A Parallel Algorithm for Large-Scale Nonconvex Penalized Quantile Regression
Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recentl...
Saved in:
| Published in: | Journal of computational and graphical statistics Vol. 26; no. 4; pp. 935 - 939 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Alexandria
Taylor & Francis
02.10.2017
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational speed but requires a double-loop. In this article, we propose an alternative algorithm based on the alternating direction method of multiplier (ADMM). By writing the PQR into a special ADMM form, we can solve the iterations exactly without using coordinate descent. This results in a new single-loop algorithm, which we refer to as the QPADM algorithm. The QPADM demonstrates favorable performance in both computational speed and statistical accuracy, particularly when the sample size n and/or the number of features p are large. Supplementary material for this article is available online. |
|---|---|
| AbstractList | Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational speed but requires a double-loop. In this article, we propose an alternative algorithm based on the alternating direction method of multiplier (ADMM). By writing the PQR into a special ADMM form, we can solve the iterations exactly without using coordinate descent. This results in a new single-loop algorithm, which we refer to as the QPADM algorithm. The QPADM demonstrates favorable performance in both computational speed and statistical accuracy, particularly when the sample size n and/or the number of features p are large. Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational speed but requires a double-loop. In this article, we propose an alternative algorithm based on the alternating direction method of multiplier (ADMM). By writing the PQR into a special ADMM form, we can solve the iterations exactly without using coordinate descent. This results in a new single-loop algorithm, which we refer to as the QPADM algorithm. The QPADM demonstrates favorable performance in both computational speed and statistical accuracy, particularly when the sample size n and/or the number of features p are large. Supplementary material for this article is available online. |
| Author | Yu, Liqun Wang, Lan Lin, Nan |
| Author_xml | – sequence: 1 givenname: Liqun surname: Yu fullname: Yu, Liqun organization: Department of Mathematics, Washington University in St. Louis – sequence: 2 givenname: Nan surname: Lin fullname: Lin, Nan email: nlin@wustl.edu organization: Department of Mathematics, Washington University in St. Louis – sequence: 3 givenname: Lan surname: Wang fullname: Wang, Lan organization: School of Statistics, University of Minnesota |
| BookMark | eNqFkFtLAzEQhYMoeP0JwoLPW3PZZjf4YhFvULz7HKbpbE1JE01Stf56t1R98EGfZmDOmTnzbZN1HzwSss9oj9GGHjIqWSMp7XHK6h4TvBFSrpEt1hd1yWvWX-_6TlMuRZtkO6UppZRJVW-R4aC4gQjOoSsGbhKizU-zog2xGEKcYHlvwGFxFbwJ_hXfixv04OwHjovbOfhsu-EdTiKmZIPfJRstuIR7X3WHPJ6dPpxclMPr88uTwbA0Fa1zCQJR0pYbgaqi_Ro4wwroSODYcIFGjCSrWGVAcWhHXLUVoAKFqmVcNXIkdsjBau9zDC9zTFlPwzx2wZJmSnEpVMN4p-qvVCaGlCK2-jnaGcSFZlQvwelvcHoJTn-B63xHv3zGZsjdfzmCdf-691fuacoh_pysqkZyypepjldz6zvKM3gL0Y11hoULsY3gjU1a_H3iE__bkdo |
| CitedBy_id | crossref_primary_10_1016_j_jspi_2024_106144 crossref_primary_10_1080_00949655_2018_1448397 crossref_primary_10_1016_j_jspi_2024_106186 crossref_primary_10_1080_02331888_2025_2482070 crossref_primary_10_1007_s00184_019_00744_3 crossref_primary_10_3390_math12050735 crossref_primary_10_1007_s10618_022_00914_4 crossref_primary_10_1007_s11222_025_10631_9 crossref_primary_10_1016_j_csda_2023_107812 crossref_primary_10_1016_j_cam_2023_115192 crossref_primary_10_1080_10618600_2024_2308798 crossref_primary_10_1177_09622802211060520 crossref_primary_10_1214_22_AOS2214 crossref_primary_10_1080_03610918_2021_1888998 crossref_primary_10_1109_TSP_2023_3325622 crossref_primary_10_1016_j_jeconom_2024_105791 crossref_primary_10_1016_j_jeconom_2023_01_028 crossref_primary_10_1016_j_ins_2023_119259 crossref_primary_10_1007_s00362_021_01229_0 crossref_primary_10_1080_03610918_2023_2249271 crossref_primary_10_1016_j_csda_2024_108081 crossref_primary_10_1016_j_jspi_2021_07_003 crossref_primary_10_1002_sam_11700 crossref_primary_10_1080_10618600_2023_2275999 crossref_primary_10_3390_en15114135 crossref_primary_10_1080_1331677X_2021_1978306 crossref_primary_10_1080_10618600_2020_1840996 crossref_primary_10_1016_j_csda_2023_107901 crossref_primary_10_1214_18_AOS1777 crossref_primary_10_1155_2021_6341707 crossref_primary_10_1016_j_csda_2019_106819 crossref_primary_10_1007_s00180_022_01318_0 crossref_primary_10_1007_s11424_024_3510_8 crossref_primary_10_1016_j_neucom_2024_128671 crossref_primary_10_1007_s10114_025_3390_4 crossref_primary_10_1016_j_csda_2021_107388 crossref_primary_10_1080_07474938_2025_2503355 |
| Cites_doi | 10.1016/0898-1221(76)90003-1 10.1198/016214501753382273 10.1137/140990309 10.1137/140998135 10.1145/1327452.1327492 10.2307/1913643 10.1080/01621459.2012.656014 10.1111/j.2517-6161.1996.tb02080.x 10.1214/10-AOS827 10.1214/09-AOS729 10.1051/m2an/197509R200411 10.1080/10618600.2014.913516 10.1080/01621459.2013.836975 10.1561/2200000016 |
| ContentType | Journal Article |
| Copyright | 2017 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2017 2017 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Copyright American Statistical Association 2017 |
| Copyright_xml | – notice: 2017 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2017 – notice: 2017 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – notice: Copyright American Statistical Association 2017 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/10618600.2017.1328366 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 939 |
| ExternalDocumentID | 10_1080_10618600_2017_1328366 44862022 1328366 |
| Genre | Note |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACDIW ACGFO ACGFS ACHJO ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI ADXHL AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFRVT AFVYC AGDLA AGLNM AGMYJ AHDZW AIAGR AIHAF AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ ADYSH AMPGV AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c407t-a3ee60f2c3e94057a21e4a0b3edc23ec3b61414ca92afb29f4ae9a9e9f12986b3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423019700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-8600 |
| IngestDate | Mon Nov 10 03:09:36 EST 2025 Tue Nov 18 21:09:32 EST 2025 Sat Nov 29 03:24:16 EST 2025 Thu May 29 09:14:43 EDT 2025 Mon Oct 20 23:49:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-a3ee60f2c3e94057a21e4a0b3edc23ec3b61414ca92afb29f4ae9a9e9f12986b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/A_Parallel_Algorithm_for_Large-scale_Nonconvex_Penalized_Quantile_Regression/5024429 |
| PQID | 1992639812 |
| PQPubID | 29738 |
| PageCount | 5 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_10618600_2017_1328366 proquest_journals_1992639812 crossref_primary_10_1080_10618600_2017_1328366 crossref_citationtrail_10_1080_10618600_2017_1328366 jstor_primary_44862022 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-02 |
| PublicationDateYYYYMMDD | 2017-10-02 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America – name: Taylor & Francis Ltd |
| References | cit0011 cit0001 cit0023 cit0010 Koenker R. (cit0008) 2008 Sherwood B. (cit0016) 2016 Woodbury M. A. (cit0021) 1950; 42 Wang Y. (cit0019) 2015 Mota J. F. (cit0012) 2011 Zaharia M. (cit0022) 2010 Tibshirani R. (cit0017) 1996; 58 (cit0015) 2008 cit0009 cit0006 cit0007 cit0018 cit0004 cit0005 cit0002 cit0013 White T. (cit0020) 2012 cit0003 cit0014 |
| References_xml | – ident: cit0013 – ident: cit0005 doi: 10.1016/0898-1221(76)90003-1 – year: 2008 ident: cit0008 publication-title: http://CRAN.R-project.org/package=quantre – ident: cit0004 doi: 10.1198/016214501753382273 – ident: cit0007 doi: 10.1137/140990309 – year: 2016 ident: cit0016 publication-title: R Package Version 1.4, R Foundation for Statistical Computing, Vienna, Austria – ident: cit0011 doi: 10.1137/140998135 – volume: 42 start-page: 106 year: 1950 ident: cit0021 publication-title: Memorandum Report – ident: cit0003 doi: 10.1145/1327452.1327492 – ident: cit0009 doi: 10.2307/1913643 – ident: cit0018 doi: 10.1080/01621459.2012.656014 – volume-title: Hadoop: The Definitive Guide year: 2012 ident: cit0020 – volume: 58 start-page: 267 year: 1996 ident: cit0017 publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1996.tb02080.x – volume-title: R: A Language and Environment for Statistical Computing year: 2008 ident: cit0015 – ident: cit0001 doi: 10.1214/10-AOS827 – ident: cit0023 doi: 10.1214/09-AOS729 – ident: cit0006 doi: 10.1051/m2an/197509R200411 – year: 2011 ident: cit0012 publication-title: arXiv preprint arXiv:1112.2295 – ident: cit0014 doi: 10.1080/10618600.2014.913516 – ident: cit0010 doi: 10.1080/01621459.2013.836975 – year: 2015 ident: cit0019 publication-title: arXiv preprint arXiv:1511.06324 – ident: cit0002 doi: 10.1561/2200000016 – start-page: 10 year: 2010 ident: cit0022 publication-title: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing |
| SSID | ssj0001697 |
| Score | 2.413928 |
| Snippet | Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 935 |
| SubjectTerms | ADMM Algorithms Computation Descent Dimensional analysis Iterative methods Nonconvex penalty Parallelization Quantile regression and single-loop algorithm Regression analysis Short Technical Notes Statistical analysis Studies |
| Title | A Parallel Algorithm for Large-Scale Nonconvex Penalized Quantile Regression |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2017.1328366 https://www.jstor.org/stable/44862022 https://www.proquest.com/docview/1992639812 |
| Volume | 26 |
| WOSCitedRecordID | wos000423019700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxVAGPgoVhYI8sLo0dkjisUJUDKUqUKBbZLtOQSop6gdC_HruEqeiQqgDjBnOTuzz3bvk5R0hZ5DDdciNz1TIA-brJGS6KTSLPAPJRxnpZy_cHjthtxsNBrLn2IQzR6vEGjrJhSKyWI2HW-lZwYg7xyomgkSNxKywAeVUJAIU3YbUj0ez335axmLPtVcBC4YmxT88v42ykp1WtEsLvuKPmJ0lovbOPzzCLtl2KJS2crfZIxs2rZCtm6WE66xCyghDcxXnfdJp0Z6aYtsVMBqPJtOX-fMrhdumHWSSs3vYaUu7kzQjsX_QnkV8_2mH9HYBWweRh97ZUU65TQ_IQ_uqf3nNXB8GZqDcmzMlrA2aCTfCSsR3invWV00t7NBwYY3QkOM93yjJVaK5THxlpZJWJgAmokCLKimlk9QeEqpDwEeBwC4zMJSvowD7fiQXIVf4oUHUiF-sf2ycSDn2yhjHntMyLVYuxpWL3crVSGNp9pardKwzkN83N55nr0eSvJdJLNbYVjNPWM4EFW7AAQvVSL1wjdhFglmM9F5AgYCjjv4w5zEp42XGIuR1UppPF_aEbJp3cITpaebzX0lL-Cg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsQwDLXYJODAjhjWHLgGpklpmyNCjECUEcuw3KIkpIAEHTQMCPH12F1GIIQ4wLly0saO_Zy-2ACbGMNtLFzITSwiHtos5rYpLU8Ch8HHOBUWB26XadxuJ9fX6vNdGKJVUg6dlYUiCl9Nm5sOo2tK3DalMQlGamJmxVuYTyUyioZhdAdjLdXP77SuBt44qBqsoAgnmfoWz0_DfIlPX6qX1ozFb167CEWt6f_4iBmYqoAo2y0tZxaGfD4Hk8eDKq7PczBBSLQs5DwP6S47MT3qvIJCD7fd3n3_7pHhe7OUyOT8HJXtWbubFzz2N3biCeK_-xt2-oLaQ-fDzvxtybrNF-Citd_ZO-BVKwbuMOPrcyO9j5qZcNIrgnhGBD40TSv9jRPSO2kxzAehM0qYzAqVhcYro7zKEE8kkZWLMJJ3c78EzMYIkSJJjWZwqNAmEbX-yHZiYehfg2xAWCtAu6pOObXLeNBBVc60XjlNK6erlWvA1kDsqSzU8ZuA-qxd3S9OSLKynYmWv8guFqYwmAmT3EggHGrAam0bunIGz5oYvggEEUot_2HODRg_6BynOj1sH63ABD0qSIViFUb6vRe_BmPuFY2it15sgA8WZPxS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RqBA9lLe6LQ8fuBo2durER9R21YpltbSUcrNsrw2VaBbtLlXVX9-ZxFkVoYoDPUdjJzOTmW-cLzMAB5jDXSF8zm0hFM9dLLjrSsfLzGPysV7n9YHbRb8YDMrLSz1MbMJpolVSDR2bRhF1rKaX-3YUW0bcEVUxJSZqImYVh1hOlVKpZ7CE0FmRk5_3vs2DcZbmq6AIJ5n2J55_LXMvPd1rXtoSFh8E7ToT9Vb_wzOswcsEQ9lx4zfrsBCqDXhxOu_hOt2AFcKhTRvnTegfs6Gd0NwVFLq5Gk--z65_MLxt1icqOf-Cpg5sMK5qFvsvNgwE8H-HETu7Q9th6GGfw1XDua224Gvvw_m7jzwNYuAe670ZtzIE1Y3Cy6AJ4FmRhdx2nQwjL2Tw0mGSz3JvtbDRCR1zG7TVQUdEE6VychsWq3EVXgFzBQIkJWnMDC6Vu1LR4I_4thCWvjTIDuSt_o1PXcppWMaNyVIz01ZzhjRnkuY6cDgXu23adDwmoP82rpnV5yOxGWZi5COy27UnzHfCElcJBEMd2Gldw6RQMDXE70UYiEDq9RP23Ifl4fue6X8anLyBFbpSMwrFDizOJndhF577n-gTk73a_f8ADw_7BA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parallel+Algorithm+for+Large-Scale+Nonconvex+Penalized+Quantile+Regression&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Yu%2C+Liqun&rft.au=Lin%2C+Nan&rft.au=Wang%2C+Lan&rft.date=2017-10-02&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=26&rft.issue=4&rft.spage=935&rft.epage=939&rft_id=info:doi/10.1080%2F10618600.2017.1328366&rft.externalDocID=1328366 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |