module – year: 2015 ident: 10.1016/j.cmpb.2022.106806_bib0002 – volume: 9 issue: 1 year: 2018 ident: 10.1016/j.cmpb.2022.106806_bib0003 article-title: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy publication-title: Nat. Commun. doi: 10.1038/s41467-018-07229-3 – volume: 204 year: 1968 ident: 10.1016/j.cmpb.2022.106806_bib0031 – volume: 7 start-page: 24527 year: 2019 ident: 10.1016/j.cmpb.2022.106806_bib0005 article-title: A review of approaches for sleep quality analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900345 – start-page: 338 year: 2020 ident: 10.1016/j.cmpb.2022.106806_bib0043 article-title: Improved Deep Learning Classification of Human Sleep Stages – volume: 66 start-page: 1285 issue: 5 year: 2019 ident: 10.1016/j.cmpb.2022.106806_bib0024 article-title: Joint classification and prediction CNN framework for automatic sleep stage classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2872652 – volume: 2 start-page: 537 issue: 6 year: 2001 ident: 10.1016/j.cmpb.2022.106806_bib0036 article-title: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep publication-title: Sleep Med. doi: 10.1016/S1389-9457(01)00149-6 – volume: 18 start-page: 3087 year: 2021 ident: 10.1016/j.cmpb.2022.106806_sbref0047 article-title: Automatic sleep stage scoring in healthy and sleep disorder patients using optimal wavelet filter bank technique with eeg signals publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph18063087 – volume: 27 start-page: 400 issue: 3 year: 2019 ident: 10.1016/j.cmpb.2022.106806_bib0023 article-title: Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2896659 – volume: 14 start-page: e0216456 issue: 5 year: 2019 ident: 10.1016/j.cmpb.2022.106806_bib0025 article-title: Sleepeegnet: automated sleep stage scoring with sequence to sequence deep learning approach publication-title: PLoS One doi: 10.1371/journal.pone.0216456 – volume: 8 start-page: 597 issue: 5 year: 2012 ident: 10.1016/j.cmpb.2022.106806_bib0008 article-title: Rules for scoring respiratory events in sleep: update of the 2007 aasm manual for the scoring of sleep and associated events publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.2172 – volume: 25 start-page: 1998 issue: 11 year: 2017 ident: 10.1016/j.cmpb.2022.106806_bib0026 article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2721116 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.cmpb.2022.106806_bib0029 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 63 start-page: 102203 year: 2021 ident: 10.1016/j.cmpb.2022.106806_bib0032 article-title: End-to-end sleep staging using convolutional neural network in raw single-channel EEG publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2020.102203 – start-page: 1800 year: 2017 ident: 10.1016/j.cmpb.2022.106806_bib0038 article-title: Xception: Deep Learning with Depthwise Separable Convolutions – volume: 52 start-page: 1325 issue: 2 year: 2022 ident: 10.1016/j.cmpb.2022.106806_bib0006 article-title: Automated sleep apnea detection using optimal duration-frequency concentrated wavelet-based features of pulse oximetry signals publication-title: Appl. Intell. (Dordrecht, Netherlands) |
| SSID | ssj0002556 |
| Score | 2.5309007 |
| Snippet | •Capturing the temporal dependency in the sequence of sleep stages, especially the long-term temporal context.•Improve EEG representation learning with channel... Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106806 |
| SubjectTerms | Automatic sleep staging Electroencephalography - methods Humans Polysomnography - methods Single-channel EEG Sleep Sleep stage sequence Sleep Stages Temporal context |
| Title | SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722001882 https://dx.doi.org/10.1016/j.cmpb.2022.106806 https://www.ncbi.nlm.nih.gov/pubmed/35461126 https://www.proquest.com/docview/2654280094 |
| Volume | 220 |
| WOSCitedRecordID | wos000795817800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DSFeEN-Uj8lIiJcqVeJ8OOGtQhkwjYJEJxVejOM4WqeQljUd_fO5i51snbYxHnixKtduIt-v5_P5d3eEvOZR4jEuC0e60ASM5U5cFMoB65UnMmBKJabYBB-P4-k0-dLr_W5jYU5LXlXxep0s_quooQ-EjaGz_yDu7kehAz6D0KEFsUN7I8F_LbVeNEmn1vVYG8_fwGagKhtqOnwxqAz925AoV_XcZG5d4lx0LzSli3CHywfoTCi1gxHClS4Hafr-vEHbVoWwpaiXNvFAQ_pqqLYmvn_j_v77kTQOWjk7mtudEzlBDbFgf1Zlct7RglbNyG-yG2g9FHC47ZhUVqnGHKz40NSEGOpL-qwmZsw9p0s9LAsSXarmjcfheKh-LrIhPnJ4Nngzp_b4s9g7PDgQk3Q6ebP45WC5MbyWt7VXtsgO42ECGn1n9DGd7nebOGZmw7N6-5o23spQAy8-9iqb5qozS2O7TO6Ru_bQQUcGLPdJT1cPyO1PViwPyY8LmHlLR7RFDLWIoRYxFBBDO8TQBjHUIoY2iKGbiKGAmEfkcC-dvPvg2NIbjoITfu1IyTLmh7nMQpdlBXTGylcKNHiUFbkME-XnSsVu4WtPy9grEjcPdVRInuAQz39Mtqt5pZ8SqnxXa1Xo0FdewLNIhtItgkjKjKtcsahPvHbxhLJ56bE8SilaAuKxwAUXuODCLHifDLo5C5OV5drRfisT0cYbww4pAE3Xzgq7WdYaNVbmX-e9asUuQFXj_Zus9Hy1FAyLw8XI5e2TJwYP3dv7YRBhNN-zG8x-Tu6c_c1ekO36ZKVfklvqtJ4tT3bJFp_GuxbPfwDhWMDa |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SleepContextNet%3A+A+temporal+context+network+for+automatic+sleep+staging+based+single-channel+EEG&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Zhao%2C+Caihong&rft.au=Li%2C+Jinbao&rft.au=Guo%2C+Yahong&rft.date=2022-06-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=220&rft.spage=106806&rft_id=info:doi/10.1016%2Fj.cmpb.2022.106806&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |