Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products

Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Green chemistry : an international journal and green chemistry resource : GC Ročník 25; číslo 11; s. 4375
Hlavní autoři: Boto, Santiago T, Bardl, Bettina, Harnisch, Falk, Rosenbaum, Miriam A
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 06.06.2023
ISSN:1463-9262
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen , both direct and indirect electron consumption hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of . The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L at 0.11 g L d ). For the first time, MES using was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L glycine or 0.14 g L ethanolamine. Hence, a deeper comprehension of the electrophysiology of was shown to be key for designing and improving bioprocess strategies in MES research.
AbstractList Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen , both direct and indirect electron consumption hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of . The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L at 0.11 g L d ). For the first time, MES using was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L glycine or 0.14 g L ethanolamine. Hence, a deeper comprehension of the electrophysiology of was shown to be key for designing and improving bioprocess strategies in MES research.
Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen Clostridium ljungdahlii, both direct and indirect electron consumption via hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for C. ljungdahlii at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of C. ljungdahlii. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L-1 at 0.11 g L-1 d-1). For the first time, MES using C. ljungdahlii was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L-1 glycine or 0.14 g L-1 ethanolamine. Hence, a deeper comprehension of the electrophysiology of C. ljungdahlii was shown to be key for designing and improving bioprocess strategies in MES research.Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen Clostridium ljungdahlii, both direct and indirect electron consumption via hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for C. ljungdahlii at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of C. ljungdahlii. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L-1 at 0.11 g L-1 d-1). For the first time, MES using C. ljungdahlii was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L-1 glycine or 0.14 g L-1 ethanolamine. Hence, a deeper comprehension of the electrophysiology of C. ljungdahlii was shown to be key for designing and improving bioprocess strategies in MES research.
Author Rosenbaum, Miriam A
Harnisch, Falk
Bardl, Bettina
Boto, Santiago T
Author_xml – sequence: 1
  givenname: Santiago T
  orcidid: 0000-0002-7723-6260
  surname: Boto
  fullname: Boto, Santiago T
  email: miriam.rosenbaum@leibniz-hki.de
  organization: Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
– sequence: 2
  givenname: Bettina
  surname: Bardl
  fullname: Bardl, Bettina
  email: miriam.rosenbaum@leibniz-hki.de
  organization: Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany miriam.rosenbaum@leibniz-hki.de
– sequence: 3
  givenname: Falk
  orcidid: 0000-0002-0014-4640
  surname: Harnisch
  fullname: Harnisch, Falk
  organization: UFZ - Helmholtz-Centre for Environmental Research GmbH, Department of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
– sequence: 4
  givenname: Miriam A
  orcidid: 0000-0002-4566-8624
  surname: Rosenbaum
  fullname: Rosenbaum, Miriam A
  email: miriam.rosenbaum@leibniz-hki.de
  organization: Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37288452$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtOwzAQRb0ooqWw4QOQl2wCjvOyl6jiJRWxgXXkxyRxldjFdkD5Bn6aVLSL0VxdHd3RnQu0sM4CQtcpuUtJxu911ipC8iptFmiV5mWWcFrSJboIYUdImlZlfo6WWUUZywu6Qr9vRnknjegx9KCid2GysYNgAv4xscOb3oXojTbjgPvdaFstut4YLMFCY2LAjXcD7ibtXQv2FGLxANqIaGYlrMZ78MMBFrj1ICJ4_C28gThh1-C9d3pUMVyis0b0Aa6Oe40-nx4_Ni_J9v35dfOwTVROqpiIoiJc6oxLVVSzrDiFMqWSEKAsb0BJyctUzaYoC1kyLlRWHOoq0BKYomt0-587H_4aIcR6MEFB3wsLbgw1ZTTjjM0zozdHdJRzo3rvzSD8VJ8eSP8A24F2KA
CitedBy_id crossref_primary_10_1038_s43586_024_00332_4
crossref_primary_10_1515_auto_2023_0223
crossref_primary_10_1016_j_bioelechem_2024_108724
crossref_primary_10_1016_j_biteb_2024_101766
crossref_primary_10_1016_j_chemosphere_2024_142157
crossref_primary_10_1371_journal_pone_0293734
crossref_primary_10_1016_j_biortech_2024_131913
crossref_primary_10_1016_j_rser_2024_114704
crossref_primary_10_1016_j_scitotenv_2023_169744
crossref_primary_10_1016_j_tibtech_2024_02_004
crossref_primary_10_1007_s12268_023_2011_y
crossref_primary_10_1039_D3EE01091K
crossref_primary_10_1146_annurev_chembioeng_100522_110939
crossref_primary_10_1007_s10800_024_02236_3
crossref_primary_10_1021_jacs_5c01494
crossref_primary_10_1016_j_tibtech_2024_11_005
crossref_primary_10_1016_j_jece_2025_119241
crossref_primary_10_1016_j_jece_2025_119221
crossref_primary_10_1039_D4RA03906H
crossref_primary_10_1002_celc_202300344
crossref_primary_10_1111_1751_7915_70182
crossref_primary_10_1016_j_copbio_2025_103291
crossref_primary_10_1007_s12268_024_2094_0
crossref_primary_10_3390_microorganisms11122976
crossref_primary_10_1093_ismeco_ycae058
crossref_primary_10_3389_fmicb_2024_1438758
crossref_primary_10_1016_j_electacta_2023_142722
crossref_primary_10_1039_D3EN00912B
crossref_primary_10_1016_j_ijoes_2025_101091
crossref_primary_10_1016_j_checat_2025_101322
crossref_primary_10_1007_s11705_025_2568_8
crossref_primary_10_1093_femsec_fiaf090
crossref_primary_10_1016_j_jwpe_2024_105848
crossref_primary_10_1021_acssuschemeng_4c08968
crossref_primary_10_1002_mlf2_12111
crossref_primary_10_1007_s10311_024_01774_8
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
DBID NPM
7X8
DOI 10.1039/d3gc00471f
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
ExternalDocumentID 37288452
Genre Journal Article
GroupedDBID 0-7
0R~
29I
4.4
5GY
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
ADVLN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUYA
AMRAJ
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
NPM
O9-
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
7X8
AKMSF
R56
ID FETCH-LOGICAL-c407t-a5709bd39bc57709792e612b00e284fecbb961c2e6a65b689ac358845cedbe8c2
IEDL.DBID 7X8
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001004418900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1463-9262
IngestDate Thu Jul 10 18:04:40 EDT 2025
Thu Apr 03 07:05:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-a5709bd39bc57709792e612b00e284fecbb961c2e6a65b689ac358845cedbe8c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7723-6260
0000-0002-4566-8624
0000-0002-0014-4640
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2023/gc/d3gc00471f
PMID 37288452
PQID 2823988398
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2823988398
pubmed_primary_37288452
PublicationCentury 2000
PublicationDate 2023-06-06
PublicationDateYYYYMMDD 2023-06-06
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationTitleAlternate Green Chem
PublicationYear 2023
SSID ssj0011764
Score 2.585052
Snippet Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4375
Title Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products
URI https://www.ncbi.nlm.nih.gov/pubmed/37288452
https://www.proquest.com/docview/2823988398
Volume 25
WOSCitedRecordID wos001004418900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB4BRQIOPBYK5SUjcbVK7CSOTwitWnGgqx4A7W3lx6RNtSTLeltpfwN_mplsouWChMQliqI4ieLxzOex5_sA3lukIBl1LossOJmrGGVVYpDRKcxCWWPsUwPfv5jZrJrP7fmQcEvDtsrRJ_aOOnaBc-THNDXQtqJwXn1c_ZSsGsWrq4OExm040ARl2KrNfL-KkJmePoqcgZbMizfSk2p7HPVFYKbErP47tOxDzOmj__24x_BwAJfi084ansAtbCdwbzpquk3gwR_0gxM4PNlXuVGzYZinp_DrrOn5mejiIJOTti0hxdQkwYlbMV12rPcRm-sfYnlF_iK6y2XTCE-es242SXDVirjcxnVHBjo-pBV9nQqbgnBtFCveiEM3O3HB0BXX4oZn7put6Gqx2lHRpmfw7fTk6_SzHFQbZKDJ4Ua6wnywPmrrQ2Ho1FiFBKNoeCOFwhqD97bMAl10ZeHLyrqguVq2CBg9VkEdwp22a_EFiFIFU2Dha8KguTe54zoipxSG0uYF2iN4N3bHgn4kL3W4FrvrtNh3yBE83_XpYrWj71hoo_h16uU_tH4F91lfvt8bVr6Gg5p8Ar6Bu-Fm06T1297c6Dg7P_sN6nrleQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+electrosynthesis+with+Clostridium+ljungdahlii+benefits+from+hydrogen+electron+mediation+and+permits+a+greater+variety+of+products&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Boto%2C+Santiago+T&rft.au=Bardl%2C+Bettina&rft.au=Harnisch%2C+Falk&rft.au=Rosenbaum%2C+Miriam+A&rft.date=2023-06-06&rft.issn=1463-9262&rft.volume=25&rft.issue=11&rft.spage=4375&rft_id=info:doi/10.1039%2Fd3gc00471f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon