A glimpse on big data analytics in the framework of marketing strategies

Mining and analyzing the valuable knowledge hidden behind the amount of data available in social media is becoming a fundamental prerequisite for any effective and successful strategic marketing campaign. Anyway, to the best of our knowledge, a systematic analysis and review of the very recent liter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 22; číslo 1; s. 325 - 342
Hlavní autoři: Ducange, Pietro, Pecori, Riccardo, Mezzina, Paolo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2018
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mining and analyzing the valuable knowledge hidden behind the amount of data available in social media is becoming a fundamental prerequisite for any effective and successful strategic marketing campaign. Anyway, to the best of our knowledge, a systematic analysis and review of the very recent literature according to a marketing framework is still missing. In this work, we intend to provide, first and foremost, a clear understanding of the main concepts and issues regarding social big data, as well as their features and technologies. Secondly, we focus on marketing, describing an operative methodology to get useful insights from social big data. Then, we carry out a brief but accurate classification of recent use cases from the literature, according to the decision support and the competitive advantages obtained by enterprises whenever they exploit the analytics available from social big data sources. Finally, we outline some open issues and suggestions in order to encourage further research in the field.
AbstractList Mining and analyzing the valuable knowledge hidden behind the amount of data available in social media is becoming a fundamental prerequisite for any effective and successful strategic marketing campaign. Anyway, to the best of our knowledge, a systematic analysis and review of the very recent literature according to a marketing framework is still missing. In this work, we intend to provide, first and foremost, a clear understanding of the main concepts and issues regarding social big data, as well as their features and technologies. Secondly, we focus on marketing, describing an operative methodology to get useful insights from social big data. Then, we carry out a brief but accurate classification of recent use cases from the literature, according to the decision support and the competitive advantages obtained by enterprises whenever they exploit the analytics available from social big data sources. Finally, we outline some open issues and suggestions in order to encourage further research in the field.
Author Ducange, Pietro
Mezzina, Paolo
Pecori, Riccardo
Author_xml – sequence: 1
  givenname: Pietro
  surname: Ducange
  fullname: Ducange, Pietro
  organization: SMART Engineering Solutions & Technologies (SMARTEST) Research Centre, eCAMPUS University
– sequence: 2
  givenname: Riccardo
  orcidid: 0000-0002-5948-5845
  surname: Pecori
  fullname: Pecori, Riccardo
  email: riccardo.pecori@uniecampus.it
  organization: SMART Engineering Solutions & Technologies (SMARTEST) Research Centre, eCAMPUS University
– sequence: 3
  givenname: Paolo
  surname: Mezzina
  fullname: Mezzina, Paolo
  organization: SMART Engineering Solutions & Technologies (SMARTEST) Research Centre, eCAMPUS University
BookMark eNp9kMFKAzEURYNUsK1-gLuA62iSSSaTZSlqhYIbXYdMJhnTTic1SZH-vVNHEARdvbe453HfmYFJH3oLwDXBtwRjcZcw5hgjTASivCgROwNTwooCCSbk5GunSJSsuACzlDYYUyJ4MQWrBWw7v9snC0MPa9_CRmcNda-7Y_YmQd_D_Gahi3pnP0LcwuDgTsetzb5vYcpRZ9t6my7BudNdslffcw5eH-5fliu0fn58Wi7WyDAsMqpIzWtcU0ak4Y1ztm5qY0yJtSkagkte1ZU2hDeEUVE5qRthHGPClhRLV9NiDm7Gu_sY3g82ZbUJhzjUTYpKIqSQJZdDSowpE0NK0TplfNbZh34o7DtFsDppU6M2NWhTJ22KDST5Re6jHx4-_svQkUlDtm9t_On0N_QJSZWBVA
CitedBy_id crossref_primary_10_26794_2587_5671_2025_29_3_218_228
crossref_primary_10_1155_2020_2390941
crossref_primary_10_1007_s12559_018_9613_6
crossref_primary_10_1177_20438869211057284
crossref_primary_10_1016_j_cosrev_2021_100389
crossref_primary_10_1080_01442872_2020_1724926
crossref_primary_10_3390_fi10010004
crossref_primary_10_1590_s0034_759020190607
crossref_primary_10_1155_2020_6682296
crossref_primary_10_26599_BDMA_2022_9020009
crossref_primary_10_1007_s10994_022_06279_5
crossref_primary_10_1016_j_techfore_2021_121460
crossref_primary_10_1007_s00500_019_03770_5
crossref_primary_10_1108_JKM_11_2019_0637
crossref_primary_10_1007_s13198_021_01225_5
crossref_primary_10_1007_s43546_024_00724_4
crossref_primary_10_1108_VJIKMS_08_2020_0151
crossref_primary_10_1016_j_procs_2024_01_007
crossref_primary_10_3390_su142416356
crossref_primary_10_1155_2020_5186870
crossref_primary_10_1007_s10660_023_09759_5
crossref_primary_10_1080_2331186X_2024_2448063
crossref_primary_10_1016_j_techfore_2023_122567
crossref_primary_10_1109_TBDATA_2024_3394700
crossref_primary_10_3390_foods12244511
crossref_primary_10_3390_informatics8040074
crossref_primary_10_1016_j_eswa_2021_115597
crossref_primary_10_1080_0965254X_2022_2108881
crossref_primary_10_1007_s10462_024_10938_5
crossref_primary_10_1186_s40537_020_00298_6
crossref_primary_10_1080_08839514_2021_1922843
crossref_primary_10_1080_23311975_2022_2041384
crossref_primary_10_1155_2022_8460574
crossref_primary_10_1108_IJOEM_08_2022_1223
crossref_primary_10_1186_s40537_018_0141_8
crossref_primary_10_3390_su15010265
crossref_primary_10_1007_s10115_021_01582_4
crossref_primary_10_1016_j_eswa_2018_09_009
crossref_primary_10_1108_EJIM_09_2022_0510
crossref_primary_10_1109_ACCESS_2020_2998754
crossref_primary_10_3390_sym9100244
Cites_doi 10.1109/HICSS.2014.464
10.1177/1096348012471381
10.1016/j.bushor.2015.01.010
10.1109/MIS.2010.151
10.1016/j.jbusres.2015.07.001
10.1016/j.dss.2015.07.005
10.1145/2623330.2623366
10.1109/BigDataService.2015.62
10.1109/MIS.2014.20
10.1109/HMI.2016.7449165
10.1109/ACCESS.2014.2325029
10.1016/j.comnet.2015.11.010
10.1109/SKG.2013.16
10.1509/jmr.10.0355
10.1109/BigData.2015.7363939
10.1147/JRD.2014.2344514
10.1002/asi.2152
10.1109/ISEI.2015.7358734
10.1109/MCI.2016.2572518
10.4018/978-1-4666-9776-8.ch005
10.1109/TEM.2015.2488698
10.1109/ICIS.2016.7550891
10.1109/BigMM.2016.38
10.1109/BigData.Congress.2014.72
10.1109/TrustCom.2014.81
10.1109/TITS.2015.2404431
10.1007/s00500-016-2301-0
10.1016/j.ijpe.2014.12.031
10.1109/IS3C.2016.107
10.1016/j.comnet.2014.08.025
10.1016/j.ijpe.2014.12.032
10.1109/MITP.2015.66
10.1016/j.inffus.2015.08.005
10.1109/COMSNETS.2014.6734907
10.1109/ICDM.2014.48
10.1109/SRII.2014.38
10.1109/BigDataCongress.2016.24
10.1109/BigData.2014.7004411
10.1007/978-3-319-47364-2_66
10.1109/TKDE.2013.109
10.1109/HICSS.2016.444
10.1145/1327452.1327492
10.1080/20932685.2014.908528
10.1109/JSAC.2013.130605
10.1109/IAdCC.2014.6779389
10.1016/j.intmar.2016.04.001
10.1109/SCC.2014.107
10.1007/s00500-015-1812-4
10.1109/TVCG.2015.2440241
10.1109/TSC.2016.2592520
10.1109/ICIS.2015.7166604
10.1109/MSP.2013.81
10.1007/978-3-319-49130-1_4
10.1109/MIPRO.2016.7522385
10.1109/ICCTIM.2015.7224610
10.1016/j.ijhm.2014.10.013
10.1147/JRD.2015.2426576
10.1016/j.jbusres.2015.10.151
10.1109/SustainIT.2013.6685198
10.2200/S00416ED1V01Y201204HLT016
10.1007/s00500-015-1679-4
10.1007/s00500-015-1935-7
10.1109/SOLI.2016.7551682
10.1504/IJTM.2006.009466
10.1109/ICSTM.2015.7225392
10.1109/CSCloud.2016.11
10.1016/j.ijinfomgt.2016.04.010
10.1109/ICoICT.2016.7571912
10.1007/978-1-4614-3442-9_12
10.1109/MCI.2014.2307227
10.1108/JEIM-09-2012-0061
10.1111/j.1467-9310.2010.00618.x
10.1007/s00500-009-0499-9
10.1177/0002716215570866
10.1080/13614568.2014.889225
10.1007/s00500-015-1945-5
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Springer-Verlag Berlin Heidelberg 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Springer-Verlag Berlin Heidelberg 2017.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-017-2536-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 342
ExternalDocumentID 10_1007_s00500_017_2536_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c407t-81b5b0b2419c5dffebdbccc60ac3d10658b8ac15d14278f9ad7cf447e6209fb23
IEDL.DBID P5Z
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419355900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 09:09:52 EST 2025
Tue Nov 18 21:24:47 EST 2025
Sat Nov 29 03:35:46 EST 2025
Fri Feb 21 02:39:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Social networks
Social big data
Strategic marketing
Social media
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-81b5b0b2419c5dffebdbccc60ac3d10658b8ac15d14278f9ad7cf447e6209fb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5948-5845
OpenAccessLink http://hdl.handle.net/11568/988867
PQID 2917979659
PQPubID 2043697
PageCount 18
ParticipantIDs proquest_journals_2917979659
crossref_citationtrail_10_1007_s00500_017_2536_4
crossref_primary_10_1007_s00500_017_2536_4
springer_journals_10_1007_s00500_017_2536_4
PublicationCentury 2000
PublicationDate 20180100
2018-1-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Jiang W, Chai H (2016) Research on big data in business model innovation based on GA–BP model. In: 2016 IEEE international conference on service operations and logistics, and informatics (SOLI), pp 174–177
Liu G, Fu Y, Xu T, Xiong H, Chen G (2014) Discovering temporal retweeting patterns for social media marketing campaigns. In: 2014 IEEE international conference on data mining, pp 905–910
ErevellesSFukawaNSwayneLBig data consumer analytics and the transformation of marketingJ Bus Res201669289790410.1016/j.jbusres.2015.07.001
Tanimoto S, Iwashita M, Seki Y, Sato H, Kanai A (2016) Risk assessment quantification of social-media utilization in enterprise. In: 2016 IEEE/ACIS 15th international conference on computer and information science (ICIS), pp 1–6
Mayer-SchönbergerVCukierKBig data: a revolution that will transform how we live, work, and think2013BostonHoughton Mifflin Harcourt
ChenXWLinXBig data deep learning: challenges and perspectivesIEEE Access2014251452510.1109/ACCESS.2014.2325029
Varlamis I, Eirinaki M, Proios D (2015) Tipme: personalized advertising and aspect-based opinion mining for users and businesses. In: 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 1489–1494
BehrendtSRichterATrierMMixed methods analysis of enterprise social networksComput Netw201475Part B56057710.1016/j.comnet.2014.08.025(special issue on online social networks the connectedness, pervasiveness and ubiquity of online social networks)
Coursaris CK, Osch WV (2016) Disentangling the drivers of brand benefits: evidence from social media marketing of two cosmetics companies. In: 2016 international conference on telecommunications and multimedia (TEMU), pp 1–6
PhanMParkSYIntroduction: social media marketing and luxury brandsJ Global Fashion Market20145319519610.1080/20932685.2014.908528
Fourati-Jamoussi F (2015) E-reputation: a case study of organic cosmetics in social media. In: 2015 6th international conference on information systems and economic intelligence, pp 125–132
Lauherta-Otero E, Cordero-Gutierrez R (2016) How big data helps to find influencers on Twitter: an empirical study. In: AEMARK conference, pp 627–641
WambaSFAkterSEdwardsAChopinGGnanzouDHow big data can make big impact: findings from a systematic review and a longitudinal case studyInt J Prod Econ201516523424610.1016/j.ijpe.2014.12.031
CLT (2014) What happens online in 60 seconds?. https://clt.vtc.edu.hk/what-happens-online-in-60-seconds
OwaisSSHusseinNSExtract five categories CPIVW from the 9Vs characteristics of the big dataInt J Adv Comput Sci Appl201673254258
BergerKKlierJKlierMProbstFA review of information systems research on online social networksCommun Assoc Inf Syst2014351145172
Davcheva P (2014) Identifying sports talents by social media mining as a marketing instrument. In: 2014 annual SRII global conference, pp 223–227
Brown R, Harmon R (2014) Viral geofencing: an exploration of emerging big-data driven direct digital marketing services. In: 2014 Portland international conference on management of engineering technology, pp 3300–3308
SashittalHCHodisMSriramachandramurthyREntifying your brand among Twitter—using millennialsBus Horiz201558332533310.1016/j.bushor.2015.01.010
Sand G, Tsitouras L, Dimitrakopoulos G, Chatzigiannakis V (2014) A big data aggregation, analysis and exploitation integrated platform for increasing social management intelligence. In: 2014 IEEE international conference on big data, pp 40–47
Agarwal D, Ghosh S, Wei K, You S (2014) Budget pacing for targeted online advertisements at linkedin. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1613–1619. ACM
WhiteTHadoop: the definitive guide20154NewtonO’Reilly Media
del Val E, Martínez C, Botti V (2016) Analyzing users’ activity in online social networks over time through a multi-agent framework. Soft Comput 20:4331–4345
SchwarzEKrishnamurthyRParrisCBradburyJNnebeIGschwindMThe SIMD accelerator for business analytics on the IBM z13IBM J Res Dev2015594/52:12:1610.1147/JRD.2015.2426576
JhaADaveMMadanSA review on the study and analysis of big data using data mining techniquesInt J Latest Trends Eng Technol (IJLTET)20166394102
Oh C, Yergeau S, Woo Y, Wurtsmith B, Vaughn S (2015) Is Twitter psychic? Social media analytics and television ratings. In: Second international conference on computing technology and information management (ICCTIM 2015), pp 150–155
PecoriRS-Kademlia: a trust and reputation method to mitigate a Sybil attack in KademliaComput Netw201694 Part C20521810.1016/j.comnet.2015.11.010
BerkhoutGHartmannDTrottPConnecting technological capabilities with market needs using a cyclic innovation modelR&D Manag201040547449010.1111/j.1467-9310.2010.00618.x
HargittaiEIs bigger always better? Potential biases of big data derived from social network sitesAnn Am Acad Polit Soc Sci20156591637610.1177/0002716215570866
SaniLEfficient search of relevant structures in complex systems2016ChamSpringer International Publishing3548
Calderon NA, Fisher B, Hemsley J, Ceskavich B, Jansen G, Marciano R, Lemieux VL (2015) Mixed-initiative social media analytics at the world bank: observations of citizen sentiment in Twitter data to explore “trust” of political actors and state institutions and its relationship to social protest. In: 2015 IEEE international conference on big data, pp 1678–1687
HayesJLKingKWRamirezABrands, friends, and viral advertising: a social exchange perspective on the ad referral processesJ Interact Mark201636314510.1016/j.intmar.2016.04.001
BaoJDeshpandeAMcFaddinSNarayanaswamiCPartner-marketing using geo-social media data for smarter commerceIBM J Res Dev2014585/66:16:1210.1147/JRD.2014.2344514
Kumar N, Maheshwari V, Kumar J (2016) A comparative study of user experience in online social media branding web pages using eye tracker. In: 2016 international conference on advances in human machine interaction (HMI), pp 1–8
Hridoy S, Ekram M, Islam M, Ahmed F, Rahman R (2015) Investigation of localized sentiment for a given product by analyzing tweets. In: 2015 IEEE/ACIS 14th international conference on computer and information science, pp 265–270
KetelaarPEJanssenLVergeerMvan ReijmersdalEACrutzenRvant RietJThe success of viral ads: social and attitudinal predictors of consumer pass-on behavior on social network sitesJ Bus Res20166972603261310.1016/j.jbusres.2015.10.151
DuttaDBoseIManaging a big data project: the case of Ramco Cements LimitedInt J Prod Econ201516529330610.1016/j.ijpe.2014.12.032
DeanJGhemawatSMapreduce: simplified data processing on large clustersCommun ACM200851110711310.1145/1327452.1327492
MorenoMVDufourLSkarmetaAFJaraAJGenoudDLadevieBBezianJJBig data: the key to energy efficiency in smart buildingsSoft Comput20162051749176210.1007/s00500-015-1679-4
GastaldiMIntegration of mobile, big data, sensors, and social media: impact on daily life and businessIST-Afr Conf Proc20142014110
Coursaris CK, Osch WV, Balogh BA (2016) Do Facebook likes lead to shares or sales? exploring the empirical links between social media content, brand equity, purchase intention, and engagement. In: 2016 49th Hawaii international conference on system sciences (HICSS), pp 3546–3555
YanEResearch dynamics, impact, and dissemination: a topic-level analysisJASIST20156623572372
DucangePPecoriRSartiLVecchioMEducational big data mining: how to enhance virtual learning environments2017ChamSpringer International Publishing681690
IbrahimOASLanda-SilvaDTerm frequency with average term occurrences for textual information retrievalSoft Comput20162083045306110.1007/s00500-015-1935-7
Anjaria M, Guddeti R (2014) Influence factor based opinion mining of twitter data using supervised learning. In: 2014 sixth international conference on communication systems and networks, pp 1–8
Hamed A, Wu X (2014) Does social media big data make the world smaller? An exploratory analysis of keyword-hashtag networks. In: 2014 IEEE international congress on big data, pp 454–461
Bello-OrgazGJungJJCamachoDSocial big data: recent achievements and new challengesInform Fusion201628455910.1016/j.inffus.2015.08.005
LeungXYBaiBStahuraKAThe marketing effectiveness of social media in the hotel industry: a comparison of Facebook and TwitterJ Hosp Tour Res201539214716910.1177/1096348012471381
SongPPhangCWPromoting continuance through shaping members’ social identity in knowledge-based versus support/advocacy virtual communitiesIEEE Trans Eng Manag2016631162610.1109/TEM.2015.2488698
Kafeza E, Makris C, Vikatos P (2016) Marketing campaigns in Twitter using a pattern based diffusion policy. In: 2016 IEEE international congress on big data (BigData Congress), pp 125–132
LiuBSentiment analysis and opinion miningSynthes Lect Hum Lang Technol201251116710.2200/S00416ED1V01Y201204HLT016
Wong RK, Chi CH, Yu Z, Zhao Y (2014) A system of systems service design for social media analytics. In: 2014 IEEE international conference on services computing (SCC), pp 789–796
BerkhoutAJInnovating the innovation processInt J Technol Manage20063439040410.1504/IJTM.2006.009466
MilolidakisGAkoumianakisDKimbleCDigital traces for business intelligence: a case study of mobile telecoms service brands in GreeceJ Enterp Inf Manag2014271669810.1108/JEIM-09-2012-0061
TuckerCESocial networks, personalized advertising, and privacy controlsJ Mark Res201451554656210.1509/jmr.10.0355
Wang Z, Zhao H (2016) Empirical study of using big data for business process improvement at private manufacturing firm in cloud computing. In: 2016 IEEE 3rd international conference on cyber security and cloud computing (CSCloud), pp 129–135
LiJFongSZhuangYKhouryRHierarchical classification in text mining for sentiment analysis of online newsSoft Comput20162093411342010.1007/s00500-015-1812-4
ZengDChenHLuschRLiSHSocial media analytics and intelligenceIEEE Intell Syst2010256131610.1109/MIS.2010.151
WangDKaplanLAbdelzaherTAggarwalCOn credibility estimation tradeoffs in assured social sensingIEEE J Sel Areas Commun20133161026103710.1109/JSAC.2013.130605
W
2536_CR8
E Hargittai (2536_CR40) 2015; 659
B Heinrich (2536_CR43) 2015; 78
J Bao (2536_CR6) 2014; 58
R Pecori (2536_CR69) 2016; 94 Part C
E Cambria (2536_CR18) 2014; 9
M Cobo (2536_CR22) 2011; 62
MV Moreno (2536_CR66) 2016; 20
L Sani (2536_CR73) 2016
2536_CR34
2536_CR78
G Bello-Orgaz (2536_CR10) 2016; 28
2536_CR33
2536_CR79
K Berger (2536_CR11) 2014; 35
2536_CR38
2536_CR39
M Phan (2536_CR71) 2014; 5
2536_CR1
2536_CR3
2536_CR72
2536_CR2
XY Leung (2536_CR55) 2015; 39
2536_CR5
D Lin (2536_CR57) 2010; 14
2536_CR4
S Milgram (2536_CR64) 1967; 2
J Dean (2536_CR27) 2008; 51
S Erevelles (2536_CR31) 2016; 69
JL Hayes (2536_CR41) 2016; 36
CE Tucker (2536_CR81) 2014; 51
2536_CR90
X Wu (2536_CR91) 2014; 26
Y Zhang (2536_CR95) 2016; 9
D Wang (2536_CR85) 2013; 31
Z Xiang (2536_CR92) 2015; 44
PE Ketelaar (2536_CR50) 2016; 69
2536_CR44
2536_CR88
2536_CR46
D Bell (2536_CR9) 2008
2536_CR49
2536_CR48
2536_CR80
2536_CR83
2536_CR82
E Yan (2536_CR93) 2015; 66
2536_CR87
2536_CR86
HC Sashittal (2536_CR74) 2015; 58
E Schwarz (2536_CR75) 2015; 59
A Jha (2536_CR47) 2016; 6
G Bowen (2536_CR14) 2016; 7
SF Wamba (2536_CR84) 2015; 165
P Song (2536_CR77) 2016; 63
RG Pensa (2536_CR70) 2016; 11
G Berkhout (2536_CR13) 2010; 40
2536_CR16
2536_CR15
2536_CR59
2536_CR17
T White (2536_CR89) 2015
2536_CR52
2536_CR96
W He (2536_CR42) 2014; 20
2536_CR51
SS Owais (2536_CR68) 2016; 7
G Milolidakis (2536_CR65) 2014; 27
2536_CR53
M Lesk (2536_CR54) 2013; 11
S Behrendt (2536_CR7) 2014; 75
M Gastaldi (2536_CR35) 2014; 2014
E D’Andrea (2536_CR25) 2015; 16
V Mayer-Schönberger (2536_CR62) 2013
OAS Ibrahim (2536_CR45) 2016; 20
DM Gilfoil (2536_CR37) 2014; 8
T Erl (2536_CR32) 2016
MT Chi (2536_CR20) 2015; 21
2536_CR23
B Geddes (2536_CR36) 2014
2536_CR67
XW Chen (2536_CR19) 2014; 2
2536_CR24
J Li (2536_CR56) 2016; 20
2536_CR26
AJ Berkhout (2536_CR12) 2006; 34
2536_CR28
D Zeng (2536_CR94) 2010; 25
2536_CR61
B Liu (2536_CR58) 2012; 5
2536_CR60
2536_CR63
D Dutta (2536_CR30) 2015; 165
2536_CR21
P Ducange (2536_CR29) 2017
M Song (2536_CR76) 2014; 29
References_xml – reference: DucangePPecoriRSartiLVecchioMEducational big data mining: how to enhance virtual learning environments2017ChamSpringer International Publishing681690
– reference: Lauherta-Otero E, Cordero-Gutierrez R (2016) How big data helps to find influencers on Twitter: an empirical study. In: AEMARK conference, pp 627–641
– reference: To WM, Lai L (2015) Data analytics in China: trends, issues, and challenges. IT Prof 17(4):49–55
– reference: Bello-OrgazGJungJJCamachoDSocial big data: recent achievements and new challengesInform Fusion201628455910.1016/j.inffus.2015.08.005
– reference: Zhang M, Guo L, Hu M, Liu W (2016) Influence of customer engagement with company social networks on stickiness: mediating effect of customer value creation. Int J Inf Manag. doi:10.1016/j.ijinfomgt.2016.04.010
– reference: SashittalHCHodisMSriramachandramurthyREntifying your brand among Twitter—using millennialsBus Horiz201558332533310.1016/j.bushor.2015.01.010
– reference: LeungXYBaiBStahuraKAThe marketing effectiveness of social media in the hotel industry: a comparison of Facebook and TwitterJ Hosp Tour Res201539214716910.1177/1096348012471381
– reference: SongPPhangCWPromoting continuance through shaping members’ social identity in knowledge-based versus support/advocacy virtual communitiesIEEE Trans Eng Manag2016631162610.1109/TEM.2015.2488698
– reference: PhanMParkSYIntroduction: social media marketing and luxury brandsJ Global Fashion Market20145319519610.1080/20932685.2014.908528
– reference: CLT (2014) What happens online in 60 seconds?. https://clt.vtc.edu.hk/what-happens-online-in-60-seconds/
– reference: BerkhoutGHartmannDTrottPConnecting technological capabilities with market needs using a cyclic innovation modelR&D Manag201040547449010.1111/j.1467-9310.2010.00618.x
– reference: HeWWangFKZhaSEnhancing social media competitiveness of small businesses: insights from small pizzeriasNew Rev Hypermedia Multimed201420322525010.1080/13614568.2014.889225
– reference: WhiteTHadoop: the definitive guide20154NewtonO’Reilly Media
– reference: Agarwal D, Ghosh S, Wei K, You S (2014) Budget pacing for targeted online advertisements at linkedin. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1613–1619. ACM
– reference: Lu Q, Li Z, Zhang W, Yang LT (2015) Autonomic deployment decision making for big data analytics applications in the cloud. Soft Comput. doi:10.1007/s00500-015-1945-5
– reference: PensaRGSapinoMLSchifanellaCVignaroliLLeveraging cross-domain social media analytics to understand TV topics popularityIEEE Comput Intell Mag2016113102110.1109/MCI.2016.2572518
– reference: BowenGBowenDSocial media: strategic decision making toolJ Bus Econ20167389401
– reference: CambriaEWhiteBJumping nlp curves: a review of natural language processing researchIEEE Comput Intell Mag201492485710.1109/MCI.2014.2307227(review article)
– reference: HayesJLKingKWRamirezABrands, friends, and viral advertising: a social exchange perspective on the ad referral processesJ Interact Mark201636314510.1016/j.intmar.2016.04.001
– reference: IbrahimOASLanda-SilvaDTerm frequency with average term occurrences for textual information retrievalSoft Comput20162083045306110.1007/s00500-015-1935-7
– reference: WambaSFAkterSEdwardsAChopinGGnanzouDHow big data can make big impact: findings from a systematic review and a longitudinal case studyInt J Prod Econ201516523424610.1016/j.ijpe.2014.12.031
– reference: GeddesBAdvanced Google AdWords2014HobokenWiley
– reference: HeinrichBKlierMZimmermannSAutomated planning of process models: design of a novel approach to construct exclusive choicesDecis Support Syst20157811410.1016/j.dss.2015.07.005
– reference: MilolidakisGAkoumianakisDKimbleCDigital traces for business intelligence: a case study of mobile telecoms service brands in GreeceJ Enterp Inf Manag2014271669810.1108/JEIM-09-2012-0061
– reference: LeskMBig data, big brother, big moneyIEEE Secur Priv2013114858910.1109/MSP.2013.81
– reference: Tanimoto S, Iwashita M, Seki Y, Sato H, Kanai A (2016) Risk assessment quantification of social-media utilization in enterprise. In: 2016 IEEE/ACIS 15th international conference on computer and information science (ICIS), pp 1–6
– reference: DuttaDBoseIManaging a big data project: the case of Ramco Cements LimitedInt J Prod Econ201516529330610.1016/j.ijpe.2014.12.032
– reference: LiJFongSZhuangYKhouryRHierarchical classification in text mining for sentiment analysis of online newsSoft Comput20162093411342010.1007/s00500-015-1812-4
– reference: Wang Z, Zhao H (2016) Empirical study of using big data for business process improvement at private manufacturing firm in cloud computing. In: 2016 IEEE 3rd international conference on cyber security and cloud computing (CSCloud), pp 129–135
– reference: BehrendtSRichterATrierMMixed methods analysis of enterprise social networksComput Netw201475Part B56057710.1016/j.comnet.2014.08.025(special issue on online social networks the connectedness, pervasiveness and ubiquity of online social networks)
– reference: ZhangYGrorec: a group-centric intelligent recommender system integrating social, mobile and big data technologiesIEEE Trans Serv Comput2016978679510.1109/TSC.2016.2592520
– reference: Oh C, Yergeau S, Woo Y, Wurtsmith B, Vaughn S (2015) Is Twitter psychic? Social media analytics and television ratings. In: Second international conference on computing technology and information management (ICCTIM 2015), pp 150–155
– reference: HargittaiEIs bigger always better? Potential biases of big data derived from social network sitesAnn Am Acad Polit Soc Sci20156591637610.1177/0002716215570866
– reference: Hridoy S, Ekram M, Islam M, Ahmed F, Rahman R (2015) Investigation of localized sentiment for a given product by analyzing tweets. In: 2015 IEEE/ACIS 14th international conference on computer and information science, pp 265–270
– reference: Bekmamedova N, Shanks G (2014) Social media analytics and business value: a theoretical framework and case study. In: 2014 47th Hawaii international conference on system sciences, pp 3728–3737. doi:10.1109/HICSS.2014.464
– reference: BellDThe coming of post-industrial society2008LondonBasic Books
– reference: GilfoilDMAukersSMJobsCGDeveloping and implementing a social media program while optimizing return on investment: an MBA program case studyAm J Bus Educ2014813148
– reference: Liu G, Fu Y, Xu T, Xiong H, Chen G (2014) Discovering temporal retweeting patterns for social media marketing campaigns. In: 2014 IEEE international conference on data mining, pp 905–910
– reference: Fiarni C, Maharani H, Pratama R (2016) Sentiment analysis system for indonesia online retail shop review using hierarchy naive Bayes technique. In: 2016 4th international conference on information and communication technology (ICoICT), pp 1–6
– reference: ChenXWLinXBig data deep learning: challenges and perspectivesIEEE Access2014251452510.1109/ACCESS.2014.2325029
– reference: Mayer-SchönbergerVCukierKBig data: a revolution that will transform how we live, work, and think2013BostonHoughton Mifflin Harcourt
– reference: Arora D, Malik P (2015) Analytics: key to go from generating big data to deriving business value. In: 2015 IEEE first international conference on big data computing service and applications, pp 446–452
– reference: del Val E, Martínez C, Botti V (2016) Analyzing users’ activity in online social networks over time through a multi-agent framework. Soft Comput 20:4331–4345
– reference: SaniLEfficient search of relevant structures in complex systems2016ChamSpringer International Publishing3548
– reference: Varlamis I, Eirinaki M, Proios D (2015) Tipme: personalized advertising and aspect-based opinion mining for users and businesses. In: 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 1489–1494
– reference: ZengDChenHLuschRLiSHSocial media analytics and intelligenceIEEE Intell Syst2010256131610.1109/MIS.2010.151
– reference: GastaldiMIntegration of mobile, big data, sensors, and social media: impact on daily life and businessIST-Afr Conf Proc20142014110
– reference: TuckerCESocial networks, personalized advertising, and privacy controlsJ Mark Res201451554656210.1509/jmr.10.0355
– reference: YanEResearch dynamics, impact, and dissemination: a topic-level analysisJASIST20156623572372
– reference: Calderon NA, Fisher B, Hemsley J, Ceskavich B, Jansen G, Marciano R, Lemieux VL (2015) Mixed-initiative social media analytics at the world bank: observations of citizen sentiment in Twitter data to explore “trust” of political actors and state institutions and its relationship to social protest. In: 2015 IEEE international conference on big data, pp 1678–1687
– reference: Wang Y, Wiebe VJ (2014) Big data analyses for collective opinion elicitation in social networks. In: 2014 IEEE 13th international conference on trust, security and privacy in computing and communications, pp 630–637
– reference: PecoriRS-Kademlia: a trust and reputation method to mitigate a Sybil attack in KademliaComput Netw201694 Part C20521810.1016/j.comnet.2015.11.010
– reference: Banker S (2014) Amazon and anticipatory shipping: a dubious patent? http://www.forbes.com/sites/stevebanker/2014/01/24/amazon-and-anticipatory-shipping-a-dubious-patent
– reference: Su CJ, Chen YA (2016) Social media analytics based product improvement framework. In: 2016 international symposium on computer, consumer and control (IS3C), pp 393–396
– reference: ChiMTLinSSChenSYLinCHLeeTYMorphable word clouds for time-varying text data visualizationIEEE Trans Visual Comput Graphics201521121415142610.1109/TVCG.2015.2440241
– reference: Coursaris CK, Osch WV, Balogh BA (2016) Do Facebook likes lead to shares or sales? exploring the empirical links between social media content, brand equity, purchase intention, and engagement. In: 2016 49th Hawaii international conference on system sciences (HICSS), pp 3546–3555
– reference: Sand G, Tsitouras L, Dimitrakopoulos G, Chatzigiannakis V (2014) A big data aggregation, analysis and exploitation integrated platform for increasing social management intelligence. In: 2014 IEEE international conference on big data, pp 40–47
– reference: Davcheva P (2014) Identifying sports talents by social media mining as a marketing instrument. In: 2014 annual SRII global conference, pp 223–227
– reference: ErlTKhattakWBuhlerPBig data fundamentals: concepts, drivers and techniques2016Upper Saddle RiverPrentice Hall Press
– reference: McCafferty D (2014) Surprising statistics about big data. http://www.baselinemag.com/analytics-big-data/slideshows/surprising-statistics-about-big-data.html
– reference: Vadivu VM, Neelamalar M (2015) Digital brand management—a study on the factors affecting customers’ engagement in Facebook pages. In: 2015 international conference on smart technologies and management for computing. communication, controls, energy and materials (ICSTM), pp 71–75
– reference: Kafeza E, Makris C, Vikatos P (2016) Marketing campaigns in Twitter using a pattern based diffusion policy. In: 2016 IEEE international congress on big data (BigData Congress), pp 125–132
– reference: Brown R, Harmon R (2014) Viral geofencing: an exploration of emerging big-data driven direct digital marketing services. In: 2014 Portland international conference on management of engineering technology, pp 3300–3308
– reference: KetelaarPEJanssenLVergeerMvan ReijmersdalEACrutzenRvant RietJThe success of viral ads: social and attitudinal predictors of consumer pass-on behavior on social network sitesJ Bus Res20166972603261310.1016/j.jbusres.2015.10.151
– reference: Jiang W, Chai H (2016) Research on big data in business model innovation based on GA–BP model. In: 2016 IEEE international conference on service operations and logistics, and informatics (SOLI), pp 174–177
– reference: SchwarzEKrishnamurthyRParrisCBradburyJNnebeIGschwindMThe SIMD accelerator for business analytics on the IBM z13IBM J Res Dev2015594/52:12:1610.1147/JRD.2015.2426576
– reference: WangDKaplanLAbdelzaherTAggarwalCOn credibility estimation tradeoffs in assured social sensingIEEE J Sel Areas Commun20133161026103710.1109/JSAC.2013.130605
– reference: Wong RK, Chi CH, Yu Z, Zhao Y (2014) A system of systems service design for social media analytics. In: 2014 IEEE international conference on services computing (SCC), pp 789–796
– reference: Bubanja I (2016) The social marketing as prerequisite for the competitiveness of south-east European companies. In: 2016 39th international convention on information and communication technology, electronics and microelectronics (MIPRO), pp 1552–1556
– reference: OwaisSSHusseinNSExtract five categories CPIVW from the 9Vs characteristics of the big dataInt J Adv Comput Sci Appl201673254258
– reference: MorenoMVDufourLSkarmetaAFJaraAJGenoudDLadevieBBezianJJBig data: the key to energy efficiency in smart buildingsSoft Comput20162051749176210.1007/s00500-015-1679-4
– reference: BaoJDeshpandeAMcFaddinSNarayanaswamiCPartner-marketing using geo-social media data for smarter commerceIBM J Res Dev2014585/66:16:1210.1147/JRD.2014.2344514
– reference: LinDLiSCaoDMaking intelligent business decisions by mining the implicit relation from bloggers postsSoft Comput201014121317132710.1007/s00500-009-0499-9
– reference: JhaADaveMMadanSA review on the study and analysis of big data using data mining techniquesInt J Latest Trends Eng Technol (IJLTET)20166394102
– reference: Hamed A, Wu X (2014) Does social media big data make the world smaller? An exploratory analysis of keyword-hashtag networks. In: 2014 IEEE international congress on big data, pp 454–461
– reference: Kumar N, Maheshwari V, Kumar J (2016) A comparative study of user experience in online social media branding web pages using eye tracker. In: 2016 international conference on advances in human machine interaction (HMI), pp 1–8
– reference: WuXZhuXWuGQDingWData mining with big dataIEEE Trans Knowl Data Eng20142619710710.1109/TKDE.2013.109
– reference: CoboMLopez-HerreraAHerrera-ViedmaEHerreraFScience mapping software tools: review, analysis and cooperative study among toolsJ Am Soc Inform Sci Technol20116271382140210.1002/asi.215251196.68198
– reference: SongMKimMCJeongYKAnalyzing the political landscape of 2012 Korean presidential election in TwitterIEEE Intell Syst2014292182610.1109/MIS.2014.20
– reference: Fourati-Jamoussi F (2015) E-reputation: a case study of organic cosmetics in social media. In: 2015 6th international conference on information systems and economic intelligence, pp 125–132
– reference: MilgramSThe small world problemPsychol Today1967216067
– reference: ErevellesSFukawaNSwayneLBig data consumer analytics and the transformation of marketingJ Bus Res201669289790410.1016/j.jbusres.2015.07.001
– reference: Gull KC, Angadi AB, Seema CG, Kanakaraddi SG (2014) A clustering technique to rise up the marketing tactics by looking out the key users taking Facebook as a case study. In: 2014 IEEE international advance computing conference (IACC), pp 579–585
– reference: BergerKKlierJKlierMProbstFA review of information systems research on online social networksCommun Assoc Inf Syst2014351145172
– reference: Coursaris CK, Osch WV (2016) Disentangling the drivers of brand benefits: evidence from social media marketing of two cosmetics companies. In: 2016 international conference on telecommunications and multimedia (TEMU), pp 1–6
– reference: Lou P, Zhao G, Qian X, Wang H, Hou X (2016) Schedule a rich sentimental travel via sentimental poi mining and recommendation. In: 2016 IEEE second international conference on multimedia big data (BigMM), pp 33–40
– reference: Jamshidi M, Tannahill B, Yetis Y, Kaplan H (2015) Big data analytic via soft computing paradigms. In: Frontiers of higher order fuzzy sets, pp 229–258. Springer
– reference: Laney D (2001) 3D data management: controlling data volume, velocity, and variety. Technical reports, META Group
– reference: Wang X, Luo X (2013) Sentimental space based analysis of user personalized sentiments. In: 2013 ninth international conference on semantics, knowledge and grids, pp 151–156
– reference: Anjaria M, Guddeti R (2014) Influence factor based opinion mining of twitter data using supervised learning. In: 2014 sixth international conference on communication systems and networks, pp 1–8
– reference: D’AndreaEDucangePLazzeriniBMarcelloniFReal-time detection of traffic from Twitter stream analysisIEEE Trans Intell Transp Syst20151642269228310.1109/TITS.2015.2404431
– reference: XiangZSchwartzZGerdesJHUysalMWhat can big data and text analytics tell us about hotel guest experience and satisfaction?Int J Hosp Manag20154412013010.1016/j.ijhm.2014.10.013
– reference: Anastasi G, Antonelli M, Bechini A, Brienza S, D’Andrea E, De Guglielmo D, Ducange P, Lazzerini B, Marcelloni F, Segatori A (2013) Urban and social sensing for sustainable mobility in smart cities. In: Sustainable internet and ICT for sustainability (SustainIT), 2013, pp 1–4. IEEE
– reference: LiuBSentiment analysis and opinion miningSynthes Lect Hum Lang Technol201251116710.2200/S00416ED1V01Y201204HLT016
– reference: DeanJGhemawatSMapreduce: simplified data processing on large clustersCommun ACM200851110711310.1145/1327452.1327492
– reference: BerkhoutAJInnovating the innovation processInt J Technol Manage20063439040410.1504/IJTM.2006.009466
– ident: 2536_CR8
  doi: 10.1109/HICSS.2014.464
– volume: 39
  start-page: 147
  issue: 2
  year: 2015
  ident: 2536_CR55
  publication-title: J Hosp Tour Res
  doi: 10.1177/1096348012471381
– volume: 58
  start-page: 325
  issue: 3
  year: 2015
  ident: 2536_CR74
  publication-title: Bus Horiz
  doi: 10.1016/j.bushor.2015.01.010
– volume: 25
  start-page: 13
  issue: 6
  year: 2010
  ident: 2536_CR94
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2010.151
– volume: 2014
  start-page: 1
  year: 2014
  ident: 2536_CR35
  publication-title: IST-Afr Conf Proc
– volume: 69
  start-page: 897
  issue: 2
  year: 2016
  ident: 2536_CR31
  publication-title: J Bus Res
  doi: 10.1016/j.jbusres.2015.07.001
– volume: 78
  start-page: 1
  year: 2015
  ident: 2536_CR43
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2015.07.005
– ident: 2536_CR1
  doi: 10.1145/2623330.2623366
– ident: 2536_CR4
  doi: 10.1109/BigDataService.2015.62
– volume: 29
  start-page: 18
  issue: 2
  year: 2014
  ident: 2536_CR76
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2014.20
– ident: 2536_CR51
  doi: 10.1109/HMI.2016.7449165
– volume: 2
  start-page: 514
  year: 2014
  ident: 2536_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2325029
– volume: 94 Part C
  start-page: 205
  year: 2016
  ident: 2536_CR69
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2015.11.010
– ident: 2536_CR86
  doi: 10.1109/SKG.2013.16
– volume: 6
  start-page: 94
  issue: 3
  year: 2016
  ident: 2536_CR47
  publication-title: Int J Latest Trends Eng Technol (IJLTET)
– volume: 51
  start-page: 546
  issue: 5
  year: 2014
  ident: 2536_CR81
  publication-title: J Mark Res
  doi: 10.1509/jmr.10.0355
– ident: 2536_CR17
  doi: 10.1109/BigData.2015.7363939
– volume: 58
  start-page: 6:1
  issue: 5/6
  year: 2014
  ident: 2536_CR6
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2014.2344514
– volume: 62
  start-page: 1382
  issue: 7
  year: 2011
  ident: 2536_CR22
  publication-title: J Am Soc Inform Sci Technol
  doi: 10.1002/asi.2152
– ident: 2536_CR34
  doi: 10.1109/ISEI.2015.7358734
– volume: 11
  start-page: 10
  issue: 3
  year: 2016
  ident: 2536_CR70
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2016.2572518
– volume: 35
  start-page: 145
  issue: 1
  year: 2014
  ident: 2536_CR11
  publication-title: Commun Assoc Inf Syst
– volume: 7
  start-page: 389
  year: 2016
  ident: 2536_CR14
  publication-title: J Bus Econ
  doi: 10.4018/978-1-4666-9776-8.ch005
– volume: 63
  start-page: 16
  issue: 1
  year: 2016
  ident: 2536_CR77
  publication-title: IEEE Trans Eng Manag
  doi: 10.1109/TEM.2015.2488698
– ident: 2536_CR79
  doi: 10.1109/ICIS.2016.7550891
– ident: 2536_CR60
  doi: 10.1109/BigMM.2016.38
– ident: 2536_CR39
  doi: 10.1109/BigData.Congress.2014.72
– ident: 2536_CR87
  doi: 10.1109/TrustCom.2014.81
– volume-title: Hadoop: the definitive guide
  year: 2015
  ident: 2536_CR89
– volume: 7
  start-page: 254
  issue: 3
  year: 2016
  ident: 2536_CR68
  publication-title: Int J Adv Comput Sci Appl
– volume: 16
  start-page: 2269
  issue: 4
  year: 2015
  ident: 2536_CR25
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2015.2404431
– ident: 2536_CR28
  doi: 10.1007/s00500-016-2301-0
– volume: 165
  start-page: 234
  year: 2015
  ident: 2536_CR84
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2014.12.031
– volume-title: Advanced Google AdWords
  year: 2014
  ident: 2536_CR36
– ident: 2536_CR78
  doi: 10.1109/IS3C.2016.107
– volume: 75
  start-page: 560
  issue: Part B
  year: 2014
  ident: 2536_CR7
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2014.08.025
– volume: 2
  start-page: 60
  issue: 1
  year: 1967
  ident: 2536_CR64
  publication-title: Psychol Today
– volume: 165
  start-page: 293
  year: 2015
  ident: 2536_CR30
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2014.12.032
– volume: 8
  start-page: 31
  issue: 1
  year: 2014
  ident: 2536_CR37
  publication-title: Am J Bus Educ
– ident: 2536_CR52
– ident: 2536_CR80
  doi: 10.1109/MITP.2015.66
– volume: 28
  start-page: 45
  year: 2016
  ident: 2536_CR10
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2015.08.005
– ident: 2536_CR24
– ident: 2536_CR3
  doi: 10.1109/COMSNETS.2014.6734907
– ident: 2536_CR59
  doi: 10.1109/ICDM.2014.48
– ident: 2536_CR26
  doi: 10.1109/SRII.2014.38
– ident: 2536_CR49
  doi: 10.1109/BigDataCongress.2016.24
– ident: 2536_CR72
  doi: 10.1109/BigData.2014.7004411
– start-page: 681
  volume-title: Educational big data mining: how to enhance virtual learning environments
  year: 2017
  ident: 2536_CR29
  doi: 10.1007/978-3-319-47364-2_66
– volume: 26
  start-page: 97
  issue: 1
  year: 2014
  ident: 2536_CR91
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.109
– ident: 2536_CR83
– ident: 2536_CR23
  doi: 10.1109/HICSS.2016.444
– ident: 2536_CR63
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 2536_CR27
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– ident: 2536_CR15
– volume: 5
  start-page: 195
  issue: 3
  year: 2014
  ident: 2536_CR71
  publication-title: J Global Fashion Market
  doi: 10.1080/20932685.2014.908528
– volume: 31
  start-page: 1026
  issue: 6
  year: 2013
  ident: 2536_CR85
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2013.130605
– ident: 2536_CR38
  doi: 10.1109/IAdCC.2014.6779389
– volume: 36
  start-page: 31
  year: 2016
  ident: 2536_CR41
  publication-title: J Interact Mark
  doi: 10.1016/j.intmar.2016.04.001
– ident: 2536_CR90
  doi: 10.1109/SCC.2014.107
– ident: 2536_CR53
– volume: 20
  start-page: 3411
  issue: 9
  year: 2016
  ident: 2536_CR56
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1812-4
– volume: 21
  start-page: 1415
  issue: 12
  year: 2015
  ident: 2536_CR20
  publication-title: IEEE Trans Visual Comput Graphics
  doi: 10.1109/TVCG.2015.2440241
– volume: 9
  start-page: 786
  year: 2016
  ident: 2536_CR95
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2016.2592520
– ident: 2536_CR44
  doi: 10.1109/ICIS.2015.7166604
– volume: 11
  start-page: 85
  issue: 4
  year: 2013
  ident: 2536_CR54
  publication-title: IEEE Secur Priv
  doi: 10.1109/MSP.2013.81
– volume: 66
  start-page: 2357
  year: 2015
  ident: 2536_CR93
  publication-title: JASIST
– ident: 2536_CR21
– start-page: 35
  volume-title: Efficient search of relevant structures in complex systems
  year: 2016
  ident: 2536_CR73
  doi: 10.1007/978-3-319-49130-1_4
– ident: 2536_CR16
  doi: 10.1109/MIPRO.2016.7522385
– ident: 2536_CR67
  doi: 10.1109/ICCTIM.2015.7224610
– volume: 44
  start-page: 120
  year: 2015
  ident: 2536_CR92
  publication-title: Int J Hosp Manag
  doi: 10.1016/j.ijhm.2014.10.013
– volume: 59
  start-page: 2:1
  issue: 4/5
  year: 2015
  ident: 2536_CR75
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2015.2426576
– volume-title: Big data: a revolution that will transform how we live, work, and think
  year: 2013
  ident: 2536_CR62
– volume: 69
  start-page: 2603
  issue: 7
  year: 2016
  ident: 2536_CR50
  publication-title: J Bus Res
  doi: 10.1016/j.jbusres.2015.10.151
– volume-title: The coming of post-industrial society
  year: 2008
  ident: 2536_CR9
– ident: 2536_CR2
  doi: 10.1109/SustainIT.2013.6685198
– ident: 2536_CR5
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 2536_CR58
  publication-title: Synthes Lect Hum Lang Technol
  doi: 10.2200/S00416ED1V01Y201204HLT016
– volume: 20
  start-page: 1749
  issue: 5
  year: 2016
  ident: 2536_CR66
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1679-4
– volume: 20
  start-page: 3045
  issue: 8
  year: 2016
  ident: 2536_CR45
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1935-7
– ident: 2536_CR48
  doi: 10.1109/SOLI.2016.7551682
– volume: 34
  start-page: 390
  year: 2006
  ident: 2536_CR12
  publication-title: Int J Technol Manage
  doi: 10.1504/IJTM.2006.009466
– ident: 2536_CR82
  doi: 10.1109/ICSTM.2015.7225392
– ident: 2536_CR88
  doi: 10.1109/CSCloud.2016.11
– ident: 2536_CR96
  doi: 10.1016/j.ijinfomgt.2016.04.010
– ident: 2536_CR33
  doi: 10.1109/ICoICT.2016.7571912
– ident: 2536_CR46
  doi: 10.1007/978-1-4614-3442-9_12
– volume: 9
  start-page: 48
  issue: 2
  year: 2014
  ident: 2536_CR18
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2014.2307227
– volume-title: Big data fundamentals: concepts, drivers and techniques
  year: 2016
  ident: 2536_CR32
– volume: 27
  start-page: 66
  issue: 1
  year: 2014
  ident: 2536_CR65
  publication-title: J Enterp Inf Manag
  doi: 10.1108/JEIM-09-2012-0061
– volume: 40
  start-page: 474
  issue: 5
  year: 2010
  ident: 2536_CR13
  publication-title: R&D Manag
  doi: 10.1111/j.1467-9310.2010.00618.x
– volume: 14
  start-page: 1317
  issue: 12
  year: 2010
  ident: 2536_CR57
  publication-title: Soft Comput
  doi: 10.1007/s00500-009-0499-9
– volume: 659
  start-page: 63
  issue: 1
  year: 2015
  ident: 2536_CR40
  publication-title: Ann Am Acad Polit Soc Sci
  doi: 10.1177/0002716215570866
– volume: 20
  start-page: 225
  issue: 3
  year: 2014
  ident: 2536_CR42
  publication-title: New Rev Hypermedia Multimed
  doi: 10.1080/13614568.2014.889225
– ident: 2536_CR61
  doi: 10.1007/s00500-015-1945-5
SSID ssj0021753
Score 2.475247
Snippet Mining and analyzing the valuable knowledge hidden behind the amount of data available in social media is becoming a fundamental prerequisite for any effective...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Artificial Intelligence
Big Data
Competitive advantage
Computational Intelligence
Control
Data analysis
Engineering
Internet
Machine learning
Market strategy
Marketing
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Real time
Robotics
Social networks
Society
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDJyWwzb6yxyIWD1LER-ltybMU2m3prv5-k-1mq6KCnjcJyyTZ75udmW8ALgVhNAlCgUMmPBwQGWAuSIi59EniUa6jsrZqeB8PBnQ0Sh6qOu7cZbu7kGT5pa6L3axUiU2issoCfoSDTdgyaEdtv4bHp2HtZVXSk4YHGOpo8NaFMr9b4jMYrRnml6BoiTX95r_ech_2KmqJequzcAAbKmtB07VtQNUtbsHuBw3CQ7jrofF0MlvkCs0zxCdjZJNGEbNiJVbCGU0yZEgi0i6LC801mrlaaZQXTmviCF76t883d7hqr4CF8eIKbAhryD1uIDwRodRaccmFEJHHhC-7lppwykQ3lF3bjkMnTMZCB0GsIuIlmhP_GBrZPFMngIQwXoqZLGNlPCDGKOfEk4bNce0T5dM2eM7Oqai0x20LjGlaqyaXdkuN3VJrtzRow1U9ZbES3vhtcMdtXlrdwTwlxhNNYiuY2IZrt1nrxz8udvqn0WewYzgUXf2V6UCjWL6qc9gWb8UkX16UR_Mdl4fdBw
  priority: 102
  providerName: Springer Nature
Title A glimpse on big data analytics in the framework of marketing strategies
URI https://link.springer.com/article/10.1007/s00500-017-2536-4
https://www.proquest.com/docview/2917979659
Volume 22
WOSCitedRecordID wos000419355900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH4R8OBF_BlRJD140jSObmPbyaCBkGgIQSXEy7K-roZEBjL077cdLUQTvXjZpWuz7LV933vt-z6AC2RJGHk-Uj9Bh3pMeJQj8ykXLouckMtWUVs1egj6_XA8jgYm4Zaba5V2Tyw2ajFDnSO_ZiquiAJNf3czf6daNUqfrhoJjRJUNEuClm4Y-C_rgMuwUCpIoFCkcr32VNMpSER9XVPd1DwFbot63_3SBmz-OB8t3E63-t8P3oNdAzhJezVD9mErzQ6gasUciFnbh9Brk9e3yXSep2SWET55JfryKEk0aYmmciaTjCiwSKS9zUVmkkxtzTTJl5Zz4gieu52nux41MgsUVTS3pAq4-tzhypVH6AspUy44IracBF3R1BCFhwk2fdHUshwySkSA0vOCtMWcSHLmHkM5m2XpCRBEFa2oziJIVSSUJCHnzBEK1XHpstQNa-DYnxyj4SDXUhhv8Zo9ubBLrOwSa7vEXg0u113mKwKOv16uW1vEZi3m8cYQNbiy1tw0_zrY6d-DncGOAk_hKh1Th_Jy8ZGewzZ-Lif5ogGV205_MGxA6T6gjWJaqufwcfQF03PnEw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1FBYleaCmtGlpgD-VCtaqztmP7gFBUiBIlRBwCys31zu5GkRInxKGof6q_kVnHmwgkcsuBs70r2fP1ZnfmDcAViixOghB5mKHHA6ECLlGEXCpfJF4sTbPsrfrejwaDeDRKvtbg0fXC2LJK5xNLR63maM_IbwTlFUlk6e8-Ln5wOzXK3q66ERprtejph1-UshUfup9Ivu-EaH8e3nZ4NVWAIyUvK044LZSepMiVYKiM0VJJRGx6GfqqYSOyjDNshKphp1CYJFMRmiCIdFN4iZGW6IBc_pPAjyNrV72IbxK8ivWSIAihVgr17hbVK0lLQ9vD3bC8CH6TB3_GwS24_es-tgxz7aP_7Qcdw_MKULPW2gJeQE3nJ3DkhlWwyne9hE6LjaeT2aLQbJ4zORkzWxzLMkvKYqmq2SRnBIaZcdVqbG7YzPWEs2LlODVO4dtevucMDvJ5rs-BIVI2RotVpCnTy7JYSuEpQq3S-EL7cR08J9QUK451O-pjmm7YoUs9SEkPUqsHaVCH95slizXByK6XL53s08rXFOlW8HW4dtqzffzPzV7t3uwtPOsMv_TTfnfQu4BDAorx-ujpEg5Wy5_6NTzF-9WkWL4pjYDB3b6V6jfK5EKL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDP6bidGoefFLKuvT341DHxDEG6thbaJJmFLZurNW_36RtOhUVxOcmIVwS7vt6d98BXDEc-oHtMMMJmWnYmNsGZdgxKLdwYPpUuHlt1ajvDQb-eBwMyz6nqc521yHJoqZBqTQlWWvBRasqfFOyJSqhSqkMWK5hr8OGrfLoFV1_GlWMq5ShlJhAwkjpe3VY87slPjumFdr8EiDN_U5379873ofdEnKiTnFHDmAtSuqwp9s5oPJ112HngzbhIfQ6aDKNZ4s0QvME0XiCVDIpCpWIiZJ2RnGCJHhEQmd3oblAM11DjdJMa1AcwUv3_vm2Z5RtFwwm2V1mSCDrUJNK1x4whwsRUU4ZY64ZMou3FWShfsjaDm-rNh0iCLnHhG17kYvNQFBsHUMtmSfRCSDGJHuRk7kXSWYUhj6l2OTynKiwcGT5DTC1zQkrNclVa4wpqdSUc7sRaTei7EbsBlxXUxaFIMdvg5v6IEn5NlOCJUMNPCWk2IAbfXCrzz8udvqn0ZewNbzrkv7D4PEMtiXM8osfN02oZcvX6Bw22VsWp8uL_Ma-A2BE6M8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+glimpse+on+big+data+analytics+in+the+framework+of+marketing+strategies&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Ducange%2C+Pietro&rft.au=Pecori%2C+Riccardo&rft.au=Mezzina%2C+Paolo&rft.date=2018-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=22&rft.issue=1&rft.spage=325&rft.epage=342&rft_id=info:doi/10.1007%2Fs00500-017-2536-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon