Towards intelligent control system for computer numerical control machines
Advances in deep learning have led to impressive results in recent years. The new technologies such as convolutional neural networks, reinforcement learning and generative adversarial networks have shown a real promise for industrial and real-life applications. In this paper, the results of the expe...
Saved in:
| Published in: | IOP conference series. Materials Science and Engineering Vol. 537; no. 3; pp. 32085 - 32090 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bristol
IOP Publishing
01.05.2019
|
| Subjects: | |
| ISSN: | 1757-8981, 1757-899X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Advances in deep learning have led to impressive results in recent years. The new technologies such as convolutional neural networks, reinforcement learning and generative adversarial networks have shown a real promise for industrial and real-life applications. In this paper, the results of the experimental research on designing, training and implementation of the intelligent control system for the computer numerical control (CNC) machine were presented. The results indicate that using the generative adversarial technique in conjunction with reinforcement learning is possible to design and train the control systems for the machine tools. Building intelligent models in the absence of large datasets of labelled data is a crucial task. One of the key points of this experimental study is the training of a model of the control system using a set of unmarked data. This is achieved by using a reinforcement learning technique. A designed model can be deployed on the physical machine tools like a computer numerical control machine. At the presented research the laser engraver CNC machine is used. In this paper, the architecture of the computer intelligent control system for the laser engraver and the process of its training are described. The proposed model can be applied to different types of CNC machines. |
|---|---|
| AbstractList | Advances in deep learning have led to impressive results in recent years. The new technologies such as convolutional neural networks, reinforcement learning and generative adversarial networks have shown a real promise for industrial and real-life applications. In this paper, the results of the experimental research on designing, training and implementation of the intelligent control system for the computer numerical control (CNC) machine were presented. The results indicate that using the generative adversarial technique in conjunction with reinforcement learning is possible to design and train the control systems for the machine tools. Building intelligent models in the absence of large datasets of labelled data is a crucial task. One of the key points of this experimental study is the training of a model of the control system using a set of unmarked data. This is achieved by using a reinforcement learning technique. A designed model can be deployed on the physical machine tools like a computer numerical control machine. At the presented research the laser engraver CNC machine is used. In this paper, the architecture of the computer intelligent control system for the laser engraver and the process of its training are described. The proposed model can be applied to different types of CNC machines. |
| Author | Nikolaev, E I |
| Author_xml | – sequence: 1 givenname: E I surname: Nikolaev fullname: Nikolaev, E I email: notdeveloper@gmail.com organization: North-Caucasus Federal University , Russia |
| BookMark | eNqFkF1LwzAUhoNMcJv-BSl4401t0jYfBW9kzC8mXrgL70KapZrRJjVJkf17WyoTRdjVCSfvk3PyzMDEWKMAOEfwCkHGEkQxjVlRvCY4o0mWwCyFDB-B6f5isj8zdAJm3m8hJDTP4RQ8ru2ncBsfaRNUXes3ZUIkrQnO1pHf-aCaqLKubzVtF5SLTNcop6Wo96lGyHdtlD8Fx5WovTr7rnOwvl2uF_fx6vnuYXGzimUOaYhZRtKKkpwpTJhEpcAbrGRRMcFILhBGhYIkzSErWSpEKaBKaVXgokQlk4XK5uBifLZ19qNTPvCt7ZzpJ_IUk94IxJj1KTKmpLPeO1Xx1ulGuB1HkA_a-GCED3Z4r41nfNTWg9d_QKmDCHr4rND1YTwdcW3bn8UOQpf_QE8vy18x3m6q7Aux3ZJD |
| CitedBy_id | crossref_primary_10_1088_1757_899X_1155_1_012061 |
| Cites_doi | 10.1126/science.1127647 10.15302/J-ENG-2015054 10.1109/5.726791 10.1038/nature14539 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1088/1757-899X/537/3/032085 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central Journals Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database (subscription) Materials Science Collection ProQuest Central Premium ProQuest One Academic Proquest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Towards intelligent control system for computer numerical control machines |
| EISSN | 1757-899X |
| ExternalDocumentID | 10_1088_1757_899X_537_3_032085 MSE_537_3_032085 |
| GroupedDBID | 1JI 5B3 5PX 5VS AAJIO AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ACIPV AEFHF AEJGL AFKRA AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU EBS EDWGO EJD EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KB. KNG KQ8 M7S N5L O3W OK1 P2P PDBOC PIMPY PJBAE PTHSS RIN RNS SY9 T37 TR2 TSCCA W28 AAYXX AEINN AFFHD CITATION PHGZM PHGZT PQGLB 8FE 8FG ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c407t-8362f7648e568c1ba5d5ec9f8a864a1519e062408b82aaba0e27f959b1b8c9e3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561105300167&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1757-8981 |
| IngestDate | Fri Jul 25 11:42:57 EDT 2025 Sat Nov 29 06:33:09 EST 2025 Tue Nov 18 21:00:48 EST 2025 Thu Jan 07 13:51:23 EST 2021 Wed Aug 21 03:33:17 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-8362f7648e568c1ba5d5ec9f8a864a1519e062408b82aaba0e27f959b1b8c9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2561080558?pq-origsite=%requestingapplication% |
| PQID | 2561080558 |
| PQPubID | 4998670 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1088_1757_899X_537_3_032085 proquest_journals_2561080558 iop_journals_10_1088_1757_899X_537_3_032085 crossref_citationtrail_10_1088_1757_899X_537_3_032085 |
| PublicationCentury | 2000 |
| PublicationDate | 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 20190501 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | IOP conference series. Materials Science and Engineering |
| PublicationTitleAlternate | IOP Conf. Ser.: Mater. Sci. Eng |
| PublicationYear | 2019 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | MSE_537_3_032085bib9 Ganin (MSE_537_3_032085bib17) 2018; 80 Ganin (MSE_537_3_032085bib12) 2015; 37 Chen (MSE_537_3_032085bib2) 2015; 1 Oord (MSE_537_3_032085bib4) 2016; 48 Nguyen (MSE_537_3_032085bib3) 2015 Kagermann (MSE_537_3_032085bib1) 2013 Goodfellow (MSE_537_3_032085bib11) 2014 Tung (MSE_537_3_032085bib16) 2017 LeCun (MSE_537_3_032085bib19) 1998; 86 Salimans (MSE_537_3_032085bib5) 2016 Hinton (MSE_537_3_032085bib7) 2006; 313 MSE_537_3_032085bib13 Zhu (MSE_537_3_032085bib15) 2017 LeCun (MSE_537_3_032085bib6) 2015; 521 Isola (MSE_537_3_032085bib14) 2017 Gulrajani (MSE_537_3_032085bib18) 2017 Eslami (MSE_537_3_032085bib8) 2016 Nair (MSE_537_3_032085bib10) 2006 |
| References_xml | – volume: 313 start-page: 504 year: 2006 ident: MSE_537_3_032085bib7 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: MSE_537_3_032085bib9 – volume: 37 start-page: 1180 year: 2015 ident: MSE_537_3_032085bib12 article-title: Unsupervised domain adaptation by backpropagation publication-title: Proc. of the 32nd Int. Conf. on Machine Learning (ICML’ 15) – start-page: 4364 year: 2017 ident: MSE_537_3_032085bib16 article-title: Adversarial inverse graphics networks: Learning 2d-to-3d lifting and image-to-image translation from unpaired supervision – volume: 1 start-page: 247 year: 2015 ident: MSE_537_3_032085bib2 article-title: CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach publication-title: Engineering doi: 10.15302/J-ENG-2015054 – start-page: 427 year: 2015 ident: MSE_537_3_032085bib3 article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images 2015 – start-page: 5967 year: 2017 ident: MSE_537_3_032085bib14 article-title: Image-to-Image Translation with Conditional Adversarial Networks – volume: 80 start-page: 1652 year: 2018 ident: MSE_537_3_032085bib17 article-title: Synthesizing Programs for Images using Reinforced Adversarial Learning publication-title: Proc. of the 35th Int. Conf. on Machine Learning (ICML) – start-page: 2234 year: 2016 ident: MSE_537_3_032085bib5 article-title: Improved techniques for training GANs – start-page: 3233 year: 2016 ident: MSE_537_3_032085bib8 article-title: Attend, Infer, Repeat: Fast Scene Understanding with Generative Models – start-page: 2672 year: 2014 ident: MSE_537_3_032085bib11 article-title: Generative adversarial nets – year: 2013 ident: MSE_537_3_032085bib1 – start-page: 2242 year: 2017 ident: MSE_537_3_032085bib15 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – volume: 48 start-page: 1747 year: 2016 ident: MSE_537_3_032085bib4 article-title: Pixel recurrent neural networks publication-title: Proc. of the 33rd Int. Conf. on Machine Learning (ICML’16) – start-page: 515 year: 2006 ident: MSE_537_3_032085bib10 article-title: Inferring motor programs from images of handwritten digits – start-page: 5769 year: 2017 ident: MSE_537_3_032085bib18 article-title: Improved training of wasserstein GANs – ident: MSE_537_3_032085bib13 – volume: 86 start-page: 2278 year: 1998 ident: MSE_537_3_032085bib19 article-title: Gradient-based learning applied to document recognition publication-title: Proc. of the IEEE doi: 10.1109/5.726791 – volume: 521 start-page: 436 year: 2015 ident: MSE_537_3_032085bib6 publication-title: Nature doi: 10.1038/nature14539 |
| SSID | ssj0067440 |
| Score | 2.1204827 |
| Snippet | Advances in deep learning have led to impressive results in recent years. The new technologies such as convolutional neural networks, reinforcement learning... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 32085 |
| SubjectTerms | Artificial neural networks Control systems design Deep learning Engraving Generative adversarial networks Machine shops Machine tools Mathematical models New technology Numerical controls Training |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86fdAHv8XplAq-Se1HmuzyKLIholNw4N5CmiUwmNtYO_9-kzSbDpEh-FboXRqu17tfyd3vELqykNjktX6IqeqHmch1CCDiMMuxEkIbBCEdZf5js9OBXo-9-GpC1wsznvjQf2MuK6LgyoS-IA4ik_BMYGWsFxHcjHBkR4ADWUcbGAi1rv6M3-bBmFr-O9cT6XQgmTcJ_7rOUn5aN3v4EaRd5mnv_sOe99COh53BbaWwj9bU6ABtfyMjPEQPXVdBWwSDBUtnGfhK9qAifA4Mwg2knwMRjGbVac9wIfXuKjNVcYS67Vb37j70kxZCaX7oyhBMGtNNmoEiFGSSC9InSjINAmgmDChgKqaWDC2HVIhcxCptakZYnuQgmcLHqDYaj9QJCjRVICjVJu0nWSpBKC1jbJbNEkUSkHVE5ubl0rOQ22EYQ-5OwwG4NRW3puLGVBzzylR1FC30JhUPx0qNa_M2uP8ki5XSl0vST6-tpft80td11Jh7wpdgagEoxITA6Z8eeIa2DPZiVe1kA9XK6Uydo035UQ6K6YVz4k92j-tD priority: 102 providerName: IOP Publishing |
| Title | Towards intelligent control system for computer numerical control machines |
| URI | https://iopscience.iop.org/article/10.1088/1757-899X/537/3/032085 https://www.proquest.com/docview/2561080558 |
| Volume | 537 |
| WOSCitedRecordID | wos000561105300167&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: O3W dateStart: 20090201 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: M7S dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: KB. dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central Journals customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: BENPR dateStart: 20090201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Publicly Available Content Database customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: PIMPY dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6iwGE7DAZDdEAVpN2mLD_tPp8QoCJ-dtWotHKyHMeWKkHbkcLfj-04BTQJDlxyiJ-jKJ_z3rP9_H0AP2xKbOJaGWZUlWEuCh0iijjMi0wJoU0GIR1l_mW338fRiA38glvlyyobn-gcdTmVdo08Sm2gx5gQPJj9C61qlN1d9RIaLVixLAmpK927bjwxteR37kAkMZ6YYdKcEDaTPn-PjSKSdaMssjriVk_5RXBqjaez_zy0Czsnax994XX44hPO4LAeIV9hSU024PMLGsJNOB-62tkqGC_4OeeBr2EPaqrnwOS2gfQKEMHkod7nuV1Y3bmaTFV9g-FJb3h8GnqNhVCaqdw8RBPAdJfmqAhFmRSClERJplEgzYVJB5iKqaVBKzAVohCxSruaEVYkBUqmsi1YnkwnahsCTRUKSrUJ-EmeShRKyzgzj80TRRKUbSDNt-XS849bGYxb7vbBEbnFhFtMuMGEZ7zGpA3Rot-sZuB4t8dPAx33P2P1rvX-K-ur696rdj4rdRt2G4yfDZ8B_v528w58MmkWq8skd2F5fv-g9mBVPs7H1X0HVo56_cGfDrQujn513AA219_ZX9MyOLsa3DwBN7bzJw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7xqNRyKNBSkZaHkdpTtdqnnfGhqioe4hGiSuSQm-X12lKkkAQ2gPhR_Eds724AIcGJA9f12NKuP8-M1-PvA_jpUmIb14ogZboIMpmbAFFGQZanWkpjMwjlKfM77W4X-33-fw7umrswrqyy8YneURdj5f6Rh4kL9BhRin8nF4FTjXKnq42ERgWLE317Y7ds5Z-jPTu_v5LkYL-3exjUqgKBspuXaYDWZZs2y1BThirOJS2oVtygRJZJGwC5jpgj_soxkTKXkU7ahlOexzkqrlM77DwsZs75-0rBs8bxM8e15-9fUuv4OcbNhWS7x6yf8X5I03aYhk623Mk3P4qF84Px5FlA8FHuYPmdfZ8V-Fyn0-Rfhf9VmNOjL7D0iGTxKxz3fGVwSQYz9tEpqSv0SUVkTWzmTlStb0FGV9Up1nBmde4rTnW5Br23eJdvsDAaj_Q6EMM0SsaMTWfiLFEotVFRaofNYk1jVC2gzVQKVbOrO5GPofCn_IjCQUA4CAgLAZGKCgItCGf9JhW_yKs9flukiNrVlK9a7zyxPj3bf9IuJoVpwUYDqQfDBzx9f7l5Gz4e9k47onPUPfkBn2xCyauC0A1YmF5e6U34oK6ng_Jyy68WAuKN0XcPGxxJuA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZSwMxEB68EH3wFqtVV_BN1j2yyU4eRVs8ahUs2LeQTRMoaC09_P0mu9tqERHBt4WdyYZJMvMtmfkG4NRBYhvXOj5huuMnMjM-ogz9JCNaSmMRhMop8xtps4ntNn-cg9q0FuatX7r-c_tYEAUXJiwT4jCwAc86Vs7bASVpQALXAhxp0O-YeVikhBLXweGBPE8cMnMceHldZK6H0aRQ-MexZmLUvJ3HN0edR5_6-j_NewPWSvjpXRRKmzCne1uw-oWUcBtuW3km7dDrTtk6R16Z0e4VxM-eRbqeKvtBeL1xcevzMpV6zTM09XAHWvVa6_LaLzsu-Mr-2I18tOHMpCxBTRmqKJO0Q7XiBiWyRFpwwHXIHClahrGUmQx1nBpOeRZlqLgmu7DQe-vpPfAM0ygZMzb8R0msUGqjQmKHTSJNI1QVoBMTC1WykbumGC8ivxVHFM5cwplLWHMJIgpzVSCY6vULPo5fNc7siojyaA5_lT6Zkb5_qs28F3a5KlCd7IZPwdgBUQwpxf0_ffAYlh-v6qJx07w7gBULx3iRTlmFhdFgrA9hSb2PusPBUb6nPwBu2fCi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+intelligent+control+system+for+computer+numerical+control+machines&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Nikolaev%2C+E+I&rft.date=2019-05-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=537&rft.issue=3&rft_id=info:doi/10.1088%2F1757-899X%2F537%2F3%2F032085 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon |