A Parallel Algorithm for Large-Scale Nonconvex Penalized Quantile Regression

Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics Jg. 26; H. 4; S. 935 - 939
Hauptverfasser: Yu, Liqun, Lin, Nan, Wang, Lan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria Taylor & Francis 02.10.2017
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Schlagworte:
ISSN:1061-8600, 1537-2715
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational speed but requires a double-loop. In this article, we propose an alternative algorithm based on the alternating direction method of multiplier (ADMM). By writing the PQR into a special ADMM form, we can solve the iterations exactly without using coordinate descent. This results in a new single-loop algorithm, which we refer to as the QPADM algorithm. The QPADM demonstrates favorable performance in both computational speed and statistical accuracy, particularly when the sample size n and/or the number of features p are large. Supplementary material for this article is available online.
AbstractList Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational speed but requires a double-loop. In this article, we propose an alternative algorithm based on the alternating direction method of multiplier (ADMM). By writing the PQR into a special ADMM form, we can solve the iterations exactly without using coordinate descent. This results in a new single-loop algorithm, which we refer to as the QPADM algorithm. The QPADM demonstrates favorable performance in both computational speed and statistical accuracy, particularly when the sample size n and/or the number of features p are large. Supplementary material for this article is available online.
Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational speed but requires a double-loop. In this article, we propose an alternative algorithm based on the alternating direction method of multiplier (ADMM). By writing the PQR into a special ADMM form, we can solve the iterations exactly without using coordinate descent. This results in a new single-loop algorithm, which we refer to as the QPADM algorithm. The QPADM demonstrates favorable performance in both computational speed and statistical accuracy, particularly when the sample size n and/or the number of features p are large.
Author Yu, Liqun
Wang, Lan
Lin, Nan
Author_xml – sequence: 1
  givenname: Liqun
  surname: Yu
  fullname: Yu, Liqun
  organization: Department of Mathematics, Washington University in St. Louis
– sequence: 2
  givenname: Nan
  surname: Lin
  fullname: Lin, Nan
  email: nlin@wustl.edu
  organization: Department of Mathematics, Washington University in St. Louis
– sequence: 3
  givenname: Lan
  surname: Wang
  fullname: Wang, Lan
  organization: School of Statistics, University of Minnesota
BookMark eNqFkFtLAzEQhYMoeP0JwoLPW3PZZjf4YhFvULz7HKbpbE1JE01Stf56t1R98EGfZmDOmTnzbZN1HzwSss9oj9GGHjIqWSMp7XHK6h4TvBFSrpEt1hd1yWvWX-_6TlMuRZtkO6UppZRJVW-R4aC4gQjOoSsGbhKizU-zog2xGEKcYHlvwGFxFbwJ_hXfixv04OwHjovbOfhsu-EdTiKmZIPfJRstuIR7X3WHPJ6dPpxclMPr88uTwbA0Fa1zCQJR0pYbgaqi_Ro4wwroSODYcIFGjCSrWGVAcWhHXLUVoAKFqmVcNXIkdsjBau9zDC9zTFlPwzx2wZJmSnEpVMN4p-qvVCaGlCK2-jnaGcSFZlQvwelvcHoJTn-B63xHv3zGZsjdfzmCdf-691fuacoh_pysqkZyypepjldz6zvKM3gL0Y11hoULsY3gjU1a_H3iE__bkdo
CitedBy_id crossref_primary_10_1016_j_jspi_2024_106144
crossref_primary_10_1080_00949655_2018_1448397
crossref_primary_10_1016_j_jspi_2024_106186
crossref_primary_10_1080_02331888_2025_2482070
crossref_primary_10_1007_s00184_019_00744_3
crossref_primary_10_3390_math12050735
crossref_primary_10_1007_s10618_022_00914_4
crossref_primary_10_1007_s11222_025_10631_9
crossref_primary_10_1016_j_csda_2023_107812
crossref_primary_10_1016_j_cam_2023_115192
crossref_primary_10_1080_10618600_2024_2308798
crossref_primary_10_1177_09622802211060520
crossref_primary_10_1214_22_AOS2214
crossref_primary_10_1080_03610918_2021_1888998
crossref_primary_10_1109_TSP_2023_3325622
crossref_primary_10_1016_j_jeconom_2024_105791
crossref_primary_10_1016_j_jeconom_2023_01_028
crossref_primary_10_1016_j_ins_2023_119259
crossref_primary_10_1007_s00362_021_01229_0
crossref_primary_10_1080_03610918_2023_2249271
crossref_primary_10_1016_j_csda_2024_108081
crossref_primary_10_1016_j_jspi_2021_07_003
crossref_primary_10_1002_sam_11700
crossref_primary_10_1080_10618600_2023_2275999
crossref_primary_10_3390_en15114135
crossref_primary_10_1080_1331677X_2021_1978306
crossref_primary_10_1080_10618600_2020_1840996
crossref_primary_10_1016_j_csda_2023_107901
crossref_primary_10_1214_18_AOS1777
crossref_primary_10_1155_2021_6341707
crossref_primary_10_1016_j_csda_2019_106819
crossref_primary_10_1007_s00180_022_01318_0
crossref_primary_10_1007_s11424_024_3510_8
crossref_primary_10_1016_j_neucom_2024_128671
crossref_primary_10_1007_s10114_025_3390_4
crossref_primary_10_1016_j_csda_2021_107388
crossref_primary_10_1080_07474938_2025_2503355
Cites_doi 10.1016/0898-1221(76)90003-1
10.1198/016214501753382273
10.1137/140990309
10.1137/140998135
10.1145/1327452.1327492
10.2307/1913643
10.1080/01621459.2012.656014
10.1111/j.2517-6161.1996.tb02080.x
10.1214/10-AOS827
10.1214/09-AOS729
10.1051/m2an/197509R200411
10.1080/10618600.2014.913516
10.1080/01621459.2013.836975
10.1561/2200000016
ContentType Journal Article
Copyright 2017 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2017
2017 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Copyright American Statistical Association 2017
Copyright_xml – notice: 2017 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2017
– notice: 2017 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
– notice: Copyright American Statistical Association 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2017.1328366
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 939
ExternalDocumentID 10_1080_10618600_2017_1328366
44862022
1328366
Genre Note
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFRVT
AFVYC
AGDLA
AGLNM
AGMYJ
AHDZW
AIAGR
AIHAF
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HQ6
HZ~
H~P
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
ADYSH
AMPGV
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c407t-a3ee60f2c3e94057a21e4a0b3edc23ec3b61414ca92afb29f4ae9a9e9f12986b3
IEDL.DBID TFW
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423019700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Mon Nov 10 03:09:36 EST 2025
Tue Nov 18 21:09:32 EST 2025
Sat Nov 29 03:24:16 EST 2025
Thu May 29 09:14:43 EDT 2025
Mon Oct 20 23:49:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-a3ee60f2c3e94057a21e4a0b3edc23ec3b61414ca92afb29f4ae9a9e9f12986b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://figshare.com/articles/journal_contribution/A_Parallel_Algorithm_for_Large-scale_Nonconvex_Penalized_Quantile_Regression/5024429
PQID 1992639812
PQPubID 29738
PageCount 5
ParticipantIDs informaworld_taylorfrancis_310_1080_10618600_2017_1328366
proquest_journals_1992639812
crossref_primary_10_1080_10618600_2017_1328366
crossref_citationtrail_10_1080_10618600_2017_1328366
jstor_primary_44862022
PublicationCentury 2000
PublicationDate 2017-10-02
PublicationDateYYYYMMDD 2017-10-02
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2017
Publisher Taylor & Francis
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
– name: Taylor & Francis Ltd
References cit0011
cit0001
cit0023
cit0010
Koenker R. (cit0008) 2008
Sherwood B. (cit0016) 2016
Woodbury M. A. (cit0021) 1950; 42
Wang Y. (cit0019) 2015
Mota J. F. (cit0012) 2011
Zaharia M. (cit0022) 2010
Tibshirani R. (cit0017) 1996; 58
(cit0015) 2008
cit0009
cit0006
cit0007
cit0018
cit0004
cit0005
cit0002
cit0013
White T. (cit0020) 2012
cit0003
cit0014
References_xml – ident: cit0013
– ident: cit0005
  doi: 10.1016/0898-1221(76)90003-1
– year: 2008
  ident: cit0008
  publication-title: http://CRAN.R-project.org/package=quantre
– ident: cit0004
  doi: 10.1198/016214501753382273
– ident: cit0007
  doi: 10.1137/140990309
– year: 2016
  ident: cit0016
  publication-title: R Package Version 1.4, R Foundation for Statistical Computing, Vienna, Austria
– ident: cit0011
  doi: 10.1137/140998135
– volume: 42
  start-page: 106
  year: 1950
  ident: cit0021
  publication-title: Memorandum Report
– ident: cit0003
  doi: 10.1145/1327452.1327492
– ident: cit0009
  doi: 10.2307/1913643
– ident: cit0018
  doi: 10.1080/01621459.2012.656014
– volume-title: Hadoop: The Definitive Guide
  year: 2012
  ident: cit0020
– volume: 58
  start-page: 267
  year: 1996
  ident: cit0017
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2008
  ident: cit0015
– ident: cit0001
  doi: 10.1214/10-AOS827
– ident: cit0023
  doi: 10.1214/09-AOS729
– ident: cit0006
  doi: 10.1051/m2an/197509R200411
– year: 2011
  ident: cit0012
  publication-title: arXiv preprint arXiv:1112.2295
– ident: cit0014
  doi: 10.1080/10618600.2014.913516
– ident: cit0010
  doi: 10.1080/01621459.2013.836975
– year: 2015
  ident: cit0019
  publication-title: arXiv preprint arXiv:1511.06324
– ident: cit0002
  doi: 10.1561/2200000016
– start-page: 10
  year: 2010
  ident: cit0022
  publication-title: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing
SSID ssj0001697
Score 2.4140117
Snippet Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 935
SubjectTerms ADMM
Algorithms
Computation
Descent
Dimensional analysis
Iterative methods
Nonconvex penalty
Parallelization
Quantile regression and single-loop algorithm
Regression analysis
Short Technical Notes
Statistical analysis
Studies
Title A Parallel Algorithm for Large-Scale Nonconvex Penalized Quantile Regression
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2017.1328366
https://www.jstor.org/stable/44862022
https://www.proquest.com/docview/1992639812
Volume 26
WOSCitedRecordID wos000423019700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYigDj0JFeckDq6GJnYdHhKgYoCov0S2ynXNBKinqAyF-PefEqUAIMcCY4eLkfL77LvryHSFHOtKpsFHADCScCSxpTOmOZVyIKLcRmNSYcthE0uulg4Hsezbh1NMqXQ9tK6GIMle7w630tGbEnbguJsVC7YhZyTG2UymPneg2ln53NO-6D4tcHPjxKmjBnEn9D89Pd_lSnb5ol9Z8xW85uyxE3fV_eIUNsuZRKD2twmaTLEHRJKtXCwnXaZM0HAytVJy3yOUp7auJG7uCRqPhePI0e3ym-Nj00jHJ2S3uNNDeuChJ7G-0Dw7fv0NOr-e4dZh56A0MK8ptsU3uu-d3ZxfMz2FgBtu9GVMcIO7Y0HCQDt-pMAChOppDbkIOhmus8YEwSobK6lBaoUAqCdIimEhjzVtkuRgXsENo2klMrrCLUTIXSinMHipKhI61DBCJ5m0iav9nxouUu1kZoyzwWqa15zLnucx7rk2OF2YvlUrHbwby8-Zms_LziK1mmWT8F9tWGQmLlbDDjUPEQm2yX4dG5jPBNHP0XkSBiKN2_7DmHmm4y5JFGO6T5dlkDgdkxbxiIEwOy5j_AAJV-n4
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEJ8gmIgPfqCEE4Q--Fq83XY_-kgMFwjHBfWMvDVtdwomuGeOgxj_emf24wIxhgd93sx2t9PO_Kb59TcA73zmSx2zRAYslNSU0qTzwyiV1lkVMwxlCE2ziWIyKc_Pzd27MEyr5Bo6tkIRTazmzc2H0T0l7j2XMSVlamZmFftUT5Uqzx_BWka5lvXzp6Ovy2icdA1WyESyTX-L52-vuZef7qmX9ozFP6J2k4pGz__HT7yAZx0QFQftynkJK1hvwNPTpYrr9QasMxJthZxfwfhAnLk5d14ho6uL2fzb4vK7oO8WYyaTy8_kbBSTWd3w2H-KM2SI_wsr8fGGvEfBR3zCi5Z1W7-GL6PD6Ycj2bVikIEqvoV0CjEfxjQoNAzxXJqgdkOvsAqpwqA8pflEB2dSF31qonZonEETCU-UuVebsFrPatwCUQ6LUDkqZJyptHOOAojLCu1zbxICo9UAdO8AGzqdcm6XcWWTTs60nznLM2e7mRvA_tLsRyvU8ZCBuetdu2hOSGLbzsSqB2w3m6WwHImK3DwlODSAnX5t2C4YXFtm-BIQJCj15h_G3IMnR9PTsR0fT062YZ0fNaTCdAdWF_MbfAuPwy0tivluswF-A-3a_qg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fTxQxEJ4IEoIPCijhBKEPvhZvt90ffSTiReNxORUjb03bnZ4ksEfuDmL8653udi8SY3iA581sd6ezM99svn4D8NZmtpQ-S7jDQnBJJY0b2_dcSJlVPkNXOtcMmyhGo_L8XI0jm3AeaZWhh_atUESTq8PHfV35jhH3LnQxJRXqQMwqjqidKkWer8BTgs55CPKzwY9lMk7ifBUy4cGmO8Tzv9vcKU93xEs7wuI_SbupRIMXj_AOm_A8wlB23MbNFjzBehuenS41XOfbsBFwaCvj_BKGx2xsZmHuChldTqazi8XPK0aPzYaBSs6_0VYjG03rhsX-i40xAPzfWLEvN7R3lHrYV5y0nNv6FXwffDh7_5HHQQzcUb-34EYg5n2fOoEqADyTJihN3wqsXCrQCUtFPpHOqNR4myovDSqjUHlCE2VuxQ6s1tMad4GV_cJVhtoYoyppjKH0YbJC2tyqhKBo1QPZ-V-7qFIehmVc6iSKmXae08FzOnquB0dLs-tWpuM-A_X35upF83_Et8NMtLjHdqeJhOVK1OLmKYGhHux3oaFjKpjrwO8lGEhA6vUD1jyE9fHJQA8_jT7vwUa40jAK031YXcxu8A2suVuKidlBE_5_AOKN_Vo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parallel+Algorithm+for+Large-Scale+Nonconvex+Penalized+Quantile+Regression&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Yu%2C+Liqun&rft.au=Lin%2C+Nan&rft.au=Wang%2C+Lan&rft.date=2017-10-02&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=26&rft.issue=4&rft.spage=935&rft.epage=939&rft_id=info:doi/10.1080%2F10618600.2017.1328366&rft.externalDocID=1328366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon