On negative results when using sentiment analysis tools for software engineering research

Recent years have seen an increasing attention to social aspects of software engineering, including studies of emotions and sentiments experienced and expressed by the software developers. Most of these studies reuse existing sentiment analysis tools such as SentiStrength and NLTK . However, these t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical software engineering : an international journal Jg. 22; H. 5; S. 2543 - 2584
Hauptverfasser: Jongeling, Robbert, Sarkar, Proshanta, Datta, Subhajit, Serebrenik, Alexander
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2017
Springer Nature B.V
Schlagworte:
ISSN:1382-3256, 1573-7616
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent years have seen an increasing attention to social aspects of software engineering, including studies of emotions and sentiments experienced and expressed by the software developers. Most of these studies reuse existing sentiment analysis tools such as SentiStrength and NLTK . However, these tools have been trained on product reviews and movie reviews and, therefore, their results might not be applicable in the software engineering domain. In this paper we study whether the sentiment analysis tools agree with the sentiment recognized by human evaluators (as reported in an earlier study) as well as with each other. Furthermore, we evaluate the impact of the choice of a sentiment analysis tool on software engineering studies by conducting a simple study of differences in issue resolution times for positive, negative and neutral texts. We repeat the study for seven datasets (issue trackers and Stack Overflow questions) and different sentiment analysis tools and observe that the disagreement between the tools can lead to diverging conclusions. Finally, we perform two replications of previously published studies and observe that the results of those studies cannot be confirmed when a different sentiment analysis tool is used.
AbstractList Recent years have seen an increasing attention to social aspects of software engineering, including studies of emotions and sentiments experienced and expressed by the software developers. Most of these studies reuse existing sentiment analysis tools such as SentiStrength and NLTK. However, these tools have been trained on product reviews and movie reviews and, therefore, their results might not be applicable in the software engineering domain. In this paper we study whether the sentiment analysis tools agree with the sentiment recognized by human evaluators (as reported in an earlier study) as well as with each other. Furthermore, we evaluate the impact of the choice of a sentiment analysis tool on software engineering studies by conducting a simple study of differences in issue resolution times for positive, negative and neutral texts. We repeat the study for seven datasets (issue trackers and Stack Overflow questions) and different sentiment analysis tools and observe that the disagreement between the tools can lead to diverging conclusions. Finally, we perform two replications of previously published studies and observe that the results of those studies cannot be confirmed when a different sentiment analysis tool is used.
Recent years have seen an increasing attention to social aspects of software engineering, including studies of emotions and sentiments experienced and expressed by the software developers. Most of these studies reuse existing sentiment analysis tools such as SentiStrength and NLTK . However, these tools have been trained on product reviews and movie reviews and, therefore, their results might not be applicable in the software engineering domain. In this paper we study whether the sentiment analysis tools agree with the sentiment recognized by human evaluators (as reported in an earlier study) as well as with each other. Furthermore, we evaluate the impact of the choice of a sentiment analysis tool on software engineering studies by conducting a simple study of differences in issue resolution times for positive, negative and neutral texts. We repeat the study for seven datasets (issue trackers and Stack Overflow questions) and different sentiment analysis tools and observe that the disagreement between the tools can lead to diverging conclusions. Finally, we perform two replications of previously published studies and observe that the results of those studies cannot be confirmed when a different sentiment analysis tool is used.
Author Jongeling, Robbert
Datta, Subhajit
Serebrenik, Alexander
Sarkar, Proshanta
Author_xml – sequence: 1
  givenname: Robbert
  surname: Jongeling
  fullname: Jongeling, Robbert
  organization: Eindhoven University of Technology
– sequence: 2
  givenname: Proshanta
  surname: Sarkar
  fullname: Sarkar, Proshanta
  organization: IBM India Private Limited
– sequence: 3
  givenname: Subhajit
  surname: Datta
  fullname: Datta, Subhajit
  organization: Singapore University of Technology and Design
– sequence: 4
  givenname: Alexander
  orcidid: 0000-0002-1418-0095
  surname: Serebrenik
  fullname: Serebrenik, Alexander
  email: a.serebrenik@tue.nl
  organization: Eindhoven University of Technology
BookMark eNp9kE1LAzEQhoNUsFZ_gLeA59Ukm012j1L8gkIvvXgK2d1Ju2Wb1Exq6793SwVB0MvMHN7nZXguycgHD4TccHbHGdP3yJlSMmNcZZWs8uxwRsa80HmmFVej4c5LkeWiUBfkEnHNGKu0LMbkbe6ph6VN3QfQCLjrE9L9CjzdYeeXFMGnbjMMar3tP7FDmkLokboQKQaX9jYCBb_sPEA8EkMJ2Nisrsi5sz3C9feekMXT42L6ks3mz6_Th1nWSKZTVua1lqLV1oqWCdcUSnLlSiFKKXlpQbVtVdRN3RayqZyrWl3VqnWVEKwuQeYTcnuq3cbwvgNMZh12cfgVjWAqV4xLlQ8pfko1MSBGcGYbu42Nn4YzcxRoTgLNINAcBZrDwOhfTNOlQVTwKdqu_5cUJxK3RyUQf376G_oCJJqJaw
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3488904
crossref_primary_10_1371_journal_pone_0246464
crossref_primary_10_1007_s10515_021_00283_0
crossref_primary_10_1145_3241743
crossref_primary_10_1007_s10664_018_9659_9
crossref_primary_10_3233_JIFS_211217
crossref_primary_10_1109_ACCESS_2021_3108624
crossref_primary_10_1007_s10664_019_09716_7
crossref_primary_10_1007_s10664_022_10242_2
crossref_primary_10_1109_MS_2020_2968557
crossref_primary_10_1109_ACCESS_2024_3439450
crossref_primary_10_1145_3583562
crossref_primary_10_1145_3479497
crossref_primary_10_1145_3424308
crossref_primary_10_1016_j_infsof_2022_107018
crossref_primary_10_3390_su132313356
crossref_primary_10_7759_s44389_024_02851_3
crossref_primary_10_1016_j_jss_2020_110740
crossref_primary_10_1145_3757739
crossref_primary_10_1109_TG_2021_3072545
crossref_primary_10_1016_j_ins_2018_12_038
crossref_primary_10_1016_j_jss_2025_112339
crossref_primary_10_1109_MS_2018_2874568
crossref_primary_10_1016_j_jss_2019_05_026
crossref_primary_10_1145_3491211
crossref_primary_10_1016_j_jss_2023_111804
crossref_primary_10_1016_j_infsof_2017_10_009
crossref_primary_10_1016_j_ribaf_2025_102875
crossref_primary_10_1007_s10664_025_10617_1
crossref_primary_10_1145_3610092
crossref_primary_10_1007_s10664_021_09977_1
crossref_primary_10_3390_su14052677
crossref_primary_10_1145_3359224
crossref_primary_10_1007_s10515_020_00274_7
crossref_primary_10_32604_cmc_2022_020431
crossref_primary_10_1007_s10664_024_10468_2
crossref_primary_10_3390_app12083709
crossref_primary_10_1007_s10515_021_00295_w
crossref_primary_10_7717_peerj_cs_1498
crossref_primary_10_1016_j_jss_2020_110704
crossref_primary_10_1109_TSE_2018_2883603
crossref_primary_10_1016_j_infsof_2019_08_002
crossref_primary_10_1016_j_jimonfin_2024_103129
crossref_primary_10_3390_info15010008
crossref_primary_10_1080_19312458_2019_1671966
crossref_primary_10_1007_s10664_022_10183_w
crossref_primary_10_1007_s10664_021_09960_w
crossref_primary_10_1016_j_procs_2024_01_120
crossref_primary_10_1145_3697009
crossref_primary_10_3390_info14010011
crossref_primary_10_1109_MS_2019_2919573
crossref_primary_10_1109_MS_2019_2922949
crossref_primary_10_1007_s10270_020_00809_2
crossref_primary_10_1016_j_procs_2019_12_042
crossref_primary_10_3390_ijerph18115993
crossref_primary_10_1016_j_jss_2019_02_020
crossref_primary_10_1109_TSE_2019_2900245
crossref_primary_10_1093_joc_jqz023
crossref_primary_10_1016_j_infsof_2019_05_012
crossref_primary_10_1049_iet_sen_2019_0054
crossref_primary_10_1109_TSE_2021_3098242
crossref_primary_10_1145_3491039
crossref_primary_10_1016_j_jss_2018_11_016
crossref_primary_10_1145_3490388
crossref_primary_10_1007_s10664_019_09743_4
crossref_primary_10_1109_ACCESS_2019_2909746
crossref_primary_10_1007_s10462_023_10555_8
crossref_primary_10_1007_s42979_023_02595_2
Cites_doi 10.1109/SERA.2016.7516145
10.1109/MS.2012.169
10.2307/3001968
10.1214/aoms/1177697819
10.1080/01621459.1971.10482356
10.1109/ICSME.2014.51
10.1109/ICSTW.2011.12
10.1145/1964897.1964899
10.1145/2124436.2124453
10.1109/ICSE.2013.6606588
10.1109/QUATIC.2012.36
10.1145/2630088.2652480
10.1016/j.infsof.2015.05.003
10.1007/978-3-642-33266-1_58
10.1109/CHASE.2015.32
10.1016/j.infsof.2016.01.004
10.1145/1656274.1656278
10.1109/ICSM.2015.7332474
10.1145/1985374.1985381
10.2466/pms.1992.74.3.835
10.1145/1868328.1868336
10.1109/MSR.2012.6224307
10.7717/peerj-cs.73
10.1109/MSR.2015.35
10.1109/ICSM.2015.7332508
10.1109/JCSSE.2013.6567355
10.1109/MSR.2015.8
10.1109/MSR.2012.6224268
10.1037/h0026256
10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
10.1145/1978942.1979409
10.18653/v1/D13-1170
10.1109/ICSE.2015.170
10.1080/01621459.1961.10482090
10.1002/0471445428
10.1214/12-EJS691
10.1109/SocialCom.2013.35
10.1109/MSR.2009.5069486
10.1145/2597073.2597086
10.1145/2145204.2145401
10.1109/CGC.2013.71
10.1109/WAINA.2009.190
10.1007/10720076_29
10.1145/2597073.2597117
10.1002/asi.21416
10.5329/RESI.2014.1302006
10.1007/11552253_12
10.1145/42005.42007
10.1145/2465478.2465482
10.1145/2384616.2384664
10.1145/69605.357970
10.1109/HICSS.2012.421
10.3115/1118693.1118704
10.1145/1460563.1460654
10.1002/asi.21662
10.1145/2597073.2597118
10.3115/1220575.1220619
10.1007/s10664-013-9244-1
10.1007/978-3-319-18612-2_11
10.1145/2491411.2494578
10.1109/MSR.2012.6224267
10.1109/MSR.2013.6624052
10.1007/978-3-642-04277-5_18
10.1017/CBO9780511527685
10.1145/2601248.2601289
10.1145/2124295.2124371
10.1609/icwsm.v4i1.14009
10.1145/2804381.2804387
10.1145/2810146.2810147
10.1007/s10664-008-9060-1
10.1109/SCC.2014.80
10.1007/BF01908075
10.1007/s10664-007-9037-5
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Springer Science & Business Media 2017
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10664-016-9493-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
EndPage 2584
ExternalDocumentID 10_1007_s10664_016_9493_x
GrantInformation_xml – fundername: Eindhoven University of Technology
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c407t-83b742d7aa2d02fc56416f82284418ae6dd95bcbd54c9ff9d79b6df9220b8e43
IEDL.DBID RSV
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407921200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 18:44:57 EST 2025
Sat Nov 29 07:48:37 EST 2025
Tue Nov 18 21:58:10 EST 2025
Fri Feb 21 02:35:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Negative results
Replication study
Sentiment analysis tools
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-83b742d7aa2d02fc56416f82284418ae6dd95bcbd54c9ff9d79b6df9220b8e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1418-0095
OpenAccessLink https://link.springer.com/10.1007/s10664-016-9493-x
PQID 2063601463
PQPubID 326341
PageCount 42
ParticipantIDs proquest_journals_2063601463
crossref_primary_10_1007_s10664_016_9493_x
crossref_citationtrail_10_1007_s10664_016_9493_x
springer_journals_10_1007_s10664_016_9493_x
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Greiler M, Herzig K, Czerwonka J (2015) Code ownership and software quality: A replication study. In: Proceedings of the 12th Working Conference on Mining Software Repositories, MSR ’15, pp. 2–12. IEEE Press, Piscataway, NJ, USA. http://dl.acm.org.library.sutd.edu.sg:2048/citation.cfm?id=2820518.2820522
DestefanisGOrtuMCounsellSSwiftSMarchesiMTonelliRPeer J Comput Sci20162e73135
Islam MR, Zibran MF (2016) Towards understanding and exploiting developers’ emotional variations in software engineering. In: 2016 IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA), pp 185–192. doi:10.1109/SERA.2016.7516145
Datta S, Sindhgatta R, Sengupta B (2012) Talk versus work: characteristics of developer collaboration on the Jazz platform. In: Proceedings of the ACM international conference on Object oriented programming systems languages and applications, OOPSLA ’12, pp 655–668. ACM, New York, NY, USA. doi:10.1145/2384616.2384664
Panichella S, Sorbo AD, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can I improve my app? classifying user reviews for software maintenance and evolution. In: ICSME. IEEE, pp 281–290
Sun X, Li B, Leung H, Li B, Li Y (2015) MSR4SM: Using topic models to effectively mining software repositories for software maintenance tasks. Inf Softw Technol 66:1–12. doi:10.1016/j.infsof.2015.05.003. http://www.sciencedirect.com/science/article/pii/S0950584915001007
Wang S, Lo D, Vasilescu B, Serebrenik A (2014) EnTagRec: An enhanced tag recommendation system for software information sites. In: ICSME. IEEE, pp 291–300
KonietschkeFHothornLABrunnerERank-based multiple test procedures and simultaneous confidence intervalsElectronic Journal of Statistics20126738759298842710.1214/12-EJS6911334.62083
Mishne G, Glance NS (2006) Predicting movie sales from blogger sentiment. In: AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, pp 155–158
Novielli N, Calefato F, Lanubile F (2015) The challenges of sentiment detection in the social programmer ecosystem. In: Proceedings of the 7th International Workshop on Social Software Engineering, SSE 2015, pp 33–40. ACM, New York, NY, USA. doi:10.1145/2804381.2804387
ThelwallMBuckleyKPaltoglouGSentiment strength detection for the social webJ Am Soc Inf Sci Technol201263116317310.1002/asi.21662
Goul M, Marjanovic O, Baxley S, Vizecky K (2012) Managing the Enterprise Business Intelligence App Store: Sentiment Analysis Supported Requirements Engineering. In: 2012 45th Hawaii International Conference on System Science (HICSS). doi:10.1109/HICSS.2012.421, pp 4168–4177
Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures, 4 edn. Chapman & Hall
PangBLeeLOpinion mining and sentiment analysisFound Trends Inf Retr200721-21135
Ortu M, Destefanis G, Kassab M, Counsell S, Marchesi M, Tonelli R (2015) Would you mind fixing this issue? - an empirical analysis of politeness and attractiveness in software developed using agile boards. In: Lassenius C, Dingsøyr T, Paasivaara M (eds) Agile Processes, in Software Engineering, and Extreme Programming - 16th International Conference, XP 2015, Helsinki, Finland, May 25–29, 2015, Proceedings, Lecture Notes in Business Information Processing, vol 212. Springer, pp 129–140. doi:10.1007/978-3-319-18612-2_11
Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland J, Thomas D (2001) Manifesto for agile software development http://agilemanifesto.org/principles.html Last accessed: October 14, 2015
Barkmann H, Lincke R, Löwe W (2009) Quantitative evaluation of software quality metrics in open-source projects. In: IEEE International Workshop on Quantitative Evaluation of large-scale Systems and Technologies, pp 1067–1072
Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli R (2015) Are bullies more productive? empirical study of affectiveness vs. issue fixing time. In: MSR
HubertLArabiePComparing partitionsJ Classif19852119321810.1007/BF019080750587.62128
Pletea D, Vasilescu B, Serebrenik A (2014) Security and emotion: Sentiment analysis of security discussions on GitHub. In: MSR. ACM, New York, NY, USA, pp 348–351. doi:10.1145/2597073.2597117
Schröter A, Aranda J, Damian D, Kwan I (2012) To talk or not to talk: factors that influence communication around changesets. In: Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, CSCW ’12, pp 1317–1326. ACM, New York, NY, USA. doi:10.1145/2145204.2145401
Capiluppi A, Serebrenik A, Singer L (2013) Assessing technical candidates on the social web. Software. IEEE 30(1):45–51. doi:10.1109/MS.2012.169
ShullFJCarverJCVegasSJuristoNThe role of replications in empirical software engineeringEmpir Softw Eng200813221121810.1007/s10664-008-9060-1
de Magalhães CVC, da Silva FQB, Santos RES (2014) Investigations about replication of empirical studies in software engineering: Preliminary findings from a mapping study. In: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, EASE ’14, pp 37:1–37:10. ACM, New York, NY, USA. doi:10.1145/2601248.2601289
VieraAJGarrettJMUnderstanding interobserver agreement: the kappa statisticFam Med2005375360363
Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and infrastructure for analyzing ultra-large-scale software repositories. In: Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, pp 422–431. IEEE Press, Piscataway, NJ, USA. http://dl.acm.org/citation.cfm?id=2486788.2486844
PritchardPSome negative results concerning prime number generatorsCommun ACM1984271535778432310.1145/69605.3579700589.10001
ZimmermanDWZumboBDParametric alternatives to the Student t test under violation of normality and homogeneity of variancePercept Mot Skills1992743183584410.2466/pms.1992.74.3.835
Sfetsos P, Adamidis P, Angelis L, Stamelos I, Deligiannis I (2012) Investigating the impact of personality and temperament traits on pair programming: a controlled experiment replication. In: 2012 Eighth International Conference on the Quality of Information and Communications Technology (QUATIC), pp 57–65. doi:10.1109/QUATIC.2012.36
Howard MJ, Gupta S, Pollock LL, Vijay-Shanker K (2013) Automatically mining software-based, semantically-similar words from comment-code mappings. In: Zimmermann T, Penta MD, Kim S (eds) MSR, pp 377–386. IEEE Computer Society
VasilescuBSerebrenikAGoeminneMMensTOn the variation and specialisation of workload – a case study of the Gnome ecosystem communityEmpir Softw Eng2013194955100810.1007/s10664-013-9244-1
ThelwallMBuckleyKPaltoglouGCaiDKappasASentiment in short strength detection informal textJ Am Soc Inf Sci Technol201061122544255810.1002/asi.21416
Agarwal A, Xie B, Vovsha I, Rambow O, Passonneau R (2011) Sentiment Analysis of Twitter Data. In: Proceedings of the Workshop on Languages in Social Media, LSM ’11, pp 30–38. Association for Computational Linguistics, Stroudsburg, PA, USA. http://dl.acm.org/citation.cfm?id=2021109.2021114
Giraud-CarrierCDunhamMHOn the importance of sharing negative resultsSigkdd Explor. Newsl.20111223410.1145/1964897.1964899
Lindsey MR (2011) What went wrong?: Negative results from VoIP service providers. In: Proceedings of the 5th International Conference on Principles, Systems and Applications of IP Telecommunications, IPTcomm ’11, pp 13:1–13:3. ACM, New York, NY, USA. doi:10.1145/2124436.2124453
TonellaPTorchianoMDu BoisBSystäTEmpirical studies in reverse engineering: State of the art and future trendsEmpir Softw Eng200712555157110.1007/s10664-007-9037-5
Guzman E, Azócar D, Li Y (2014) Sentiment analysis of commit comments in GitHub: An empirical study. In: MSR, pp 352–355, ACM, New York, NY, USA
RousinopoulosAIRoblesGGonzález-BarahonaJMSentiment analysis of Free/Open Source developers: preliminary findings from a case studyRevista Eletrônica de Sistemas de Informação20141326:16:2110.5329/RESI.2014.1302006
Honkela T, Izzatdust Z, Lagus K (2012) Text mining for wellbeing: Selecting stories using semantic and pragmatic features. In: Artificial Neural Networks and Machine Learning, Part II, LNCS, vol 7553. Springer, pp 467–474
Danescu-Niculescu-Mizil C, Sudhof M, Jurafsky D, Leskovec J, Potts C (2013) A computational approach to politeness with application to social factors. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pp 250–259. The Association for Computer Linguistics. http://aclweb.org/anthology/P/P13/P13-1025.pdf
BrunnerEMunzelUThe Nonparametric Behrens-Fisher Problem: Asymptotic Theory and a Small-Sample ApproximationBiometrical Journal20004211725174456110.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U0969.62033
Garcia D, Zanetti MS, Schweitzer F (2013) The role of emotions in contributors activity: A case study on the Gentoo community. In: International Conference on Cloud and Green Computing, pp 410–417
Vasilescu B, Filkov V, Serebrenik A (2013) StackOverflow and github: associations between software development and crowdsourced knowledge. In: 2013 International Conference on Social Computing (SocialCom), pp 188–195. doi:10.1109/SocialCom.2013.35
Abbasi A, Hassan A, Dhar M (2014) Benchmarking Twitter sentiment analysis tools. In: International Conference on Language Resources and Evaluation. ELRA, Reykjavik, Iceland, pp 823–829
CohenJWeighted kappa: Nominal scale agreement with provision for scaled disagreement or partial creditPsychol Bull196870421322010.1037/h0026256
Shihab E, Kamei Y, Bhattacharya P (2012) Mining challenge 2012: the Android platform. In: MSR, pp 112–115
Batista GEAPA, Carvalho ACPLF, Monard MC (2000) Applying one-sided selection to unbalanced datasets. In: Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence. Springer-Verlag, London, UK, UK, pp 315–325
Gamon M, Aue A, Corston-O
9493_CR39
9493_CR36
9493_CR37
9493_CR34
9493_CR32
9493_CR76
9493_CR33
9493_CR30
9493_CR74
9493_CR31
9493_CR75
9493_CR72
F Konietschke (9493_CR41) 2012; 6
9493_CR70
9493_CR71
JL Fleiss (9493_CR23) 2003
FJ Shull (9493_CR73) 2008; 13
KR Gabriel (9493_CR26) 1969; 40
9493_CR49
9493_CR47
9493_CR48
9493_CR45
9493_CR46
9493_CR43
9493_CR87
9493_CR44
9493_CR88
9493_CR42
OJ Dunn (9493_CR21) 1961; 56
9493_CR83
9493_CR40
9493_CR84
9493_CR81
9493_CR82
9493_CR80
F Wilcoxon (9493_CR89) 1945; 1
AI Rousinopoulos (9493_CR67) 2014; 13
P Pritchard (9493_CR64) 1984; 27
P Tonella (9493_CR79) 2007; 12
B Vasilescu (9493_CR85) 2013; 19
M Hall (9493_CR35) 2009; 11
9493_CR16
M Thelwall (9493_CR77) 2012; 63
9493_CR17
9493_CR14
9493_CR58
9493_CR15
9493_CR59
9493_CR12
9493_CR56
9493_CR57
9493_CR9
9493_CR54
9493_CR11
9493_CR55
9493_CR52
J Cohen (9493_CR13) 1968; 70
9493_CR53
9493_CR50
9493_CR51
9493_CR92
9493_CR90
9493_CR91
B Pang (9493_CR60) 2007; 2
M Thelwall (9493_CR78) 2010; 61
DW Zimmerman (9493_CR93) 1992; 74
AJ Viera (9493_CR86) 2005; 37
E Brunner (9493_CR10) 2000; 42
9493_CR27
9493_CR28
9493_CR25
9493_CR69
9493_CR24
9493_CR68
9493_CR22
9493_CR66
9493_CR63
9493_CR20
9493_CR61
9493_CR62
G Destefanis (9493_CR19) 2016; 2
L Hubert (9493_CR38) 1985; 2
9493_CR7
9493_CR8
WM Rand (9493_CR65) 1971; 66
9493_CR5
9493_CR6
9493_CR3
C Giraud-Carrier (9493_CR29) 2011; 12
9493_CR4
9493_CR1
9493_CR18
9493_CR2
References_xml – reference: DunnOJMultiple comparisons among meansJ Am Stat Assoc196156293526412495210.1080/01621459.1961.104820900103.37001
– reference: Dajsuren Y, van den Brand MGJ, Serebrenik A, Roubtsov S (2013) Simulink models are also software: Modularity assessment. In: Proceedings of the 9th International ACM Sigsoft Conference on Quality of Software Architectures, QoSA ’13, pp 99–106. ACM, New York, NY, USA. doi:10.1145/2465478.2465482
– reference: Howard MJ, Gupta S, Pollock LL, Vijay-Shanker K (2013) Automatically mining software-based, semantically-similar words from comment-code mappings. In: Zimmermann T, Penta MD, Kim S (eds) MSR, pp 377–386. IEEE Computer Society
– reference: ShullFJCarverJCVegasSJuristoNThe role of replications in empirical software engineeringEmpir Softw Eng200813221121810.1007/s10664-008-9060-1
– reference: Abbasi A, Hassan A, Dhar M (2014) Benchmarking Twitter sentiment analysis tools. In: International Conference on Language Resources and Evaluation. ELRA, Reykjavik, Iceland, pp 823–829
– reference: Panichella S, Sorbo AD, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can I improve my app? classifying user reviews for software maintenance and evolution. In: ICSME. IEEE, pp 281–290
– reference: RandWMObjective criteria for the evaluation of clustering methodsJ Am Stat Assoc19716633684685010.1080/01621459.1971.10482356
– reference: Shihab E, Kamei Y, Bhattacharya P (2012) Mining challenge 2012: the Android platform. In: MSR, pp 112–115
– reference: Yu HF, Ho CH, Juan YC, Lin CJ (2013) Libshorttext: A library for short-text classification and analysis. Tech. rep., Technical Report. http://www.csie.ntu.edu.tw/~cjlin/papers/libshorttext.pdf
– reference: Yu Y, Wang H, Yin G, Wang T (2016) Reviewer recommendation for pull-requests in github: What can we learn from code review and bug assignment?. Inf Softw Technol 74:204–218. doi:10.1016/j.infsof.2016.01.004. http://www.sciencedirect.com/science/article/pii/S0950584916000069
– reference: VieraAJGarrettJMUnderstanding interobserver agreement: the kappa statisticFam Med2005375360363
– reference: Tukey JW (1951) Quick and dirty methods in statistics, part II, Simple analysis for standard designs. In: American Society for Quality Control, pp 189–197
– reference: CohenJWeighted kappa: Nominal scale agreement with provision for scaled disagreement or partial creditPsychol Bull196870421322010.1037/h0026256
– reference: DestefanisGOrtuMCounsellSSwiftSMarchesiMTonelliRPeer J Comput Sci20162e73135
– reference: Murgia A, Tourani P, Adams B, Ortu M (2014) Do developers feel emotions? an exploratory analysis of emotions in software artifacts. In: MSR, pp 262-271, ACM, New York, NY, USA
– reference: Barkmann H, Lincke R, Löwe W (2009) Quantitative evaluation of software quality metrics in open-source projects. In: IEEE International Workshop on Quantitative Evaluation of large-scale Systems and Technologies, pp 1067–1072
– reference: ThelwallMBuckleyKPaltoglouGCaiDKappasASentiment in short strength detection informal textJ Am Soc Inf Sci Technol201061122544255810.1002/asi.21416
– reference: Davidov D, Tsur O, Rappoport A (2010) Semi-supervised recognition of sarcastic sentences in Twitter and Amazon. In: Proceedings of the Fourteenth Conference on Computational Natural Language Learning, CoNLL ’10, pp. 107–116. Association for Computational Linguistics, Stroudsburg, PA, USA. http://dl.acm.org/citation.cfm?id=1870568.1870582
– reference: Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng A, Potts C (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Empirical Methods in Natural Language Processing, pp 1631–1642. Ass. for Comp. Linguistics
– reference: Bakeman R, Gottman JM (1997) Observing interaction: an introduction to sequential analysis. Cambridge University Press. https://books.google.nl/books?id=CMj2SmcijhEC
– reference: Sun X, Li B, Leung H, Li B, Li Y (2015) MSR4SM: Using topic models to effectively mining software repositories for software maintenance tasks. Inf Softw Technol 66:1–12. doi:10.1016/j.infsof.2015.05.003. http://www.sciencedirect.com/science/article/pii/S0950584915001007
– reference: Mende T (2010) Replication of defect prediction studies: Problems, pitfalls and recommendations. In: Proceedings of the 6th International Conference on Predictive Models in Software Engineering, PROMISE ’10, pp 5:1–5:10. ACM, New York, NY, USA. doi:10.1145/1868328.1868336
– reference: Li TH, Liu R, Sukaviriya N, Li Y, Yang J, Sandin M, Lee J (2014) Incident ticket analytics for it application management services. In: 2014 IEEE International Conference on Services Computing (SCC), pp 568–574. doi:10.1109/SCC.2014.80
– reference: Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures, 4 edn. Chapman & Hall
– reference: van Rijsbergen CJ (1979) Information Retrieval, 2nd edn. Butterworth-Heinemann, Newton, MA, USA
– reference: Tourani P, Jiang Y, Adams B (2014) Monitoring sentiment in open source mailing lists: exploratory study on the apache ecosystem. In: Proceedings of 24th Annual International Conference on Computer Science and Software Engineering, CASCON ’14, pp 34–44. IBM Corp., Riverton, NJ, USA. http://dl.acm.org/citation.cfm?id=2735522.2735528
– reference: Vasilescu B, Filkov V, Serebrenik A (2013) StackOverflow and github: associations between software development and crowdsourced knowledge. In: 2013 International Conference on Social Computing (SocialCom), pp 188–195. doi:10.1109/SocialCom.2013.35
– reference: RousinopoulosAIRoblesGGonzález-BarahonaJMSentiment analysis of Free/Open Source developers: preliminary findings from a case studyRevista Eletrônica de Sistemas de Informação20141326:16:2110.5329/RESI.2014.1302006
– reference: Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: Human Language Technology and Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Stroudsburg, PA, USA, pp 347–354
– reference: BrunnerEMunzelUThe Nonparametric Behrens-Fisher Problem: Asymptotic Theory and a Small-Sample ApproximationBiometrical Journal20004211725174456110.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U0969.62033
– reference: HubertLArabiePComparing partitionsJ Classif19852119321810.1007/BF019080750587.62128
– reference: WilcoxonFIndividual comparisons by ranking methodsBiom Bull194516808310.2307/3001968
– reference: Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli R (2015) Are bullies more productive? empirical study of affectiveness vs. issue fixing time. In: MSR
– reference: Datta S, Sindhgatta R, Sengupta B (2012) Talk versus work: characteristics of developer collaboration on the Jazz platform. In: Proceedings of the ACM international conference on Object oriented programming systems languages and applications, OOPSLA ’12, pp 655–668. ACM, New York, NY, USA. doi:10.1145/2384616.2384664
– reference: FleissJLLevinBPaikMCStatistical methods for rates and proportions20033rd ednNJWiley Series in Probability and Statistics. Wiley, Hoboken10.1002/04714454281034.62113
– reference: Pletea D, Vasilescu B, Serebrenik A (2014) Security and emotion: Sentiment analysis of security discussions on GitHub. In: MSR. ACM, New York, NY, USA, pp 348–351. doi:10.1145/2597073.2597117
– reference: Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland J, Thomas D (2001) Manifesto for agile software development http://agilemanifesto.org/principles.html Last accessed: October 14, 2015
– reference: Fuhr N, Muller P (1987) Probabilistic search term weighting - some negative results. In: Proceedings of the 10th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’87, pp 13–18. ACM, New York, NY, USA. doi:10.1145/42005.42007
– reference: Gousios G (2013) The GHTorrent dataset and tool suite. In: Proceedings of the 10th Working Conference on Mining Software Repositories, MSR’13, pp 233–236. http://dl.acm.org/citation.cfm?id=2487085.2487132
– reference: Kucuktunc O, Cambazoglu BB, Weber I, Ferhatosmanoglu H (2012) A Large-scale Sentiment Analysis for Yahoo! Answers. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12, pp 633–642. ACM, New York, NY, USA. doi:10.1145/2124295.2124371
– reference: ThelwallMBuckleyKPaltoglouGSentiment strength detection for the social webJ Am Soc Inf Sci Technol201263116317310.1002/asi.21662
– reference: Gamon M, Aue A, Corston-Oliver S, Ringger E (2005) Pulse: Mining customer opinions from free text. In: Proceedings of the 6th International Conference on Advances in Intelligent Data Analysis, IDA’05. Springer-Verlag, Berlin, Heidelberg, pp 121–132. doi:10.1007/11552253_12
– reference: HallMFrankEHolmesGPfahringerBReutemannPWittenIHThe Weka data mining software: An upyearSIGKDD Explor Newsl2009111101810.1145/1656274.1656278
– reference: Dewan P (2015) Towards Emotion-Based Collaborative Software Engineering. In: 2015 IEEE/ACM 8th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE), pp 109–112. doi:10.1109/CHASE.2015.32
– reference: Lanza M, Di Penta M, Xie T (2012) (eds.): 9th IEEE Working Conference of Mining Software Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland. IEEE Computer Society. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6220358
– reference: GabrielKRSimultaneous test procedures—some theory of multiple comparisonsAnn Math Stat196940122425024093110.1214/aoms/11776978190198.23602
– reference: Täht D (2014) The value of repeatable experiments and negative results: - a journey through the history and future of aqm and fair queuing algorithms. In: Proceedings of the 2014 ACM SIGCOMM Workshop on Capacity Sharing Workshop, CSWS ’14, pp 1–2. ACM, New York, NY, USA. doi:10.1145/2630088.2652480
– reference: Tumasjan A, Sprenger TO, Sandner PG, Welpe IM (2010) Predicting elections with twitter: What 140 characters reveal about political sentiment. In: International AAAI Conference on Weblogs and Social Media, pp 178–185
– reference: Cataldo M, Herbsleb JD (2008) Communication networks in geographically distributed software development. In: Proceedings of the 2008 ACM conference on Computer supported cooperative work, CSCW ’08, pp 579–588. ACM, New York, NY, USA. doi:10.1145/1460563.1460654
– reference: Honkela T, Izzatdust Z, Lagus K (2012) Text mining for wellbeing: Selecting stories using semantic and pragmatic features. In: Artificial Neural Networks and Machine Learning, Part II, LNCS, vol 7553. Springer, pp 467–474
– reference: Vasilescu B, Serebrenik A, van den Brand MGJ (2011) By no means: a study on aggregating software metrics. In: Concas G, Tempero ED, Zhang H, Penta MD (eds) Proceedings of the 2nd International Workshop on Emerging Trends in Software Metrics, WETSoM 2011, Waikiki, Honolulu, HI, USA, May 24, 2011. ACM, pp 23–26. doi:10.1145/1985374.1985381
– reference: de Magalhães CVC, da Silva FQB, Santos RES (2014) Investigations about replication of empirical studies in software engineering: Preliminary findings from a mapping study. In: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, EASE ’14, pp 37:1–37:10. ACM, New York, NY, USA. doi:10.1145/2601248.2601289
– reference: Capiluppi A, Serebrenik A, Singer L (2013) Assessing technical candidates on the social web. Software. IEEE 30(1):45–51. doi:10.1109/MS.2012.169
– reference: Asaduzzaman M, Bullock MC, Roy CK, Schneider KA Bug introducing changes: A case study with android. In: Lanza et al. [43], pp 116–119. doi:10.1109/MSR.2012.6224267
– reference: Ortu M, Destefanis G, Kassab M, Counsell S, Marchesi M, Tonelli R (2015) Would you mind fixing this issue? - an empirical analysis of politeness and attractiveness in software developed using agile boards. In: Lassenius C, Dingsøyr T, Paasivaara M (eds) Agile Processes, in Software Engineering, and Extreme Programming - 16th International Conference, XP 2015, Helsinki, Finland, May 25–29, 2015, Proceedings, Lecture Notes in Business Information Processing, vol 212. Springer, pp 129–140. doi:10.1007/978-3-319-18612-2_11
– reference: Schröter A, Aranda J, Damian D, Kwan I (2012) To talk or not to talk: factors that influence communication around changesets. In: Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, CSCW ’12, pp 1317–1326. ACM, New York, NY, USA. doi:10.1145/2145204.2145401
– reference: Baccianella S, Esuli A, Sebastiani F (2010) SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC’10). European Language Resources Association (ELRA), Valletta, Malta. http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
– reference: Bird S, Loper E, Klein E (2009) Natural language processing with Python. O’Reilly Media Inc
– reference: Goul M, Marjanovic O, Baxley S, Vizecky K (2012) Managing the Enterprise Business Intelligence App Store: Sentiment Analysis Supported Requirements Engineering. In: 2012 45th Hawaii International Conference on System Science (HICSS). doi:10.1109/HICSS.2012.421, pp 4168–4177
– reference: PangBLeeLOpinion mining and sentiment analysisFound Trends Inf Retr200721-21135
– reference: Guzman E, Bruegge B (2013) Towards emotional awareness in software development teams. In: Joint Meeting on Foundations of Software Engineering, pp 671–674, ACM, New York, NY, USA
– reference: Garcia D, Zanetti MS, Schweitzer F (2013) The role of emotions in contributors activity: A case study on the Gentoo community. In: International Conference on Cloud and Green Computing, pp 410–417
– reference: Mishne G, Glance NS (2006) Predicting movie sales from blogger sentiment. In: AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, pp 155–158
– reference: Mohammad SM, Kiritchenko S, Zhu X (2013) NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets. arXiv:1308.6242[cs]
– reference: PritchardPSome negative results concerning prime number generatorsCommun ACM1984271535778432310.1145/69605.3579700589.10001
– reference: Santos JM, Embrechts M (2009) On the use of the adjusted rand index as a metric for evaluating supervised classification. In: International Conference on Artificial Neural Networks, LNCS, vol 5769. Springer, pp 175–184
– reference: Pang B, Lee L, Vaithyanathan S (2002) Thumbs Up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10, EMNLP ’02, pp 79–86. Association for Computational Linguistics, Stroudsburg, PA, USA. doi:10.3115/1118693.1118704
– reference: Agarwal A, Xie B, Vovsha I, Rambow O, Passonneau R (2011) Sentiment Analysis of Twitter Data. In: Proceedings of the Workshop on Languages in Social Media, LSM ’11, pp 30–38. Association for Computational Linguistics, Stroudsburg, PA, USA. http://dl.acm.org/citation.cfm?id=2021109.2021114
– reference: Jongeling R, Datta S, Serebrenik A (2015) Choosing your weapons: On sentiment analysis tools for software engineering research. In: ICSME, pp 531–535. IEEE. doi:10.1109/ICSM.2015.7332508
– reference: Linstead E, Baldi P (2009) Mining the coherence of GNOME bug reports with statistical topic models. In: Godfrey MW, Whitehead J (eds) Proceedings of the 6th International Working Conference on Mining Software Repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC, Canada, May 16–17, 2009, Proceedings, pp 99–102. IEEE Computer Society. doi:10.1109/MSR.2009.5069486
– reference: Martie L, Palepu VK, Sajnani H, Lopes CV Trendy bugs: Topic trends in the android bug reports. In: Lanza et al. [43], pp 120–123. doi:10.1109/MSR.2012.6224268
– reference: Novielli N, Calefato F, Lanubile F (2015) The challenges of sentiment detection in the social programmer ecosystem. In: Proceedings of the 7th International Workshop on Social Software Engineering, SSE 2015, pp 33–40. ACM, New York, NY, USA. doi:10.1145/2804381.2804387
– reference: Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and infrastructure for analyzing ultra-large-scale software repositories. In: Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, pp 422–431. IEEE Press, Piscataway, NJ, USA. http://dl.acm.org/citation.cfm?id=2486788.2486844
– reference: Islam MR, Zibran MF (2016) Towards understanding and exploiting developers’ emotional variations in software engineering. In: 2016 IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA), pp 185–192. doi:10.1109/SERA.2016.7516145
– reference: Giraud-CarrierCDunhamMHOn the importance of sharing negative resultsSigkdd Explor. Newsl.20111223410.1145/1964897.1964899
– reference: TonellaPTorchianoMDu BoisBSystäTEmpirical studies in reverse engineering: State of the art and future trendsEmpir Softw Eng200712555157110.1007/s10664-007-9037-5
– reference: Wang S, Lo D, Vasilescu B, Serebrenik A (2014) EnTagRec: An enhanced tag recommendation system for software information sites. In: ICSME. IEEE, pp 291–300
– reference: Batista GEAPA, Carvalho ACPLF, Monard MC (2000) Applying one-sided selection to unbalanced datasets. In: Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence. Springer-Verlag, London, UK, UK, pp 315–325
– reference: Pak A, Paroubek P (2010) Twitter Based System: Using Twitter for Disambiguating Sentiment Ambiguous Adjectives. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval ’10, pp. 436–439. Association for Computational Linguistics, Stroudsburg, PA, USA. http://dl.acm.org/citation.cfm?id=1859664.1859761
– reference: KonietschkeFHothornLABrunnerERank-based multiple test procedures and simultaneous confidence intervalsElectronic Journal of Statistics20126738759298842710.1214/12-EJS6911334.62083
– reference: Ortu M, Destefanis G, Adams B, Murgia A, Marchesi M, Tonelli R (2015) The JIRA repository dataset: Understanding social aspects of software development. In: Proceedings of the 11th International Conference on Predictive Models and Data Analytics in Software Engineering, PROMISE ’15, pp 1:1–1:4. ACM, New York, NY, USA. doi:10.1145/2810146.2810147
– reference: Fontana FA, Mariani E, Morniroli A, Sormani R, Tonello A (2011) An experience report on using code smells detection tools. In: ICST Workshops, pp 450–457. IEEE
– reference: Danescu-Niculescu-Mizil C, Sudhof M, Jurafsky D, Leskovec J, Potts C (2013) A computational approach to politeness with application to social factors. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pp 250–259. The Association for Computer Linguistics. http://aclweb.org/anthology/P/P13/P13-1025.pdf
– reference: Costa JM, Cataldo M, de Souza CR (2011) The scale and evolution of coordination needs in large-scale distributed projects: implications for the future generation of collaborative tools. In: Proceedings of the 2011 annual conference on Human factors in computing systems, CHI ’11, pp 3151–3160. ACM, New York, NY, USA. doi:10.1145/1978942.1979409
– reference: VasilescuBSerebrenikAGoeminneMMensTOn the variation and specialisation of workload – a case study of the Gnome ecosystem communityEmpir Softw Eng2013194955100810.1007/s10664-013-9244-1
– reference: Lindsey MR (2011) What went wrong?: Negative results from VoIP service providers. In: Proceedings of the 5th International Conference on Principles, Systems and Applications of IP Telecommunications, IPTcomm ’11, pp 13:1–13:3. ACM, New York, NY, USA. doi:10.1145/2124436.2124453
– reference: Guzman E, Azócar D, Li Y (2014) Sentiment analysis of commit comments in GitHub: An empirical study. In: MSR, pp 352–355, ACM, New York, NY, USA
– reference: Leopairote W, Surarerks A, Prompoon N (2013) Evaluating software quality in use using user reviews mining. In: 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp 257–262. doi:10.1109/JCSSE.2013.6567355
– reference: Greiler M, Herzig K, Czerwonka J (2015) Code ownership and software quality: A replication study. In: Proceedings of the 12th Working Conference on Mining Software Repositories, MSR ’15, pp. 2–12. IEEE Press, Piscataway, NJ, USA. http://dl.acm.org.library.sutd.edu.sg:2048/citation.cfm?id=2820518.2820522
– reference: Sfetsos P, Adamidis P, Angelis L, Stamelos I, Deligiannis I (2012) Investigating the impact of personality and temperament traits on pair programming: a controlled experiment replication. In: 2012 Eighth International Conference on the Quality of Information and Communications Technology (QUATIC), pp 57–65. doi:10.1109/QUATIC.2012.36
– reference: Lewis DD, Gale WA (1994) A sequential algorithm for training text classifiers. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’94, pp. 3–12. Springer-Verlag New York, Inc., New York, NY, USA. http://dl.acm.org.dianus.libr.tue.nl/citation.cfm?id=188490.188495
– reference: ZimmermanDWZumboBDParametric alternatives to the Student t test under violation of normality and homogeneity of variancePercept Mot Skills1992743183584410.2466/pms.1992.74.3.835
– reference: Vivian R, Tarmazdi H, Falkner K, Falkner N, Szabo C (2015) The development of a dashboard tool for visualising online teamwork discussions. In: Proceedings of the 37th International Conference on Software Engineering - Volume 2, ICSE ’15, pp 380–388. IEEE Press, Piscataway, NJ, USA. http://dl.acm.org/citation.cfm?id=2819009.2819070
– ident: 9493_CR39
  doi: 10.1109/SERA.2016.7516145
– ident: 9493_CR11
  doi: 10.1109/MS.2012.169
– ident: 9493_CR66
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 9493_CR89
  publication-title: Biom Bull
  doi: 10.2307/3001968
– volume: 40
  start-page: 224
  issue: 1
  year: 1969
  ident: 9493_CR26
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177697819
– ident: 9493_CR43
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  ident: 9493_CR65
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1971.10482356
– ident: 9493_CR88
  doi: 10.1109/ICSME.2014.51
– ident: 9493_CR24
  doi: 10.1109/ICSTW.2011.12
– volume: 12
  start-page: 3
  issue: 2
  year: 2011
  ident: 9493_CR29
  publication-title: Sigkdd Explor. Newsl.
  doi: 10.1145/1964897.1964899
– ident: 9493_CR47
  doi: 10.1145/2124436.2124453
– ident: 9493_CR22
  doi: 10.1109/ICSE.2013.6606588
– ident: 9493_CR70
  doi: 10.1109/QUATIC.2012.36
– ident: 9493_CR76
  doi: 10.1145/2630088.2652480
– ident: 9493_CR75
  doi: 10.1016/j.infsof.2015.05.003
– ident: 9493_CR36
  doi: 10.1007/978-3-642-33266-1_58
– ident: 9493_CR18
– ident: 9493_CR52
– volume: 37
  start-page: 360
  issue: 5
  year: 2005
  ident: 9493_CR86
  publication-title: Fam Med
– ident: 9493_CR20
  doi: 10.1109/CHASE.2015.32
– ident: 9493_CR92
  doi: 10.1016/j.infsof.2016.01.004
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 9493_CR35
  publication-title: SIGKDD Explor Newsl
  doi: 10.1145/1656274.1656278
– ident: 9493_CR62
  doi: 10.1109/ICSM.2015.7332474
– ident: 9493_CR84
  doi: 10.1145/1985374.1985381
– volume: 74
  start-page: 835
  issue: 31
  year: 1992
  ident: 9493_CR93
  publication-title: Percept Mot Skills
  doi: 10.2466/pms.1992.74.3.835
– ident: 9493_CR51
  doi: 10.1145/1868328.1868336
– ident: 9493_CR72
  doi: 10.1109/MSR.2012.6224307
– volume: 2
  start-page: 1
  issue: e73
  year: 2016
  ident: 9493_CR19
  publication-title: Peer J Comput Sci
  doi: 10.7717/peerj-cs.73
– ident: 9493_CR56
  doi: 10.1109/MSR.2015.35
– ident: 9493_CR2
– ident: 9493_CR40
  doi: 10.1109/ICSM.2015.7332508
– ident: 9493_CR44
  doi: 10.1109/JCSSE.2013.6567355
– ident: 9493_CR32
  doi: 10.1109/MSR.2015.8
– ident: 9493_CR50
  doi: 10.1109/MSR.2012.6224268
– volume: 70
  start-page: 213
  issue: 4
  year: 1968
  ident: 9493_CR13
  publication-title: Psychol Bull
  doi: 10.1037/h0026256
– volume: 42
  start-page: 17
  issue: 1
  year: 2000
  ident: 9493_CR10
  publication-title: Biometrical Journal
  doi: 10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
– ident: 9493_CR14
  doi: 10.1145/1978942.1979409
– ident: 9493_CR74
  doi: 10.18653/v1/D13-1170
– ident: 9493_CR87
  doi: 10.1109/ICSE.2015.170
– volume: 56
  start-page: 52
  issue: 293
  year: 1961
  ident: 9493_CR21
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1961.10482090
– volume-title: Statistical methods for rates and proportions
  year: 2003
  ident: 9493_CR23
  doi: 10.1002/0471445428
– volume: 6
  start-page: 738
  year: 2012
  ident: 9493_CR41
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/12-EJS691
– ident: 9493_CR83
  doi: 10.1109/SocialCom.2013.35
– ident: 9493_CR48
  doi: 10.1109/MSR.2009.5069486
– ident: 9493_CR54
  doi: 10.1145/2597073.2597086
– ident: 9493_CR69
  doi: 10.1145/2145204.2145401
– ident: 9493_CR59
– ident: 9493_CR28
  doi: 10.1109/CGC.2013.71
– ident: 9493_CR6
  doi: 10.1109/WAINA.2009.190
– ident: 9493_CR7
  doi: 10.1007/10720076_29
– ident: 9493_CR63
  doi: 10.1145/2597073.2597117
– volume: 61
  start-page: 2544
  issue: 12
  year: 2010
  ident: 9493_CR78
  publication-title: J Am Soc Inf Sci Technol
  doi: 10.1002/asi.21416
– volume: 13
  start-page: 6:1
  issue: 2
  year: 2014
  ident: 9493_CR67
  publication-title: Revista Eletrônica de Sistemas de Informação
  doi: 10.5329/RESI.2014.1302006
– ident: 9493_CR27
  doi: 10.1007/11552253_12
– ident: 9493_CR80
– ident: 9493_CR45
– ident: 9493_CR1
– ident: 9493_CR9
– ident: 9493_CR25
  doi: 10.1145/42005.42007
– ident: 9493_CR15
  doi: 10.1145/2465478.2465482
– ident: 9493_CR17
  doi: 10.1145/2384616.2384664
– volume: 27
  start-page: 53
  issue: 1
  year: 1984
  ident: 9493_CR64
  publication-title: Commun ACM
  doi: 10.1145/69605.357970
– ident: 9493_CR31
– ident: 9493_CR16
– ident: 9493_CR30
  doi: 10.1109/HICSS.2012.421
– ident: 9493_CR61
  doi: 10.3115/1118693.1118704
– ident: 9493_CR12
  doi: 10.1145/1460563.1460654
– ident: 9493_CR71
– volume: 63
  start-page: 163
  issue: 1
  year: 2012
  ident: 9493_CR77
  publication-title: J Am Soc Inf Sci Technol
  doi: 10.1002/asi.21662
– ident: 9493_CR33
  doi: 10.1145/2597073.2597118
– ident: 9493_CR90
  doi: 10.3115/1220575.1220619
– volume: 2
  start-page: 1
  issue: 1-2
  year: 2007
  ident: 9493_CR60
  publication-title: Found Trends Inf Retr
– volume: 19
  start-page: 955
  issue: 4
  year: 2013
  ident: 9493_CR85
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-013-9244-1
– ident: 9493_CR4
– ident: 9493_CR58
  doi: 10.1007/978-3-319-18612-2_11
– ident: 9493_CR34
  doi: 10.1145/2491411.2494578
– ident: 9493_CR3
  doi: 10.1109/MSR.2012.6224267
– ident: 9493_CR37
  doi: 10.1109/MSR.2013.6624052
– ident: 9493_CR81
– ident: 9493_CR68
  doi: 10.1007/978-3-642-04277-5_18
– ident: 9493_CR8
– ident: 9493_CR5
  doi: 10.1017/CBO9780511527685
– ident: 9493_CR49
  doi: 10.1145/2601248.2601289
– ident: 9493_CR42
  doi: 10.1145/2124295.2124371
– ident: 9493_CR82
  doi: 10.1609/icwsm.v4i1.14009
– ident: 9493_CR55
  doi: 10.1145/2804381.2804387
– ident: 9493_CR57
  doi: 10.1145/2810146.2810147
– volume: 13
  start-page: 211
  issue: 2
  year: 2008
  ident: 9493_CR73
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-008-9060-1
– ident: 9493_CR91
– ident: 9493_CR46
  doi: 10.1109/SCC.2014.80
– ident: 9493_CR53
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 9493_CR38
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 12
  start-page: 551
  issue: 5
  year: 2007
  ident: 9493_CR79
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-007-9037-5
SSID ssj0009745
Score 2.5640619
Snippet Recent years have seen an increasing attention to social aspects of software engineering, including studies of emotions and sentiments experienced and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2543
SubjectTerms Compilers
Computer Science
Contrarian investing
Data mining
Engineering research
Interpreters
Product reviews
Programming Languages
Sentiment analysis
Social factors
Software
Software engineering
Software Engineering/Programming and Operating Systems
Studies
Title On negative results when using sentiment analysis tools for software engineering research
URI https://link.springer.com/article/10.1007/s10664-016-9493-x
https://www.proquest.com/docview/2063601463
Volume 22
WOSCitedRecordID wos000407921200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iHrxYn1itkoMnJbDuI4-jiMWDqGgp9bQkm6QVyla6W-vPd5Luuioq6HmzQ5gkM98wM98gdMwjS1XMKYQlSkGAoixxtFskEBbckw1p4scB9a_ZzQ0fDMRd1cdd1NXudUrSW-oPzW6UuooJSkQsIgLAcQXEcTev4f6h3zDtMj-Z2HHrkQgcep3K_E7EZ2fUIMwvSVHva7qtf-1yA61X0BKfL-7CJloy-RZq1WMbcPWKt9HjbY5zM_SM3xii7dm4LPB8ZHLsiuCH2LUjec5_LCvGElxOJuMCA77FBZjtuZwabBoiQ1wxBo12UK972bu4ItWEBZJBIFcSHikIjTWTMtRBaLOEAj6zgBk4oCQuDdVaJCpTOokzYa3QTCiqrQjDQHETR7toOZ_kZg9hm0gaaC4tU2cxM1wpxcB02oDRWMtYt1FQazrNKvZxNwRjnDa8yU5zqas4c5pLX9vo5P2X5wX1xm-LO_XxpdUrLNIwcGxo4AuiNjqtj6v5_KOw_T-tPkBrofP1vsKvg5bL6cwcotXspXwqpkf-cr4BAb3hXQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwGMaDqKAX5ydOp-bgSQnUNs3HUcQxcU7RMeapJE2yCaOTtXP--SZda1VU0HPTUNIkz_OSN78XgGMWGCIxIzYskdIGKNIgh91CHjdWnoxPwrwcUK9NOx3W7_O74h53Wma7l0eS-U794bIbIS5jgiCOeYCscVzCVrAcMP_-oVeRdmlemdix9VBgBb08yvyui89iVDnML4eiudY0a__6ynWwVlhLeD6fCxtgQSeboFaWbYDFKt4Cj7cJTPQgJ35DG21PR1kKZ0OdQJcEP4DuOlLO_IeiIJbAbDwepdD6W5jabXsmJhrqCmQIC2LQcBt0m5fdixYqKiyg2AZyGWKBtKGxokL4yvNNHBLrz4z1DMy6JCY0UYqHMpYqxDE3hivKJVGG-74nmcbBDlhMxoneBdCEgniKCUPlGaaaSSmp3TqNRwlWAqs68MqRjuKCPu6KYIyiipvsRi5yGWdu5KLXOjh5f-V5jt74rXGj_H1RsQrTyPccDc1qQVAHp-Xvqh7_2Nnen1ofgZVW96Ydta861_tg1Xe6n2f7NcBiNpnqA7Acv2RP6eQwn6hvmubkQQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIl6sT6xWzcGTErruI4-jqEWx1IIi9bQkm6QVyrZ0t9afb7LNuioqiOfNhjB5zDfMzPcBcEwDjUVIsQlLhDABitDI0m4hj2njnrSPo0IO6LFNOh3a67Gu0znNymr3MiU572mwLE1p3hxL3fzQ-IaxrZ7AiIUsQAZELoW2jt6G6_ePFesuKVSKLc8eCoxzL9Oa303x2TFVaPNLgrTwO63av1e8DtYc5ITn8zOyARZUuglqpZwDdLd7CzzdpTBV_YIJHJoofDrMMzgbqBTa4vg-tG1KhRYA5I7JBOaj0TCDBvfCzDznMz5RUFUEh9AxCQ22wUPr6uHiGjnlBZSYAC9HNBAmZJaEc196vk4ibHCbNliCGvREucJSskgkQkZhwrRmkjCBpWa-7wmqwmAHLKajVO0CqCOOPUm5JuIsJIoKIYh5UrVHcCh5KOvAK60eJ46V3IpjDOOKT9laLraVaNZy8WsdnLz_Mp5Tcvw2uFFuZexuZxb7nmVJMz4iqIPTcuuqzz9Otven0UdgpXvZits3ndt9sOpbOFAUATbAYj6ZqgOwnLzkz9nksDizbwXH7SU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+negative+results+when+using+sentiment+analysis+tools+for+software+engineering+research&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Jongeling%2C+Robbert&rft.au=Sarkar%2C+Proshanta&rft.au=Datta%2C+Subhajit&rft.au=Serebrenik%2C+Alexander&rft.date=2017-10-01&rft.pub=Springer+US&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=22&rft.issue=5&rft.spage=2543&rft.epage=2584&rft_id=info:doi/10.1007%2Fs10664-016-9493-x&rft.externalDocID=10_1007_s10664_016_9493_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon