Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products
Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbi...
Uloženo v:
| Vydáno v: | Green chemistry : an international journal and green chemistry resource : GC Ročník 25; číslo 11; s. 4375 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
06.06.2023
|
| ISSN: | 1463-9262 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen
, both direct and indirect electron consumption
hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for
at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of
. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L
at 0.11 g L
d
). For the first time, MES using
was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L
glycine or 0.14 g L
ethanolamine. Hence, a deeper comprehension of the electrophysiology of
was shown to be key for designing and improving bioprocess strategies in MES research. |
|---|---|
| AbstractList | Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen
, both direct and indirect electron consumption
hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for
at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of
. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L
at 0.11 g L
d
). For the first time, MES using
was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L
glycine or 0.14 g L
ethanolamine. Hence, a deeper comprehension of the electrophysiology of
was shown to be key for designing and improving bioprocess strategies in MES research. Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen Clostridium ljungdahlii, both direct and indirect electron consumption via hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for C. ljungdahlii at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of C. ljungdahlii. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L-1 at 0.11 g L-1 d-1). For the first time, MES using C. ljungdahlii was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L-1 glycine or 0.14 g L-1 ethanolamine. Hence, a deeper comprehension of the electrophysiology of C. ljungdahlii was shown to be key for designing and improving bioprocess strategies in MES research.Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen Clostridium ljungdahlii, both direct and indirect electron consumption via hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for C. ljungdahlii at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of C. ljungdahlii. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L-1 at 0.11 g L-1 d-1). For the first time, MES using C. ljungdahlii was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L-1 glycine or 0.14 g L-1 ethanolamine. Hence, a deeper comprehension of the electrophysiology of C. ljungdahlii was shown to be key for designing and improving bioprocess strategies in MES research. |
| Author | Rosenbaum, Miriam A Harnisch, Falk Bardl, Bettina Boto, Santiago T |
| Author_xml | – sequence: 1 givenname: Santiago T orcidid: 0000-0002-7723-6260 surname: Boto fullname: Boto, Santiago T email: miriam.rosenbaum@leibniz-hki.de organization: Faculty of Biological Sciences, Friedrich Schiller University Jena Germany – sequence: 2 givenname: Bettina surname: Bardl fullname: Bardl, Bettina email: miriam.rosenbaum@leibniz-hki.de organization: Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany miriam.rosenbaum@leibniz-hki.de – sequence: 3 givenname: Falk orcidid: 0000-0002-0014-4640 surname: Harnisch fullname: Harnisch, Falk organization: UFZ - Helmholtz-Centre for Environmental Research GmbH, Department of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany – sequence: 4 givenname: Miriam A orcidid: 0000-0002-4566-8624 surname: Rosenbaum fullname: Rosenbaum, Miriam A email: miriam.rosenbaum@leibniz-hki.de organization: Faculty of Biological Sciences, Friedrich Schiller University Jena Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37288452$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kMtOwzAQRb0ooqWw4QOQl2wCjvOyl6jiJRWxgXXkxyRxldjFdkD5Bn6aVLSL0VxdHd3RnQu0sM4CQtcpuUtJxu911ipC8iptFmiV5mWWcFrSJboIYUdImlZlfo6WWUUZywu6Qr9vRnknjegx9KCid2GysYNgAv4xscOb3oXojTbjgPvdaFstut4YLMFCY2LAjXcD7ibtXQv2FGLxANqIaGYlrMZ78MMBFrj1ICJ4_C28gThh1-C9d3pUMVyis0b0Aa6Oe40-nx4_Ni_J9v35dfOwTVROqpiIoiJc6oxLVVSzrDiFMqWSEKAsb0BJyctUzaYoC1kyLlRWHOoq0BKYomt0-587H_4aIcR6MEFB3wsLbgw1ZTTjjM0zozdHdJRzo3rvzSD8VJ8eSP8A24F2KA |
| CitedBy_id | crossref_primary_10_1038_s43586_024_00332_4 crossref_primary_10_1515_auto_2023_0223 crossref_primary_10_1016_j_bioelechem_2024_108724 crossref_primary_10_1016_j_biteb_2024_101766 crossref_primary_10_1016_j_chemosphere_2024_142157 crossref_primary_10_1371_journal_pone_0293734 crossref_primary_10_1016_j_biortech_2024_131913 crossref_primary_10_1016_j_rser_2024_114704 crossref_primary_10_1016_j_scitotenv_2023_169744 crossref_primary_10_1016_j_tibtech_2024_02_004 crossref_primary_10_1007_s12268_023_2011_y crossref_primary_10_1039_D3EE01091K crossref_primary_10_1146_annurev_chembioeng_100522_110939 crossref_primary_10_1007_s10800_024_02236_3 crossref_primary_10_1021_jacs_5c01494 crossref_primary_10_1016_j_tibtech_2024_11_005 crossref_primary_10_1016_j_jece_2025_119241 crossref_primary_10_1016_j_jece_2025_119221 crossref_primary_10_1039_D4RA03906H crossref_primary_10_1002_celc_202300344 crossref_primary_10_1111_1751_7915_70182 crossref_primary_10_1016_j_copbio_2025_103291 crossref_primary_10_1007_s12268_024_2094_0 crossref_primary_10_3390_microorganisms11122976 crossref_primary_10_1093_ismeco_ycae058 crossref_primary_10_3389_fmicb_2024_1438758 crossref_primary_10_1016_j_electacta_2023_142722 crossref_primary_10_1039_D3EN00912B crossref_primary_10_1016_j_ijoes_2025_101091 crossref_primary_10_1016_j_checat_2025_101322 crossref_primary_10_1007_s11705_025_2568_8 crossref_primary_10_1093_femsec_fiaf090 crossref_primary_10_1016_j_jwpe_2024_105848 crossref_primary_10_1021_acssuschemeng_4c08968 crossref_primary_10_1002_mlf2_12111 crossref_primary_10_1007_s10311_024_01774_8 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. |
| DBID | NPM 7X8 |
| DOI | 10.1039/d3gc00471f |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Chemistry Environmental Sciences |
| ExternalDocumentID | 37288452 |
| Genre | Journal Article |
| GroupedDBID | 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN ADVLN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS ALUYA AMRAJ ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A NPM O9- P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 7X8 AKMSF R56 |
| ID | FETCH-LOGICAL-c407t-a5709bd39bc57709792e612b00e284fecbb961c2e6a65b689ac358845cedbe8c2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001004418900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1463-9262 |
| IngestDate | Thu Jul 10 18:04:40 EDT 2025 Thu Apr 03 07:05:29 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-a5709bd39bc57709792e612b00e284fecbb961c2e6a65b689ac358845cedbe8c2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7723-6260 0000-0002-4566-8624 0000-0002-0014-4640 |
| OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2023/gc/d3gc00471f |
| PMID | 37288452 |
| PQID | 2823988398 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2823988398 pubmed_primary_37288452 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-06 |
| PublicationDateYYYYMMDD | 2023-06-06 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
| PublicationTitleAlternate | Green Chem |
| PublicationYear | 2023 |
| SSID | ssj0011764 |
| Score | 2.585052 |
| Snippet | Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4375 |
| Title | Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37288452 https://www.proquest.com/docview/2823988398 |
| Volume | 25 |
| WOSCitedRecordID | wos001004418900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB4BRQIOPBYK5SUjcbVK7CSOTwitWnGgqx4A7W3lx6RNtSTLeltpfwN_mplsouWChMQliqI4ieLxzOex5_sA3lukIBl1LossOJmrGGVVYpDRKcxCWWPsUwPfv5jZrJrP7fmQcEvDtsrRJ_aOOnaBc-THNDXQtqJwXn1c_ZSsGsWrq4OExm040ARl2KrNfL-KkJmePoqcgZbMizfSk2p7HPVFYKbErP47tOxDzOmj__24x_BwAJfi084ansAtbCdwbzpquk3gwR_0gxM4PNlXuVGzYZinp_DrrOn5mejiIJOTti0hxdQkwYlbMV12rPcRm-sfYnlF_iK6y2XTCE-es242SXDVirjcxnVHBjo-pBV9nQqbgnBtFCveiEM3O3HB0BXX4oZn7put6Gqx2lHRpmfw7fTk6_SzHFQbZKDJ4Ua6wnywPmrrQ2Ho1FiFBKNoeCOFwhqD97bMAl10ZeHLyrqguVq2CBg9VkEdwp22a_EFiFIFU2Dha8KguTe54zoipxSG0uYF2iN4N3bHgn4kL3W4FrvrtNh3yBE83_XpYrWj71hoo_h16uU_tH4F91lfvt8bVr6Gg5p8Ar6Bu-Fm06T1297c6Dg7P_sN6nrleQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+electrosynthesis+with+Clostridium+ljungdahlii+benefits+from+hydrogen+electron+mediation+and+permits+a+greater+variety+of+products&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Boto%2C+Santiago+T&rft.au=Bardl%2C+Bettina&rft.au=Harnisch%2C+Falk&rft.au=Rosenbaum%2C+Miriam+A&rft.date=2023-06-06&rft.issn=1463-9262&rft.volume=25&rft.issue=11&rft.spage=4375&rft_id=info:doi/10.1039%2Fd3gc00471f&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |