Towards intelligent control system for computer numerical control machines

Advances in deep learning have led to impressive results in recent years. The new technologies such as convolutional neural networks, reinforcement learning and generative adversarial networks have shown a real promise for industrial and real-life applications. In this paper, the results of the expe...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering Vol. 537; no. 3; pp. 32085 - 32090
Main Author: Nikolaev, E I
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.05.2019
Subjects:
ISSN:1757-8981, 1757-899X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Advances in deep learning have led to impressive results in recent years. The new technologies such as convolutional neural networks, reinforcement learning and generative adversarial networks have shown a real promise for industrial and real-life applications. In this paper, the results of the experimental research on designing, training and implementation of the intelligent control system for the computer numerical control (CNC) machine were presented. The results indicate that using the generative adversarial technique in conjunction with reinforcement learning is possible to design and train the control systems for the machine tools. Building intelligent models in the absence of large datasets of labelled data is a crucial task. One of the key points of this experimental study is the training of a model of the control system using a set of unmarked data. This is achieved by using a reinforcement learning technique. A designed model can be deployed on the physical machine tools like a computer numerical control machine. At the presented research the laser engraver CNC machine is used. In this paper, the architecture of the computer intelligent control system for the laser engraver and the process of its training are described. The proposed model can be applied to different types of CNC machines.
AbstractList Advances in deep learning have led to impressive results in recent years. The new technologies such as convolutional neural networks, reinforcement learning and generative adversarial networks have shown a real promise for industrial and real-life applications. In this paper, the results of the experimental research on designing, training and implementation of the intelligent control system for the computer numerical control (CNC) machine were presented. The results indicate that using the generative adversarial technique in conjunction with reinforcement learning is possible to design and train the control systems for the machine tools. Building intelligent models in the absence of large datasets of labelled data is a crucial task. One of the key points of this experimental study is the training of a model of the control system using a set of unmarked data. This is achieved by using a reinforcement learning technique. A designed model can be deployed on the physical machine tools like a computer numerical control machine. At the presented research the laser engraver CNC machine is used. In this paper, the architecture of the computer intelligent control system for the laser engraver and the process of its training are described. The proposed model can be applied to different types of CNC machines.
Author Nikolaev, E I
Author_xml – sequence: 1
  givenname: E I
  surname: Nikolaev
  fullname: Nikolaev, E I
  email: notdeveloper@gmail.com
  organization: North-Caucasus Federal University , Russia
BookMark eNqFkF1LwzAUhoNMcJv-BSl4401t0jYfBW9kzC8mXrgL70KapZrRJjVJkf17WyoTRdjVCSfvk3PyzMDEWKMAOEfwCkHGEkQxjVlRvCY4o0mWwCyFDB-B6f5isj8zdAJm3m8hJDTP4RQ8ru2ncBsfaRNUXes3ZUIkrQnO1pHf-aCaqLKubzVtF5SLTNcop6Wo96lGyHdtlD8Fx5WovTr7rnOwvl2uF_fx6vnuYXGzimUOaYhZRtKKkpwpTJhEpcAbrGRRMcFILhBGhYIkzSErWSpEKaBKaVXgokQlk4XK5uBifLZ19qNTPvCt7ZzpJ_IUk94IxJj1KTKmpLPeO1Xx1ulGuB1HkA_a-GCED3Z4r41nfNTWg9d_QKmDCHr4rND1YTwdcW3bn8UOQpf_QE8vy18x3m6q7Aux3ZJD
CitedBy_id crossref_primary_10_1088_1757_899X_1155_1_012061
Cites_doi 10.1126/science.1127647
10.15302/J-ENG-2015054
10.1109/5.726791
10.1038/nature14539
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1088/1757-899X/537/3/032085
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central Journals
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database (subscription)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Proquest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Towards intelligent control system for computer numerical control machines
EISSN 1757-899X
ExternalDocumentID 10_1088_1757_899X_537_3_032085
MSE_537_3_032085
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EJD
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KNG
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PIMPY
PJBAE
PTHSS
RIN
RNS
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c407t-8362f7648e568c1ba5d5ec9f8a864a1519e062408b82aaba0e27f959b1b8c9e3
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561105300167&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1757-8981
IngestDate Fri Jul 25 11:42:57 EDT 2025
Sat Nov 29 06:33:09 EST 2025
Tue Nov 18 21:00:48 EST 2025
Thu Jan 07 13:51:23 EST 2021
Wed Aug 21 03:33:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-8362f7648e568c1ba5d5ec9f8a864a1519e062408b82aaba0e27f959b1b8c9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2561080558?pq-origsite=%requestingapplication%
PQID 2561080558
PQPubID 4998670
PageCount 6
ParticipantIDs crossref_primary_10_1088_1757_899X_537_3_032085
proquest_journals_2561080558
iop_journals_10_1088_1757_899X_537_3_032085
crossref_citationtrail_10_1088_1757_899X_537_3_032085
PublicationCentury 2000
PublicationDate 20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 20190501
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationTitleAlternate IOP Conf. Ser.: Mater. Sci. Eng
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References MSE_537_3_032085bib9
Ganin (MSE_537_3_032085bib17) 2018; 80
Ganin (MSE_537_3_032085bib12) 2015; 37
Chen (MSE_537_3_032085bib2) 2015; 1
Oord (MSE_537_3_032085bib4) 2016; 48
Nguyen (MSE_537_3_032085bib3) 2015
Kagermann (MSE_537_3_032085bib1) 2013
Goodfellow (MSE_537_3_032085bib11) 2014
Tung (MSE_537_3_032085bib16) 2017
LeCun (MSE_537_3_032085bib19) 1998; 86
Salimans (MSE_537_3_032085bib5) 2016
Hinton (MSE_537_3_032085bib7) 2006; 313
MSE_537_3_032085bib13
Zhu (MSE_537_3_032085bib15) 2017
LeCun (MSE_537_3_032085bib6) 2015; 521
Isola (MSE_537_3_032085bib14) 2017
Gulrajani (MSE_537_3_032085bib18) 2017
Eslami (MSE_537_3_032085bib8) 2016
Nair (MSE_537_3_032085bib10) 2006
References_xml – volume: 313
  start-page: 504
  year: 2006
  ident: MSE_537_3_032085bib7
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: MSE_537_3_032085bib9
– volume: 37
  start-page: 1180
  year: 2015
  ident: MSE_537_3_032085bib12
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: Proc. of the 32nd Int. Conf. on Machine Learning (ICML’ 15)
– start-page: 4364
  year: 2017
  ident: MSE_537_3_032085bib16
  article-title: Adversarial inverse graphics networks: Learning 2d-to-3d lifting and image-to-image translation from unpaired supervision
– volume: 1
  start-page: 247
  year: 2015
  ident: MSE_537_3_032085bib2
  article-title: CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach
  publication-title: Engineering
  doi: 10.15302/J-ENG-2015054
– start-page: 427
  year: 2015
  ident: MSE_537_3_032085bib3
  article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images 2015
– start-page: 5967
  year: 2017
  ident: MSE_537_3_032085bib14
  article-title: Image-to-Image Translation with Conditional Adversarial Networks
– volume: 80
  start-page: 1652
  year: 2018
  ident: MSE_537_3_032085bib17
  article-title: Synthesizing Programs for Images using Reinforced Adversarial Learning
  publication-title: Proc. of the 35th Int. Conf. on Machine Learning (ICML)
– start-page: 2234
  year: 2016
  ident: MSE_537_3_032085bib5
  article-title: Improved techniques for training GANs
– start-page: 3233
  year: 2016
  ident: MSE_537_3_032085bib8
  article-title: Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
– start-page: 2672
  year: 2014
  ident: MSE_537_3_032085bib11
  article-title: Generative adversarial nets
– year: 2013
  ident: MSE_537_3_032085bib1
– start-page: 2242
  year: 2017
  ident: MSE_537_3_032085bib15
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– volume: 48
  start-page: 1747
  year: 2016
  ident: MSE_537_3_032085bib4
  article-title: Pixel recurrent neural networks
  publication-title: Proc. of the 33rd Int. Conf. on Machine Learning (ICML’16)
– start-page: 515
  year: 2006
  ident: MSE_537_3_032085bib10
  article-title: Inferring motor programs from images of handwritten digits
– start-page: 5769
  year: 2017
  ident: MSE_537_3_032085bib18
  article-title: Improved training of wasserstein GANs
– ident: MSE_537_3_032085bib13
– volume: 86
  start-page: 2278
  year: 1998
  ident: MSE_537_3_032085bib19
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. of the IEEE
  doi: 10.1109/5.726791
– volume: 521
  start-page: 436
  year: 2015
  ident: MSE_537_3_032085bib6
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0067440
Score 2.1204827
Snippet Advances in deep learning have led to impressive results in recent years. The new technologies such as convolutional neural networks, reinforcement learning...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32085
SubjectTerms Artificial neural networks
Control systems design
Deep learning
Engraving
Generative adversarial networks
Machine shops
Machine tools
Mathematical models
New technology
Numerical controls
Training
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86fdAHv8XplAq-Se1HmuzyKLIholNw4N5CmiUwmNtYO_9-kzSbDpEh-FboXRqu17tfyd3vELqykNjktX6IqeqHmch1CCDiMMuxEkIbBCEdZf5js9OBXo-9-GpC1wsznvjQf2MuK6LgyoS-IA4ik_BMYGWsFxHcjHBkR4ADWUcbGAi1rv6M3-bBmFr-O9cT6XQgmTcJ_7rOUn5aN3v4EaRd5mnv_sOe99COh53BbaWwj9bU6ABtfyMjPEQPXVdBWwSDBUtnGfhK9qAifA4Mwg2knwMRjGbVac9wIfXuKjNVcYS67Vb37j70kxZCaX7oyhBMGtNNmoEiFGSSC9InSjINAmgmDChgKqaWDC2HVIhcxCptakZYnuQgmcLHqDYaj9QJCjRVICjVJu0nWSpBKC1jbJbNEkUSkHVE5ubl0rOQ22EYQ-5OwwG4NRW3puLGVBzzylR1FC30JhUPx0qNa_M2uP8ki5XSl0vST6-tpft80td11Jh7wpdgagEoxITA6Z8eeIa2DPZiVe1kA9XK6Uydo035UQ6K6YVz4k92j-tD
  priority: 102
  providerName: IOP Publishing
Title Towards intelligent control system for computer numerical control machines
URI https://iopscience.iop.org/article/10.1088/1757-899X/537/3/032085
https://www.proquest.com/docview/2561080558
Volume 537
WOSCitedRecordID wos000561105300167&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: O3W
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: M7S
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: KB.
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central Journals
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Publicly Available Content Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6iwGE7DAZDdEAVpN2mLD_tPp8QoCJ-dtWotHKyHMeWKkHbkcLfj-04BTQJDlxyiJ-jKJ_z3rP9_H0AP2xKbOJaGWZUlWEuCh0iijjMi0wJoU0GIR1l_mW338fRiA38glvlyyobn-gcdTmVdo08Sm2gx5gQPJj9C61qlN1d9RIaLVixLAmpK927bjwxteR37kAkMZ6YYdKcEDaTPn-PjSKSdaMssjriVk_5RXBqjaez_zy0Czsnax994XX44hPO4LAeIV9hSU024PMLGsJNOB-62tkqGC_4OeeBr2EPaqrnwOS2gfQKEMHkod7nuV1Y3bmaTFV9g-FJb3h8GnqNhVCaqdw8RBPAdJfmqAhFmRSClERJplEgzYVJB5iKqaVBKzAVohCxSruaEVYkBUqmsi1YnkwnahsCTRUKSrUJ-EmeShRKyzgzj80TRRKUbSDNt-XS849bGYxb7vbBEbnFhFtMuMGEZ7zGpA3Rot-sZuB4t8dPAx33P2P1rvX-K-ur696rdj4rdRt2G4yfDZ8B_v528w58MmkWq8skd2F5fv-g9mBVPs7H1X0HVo56_cGfDrQujn513AA219_ZX9MyOLsa3DwBN7bzJw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7xqNRyKNBSkZaHkdpTtdqnnfGhqioe4hGiSuSQm-X12lKkkAQ2gPhR_Eds724AIcGJA9f12NKuP8-M1-PvA_jpUmIb14ogZboIMpmbAFFGQZanWkpjMwjlKfM77W4X-33-fw7umrswrqyy8YneURdj5f6Rh4kL9BhRin8nF4FTjXKnq42ERgWLE317Y7ds5Z-jPTu_v5LkYL-3exjUqgKBspuXaYDWZZs2y1BThirOJS2oVtygRJZJGwC5jpgj_soxkTKXkU7ahlOexzkqrlM77DwsZs75-0rBs8bxM8e15-9fUuv4OcbNhWS7x6yf8X5I03aYhk623Mk3P4qF84Px5FlA8FHuYPmdfZ8V-Fyn0-Rfhf9VmNOjL7D0iGTxKxz3fGVwSQYz9tEpqSv0SUVkTWzmTlStb0FGV9Up1nBmde4rTnW5Br23eJdvsDAaj_Q6EMM0SsaMTWfiLFEotVFRaofNYk1jVC2gzVQKVbOrO5GPofCn_IjCQUA4CAgLAZGKCgItCGf9JhW_yKs9flukiNrVlK9a7zyxPj3bf9IuJoVpwUYDqQfDBzx9f7l5Gz4e9k47onPUPfkBn2xCyauC0A1YmF5e6U34oK6ng_Jyy68WAuKN0XcPGxxJuA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZSwMxEB68EH3wFqtVV_BN1j2yyU4eRVs8ahUs2LeQTRMoaC09_P0mu9tqERHBt4WdyYZJMvMtmfkG4NRBYhvXOj5huuMnMjM-ogz9JCNaSmMRhMop8xtps4ntNn-cg9q0FuatX7r-c_tYEAUXJiwT4jCwAc86Vs7bASVpQALXAhxp0O-YeVikhBLXweGBPE8cMnMceHldZK6H0aRQ-MexZmLUvJ3HN0edR5_6-j_NewPWSvjpXRRKmzCne1uw-oWUcBtuW3km7dDrTtk6R16Z0e4VxM-eRbqeKvtBeL1xcevzMpV6zTM09XAHWvVa6_LaLzsu-Mr-2I18tOHMpCxBTRmqKJO0Q7XiBiWyRFpwwHXIHClahrGUmQx1nBpOeRZlqLgmu7DQe-vpPfAM0ygZMzb8R0msUGqjQmKHTSJNI1QVoBMTC1WykbumGC8ivxVHFM5cwplLWHMJIgpzVSCY6vULPo5fNc7siojyaA5_lT6Zkb5_qs28F3a5KlCd7IZPwdgBUQwpxf0_ffAYlh-v6qJx07w7gBULx3iRTlmFhdFgrA9hSb2PusPBUb6nPwBu2fCi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+intelligent+control+system+for+computer+numerical+control+machines&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Nikolaev%2C+E+I&rft.date=2019-05-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=537&rft.issue=3&rft_id=info:doi/10.1088%2F1757-899X%2F537%2F3%2F032085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon