A glimpse on big data analytics in the framework of marketing strategies
Mining and analyzing the valuable knowledge hidden behind the amount of data available in social media is becoming a fundamental prerequisite for any effective and successful strategic marketing campaign. Anyway, to the best of our knowledge, a systematic analysis and review of the very recent liter...
Uloženo v:
| Vydáno v: | Soft computing (Berlin, Germany) Ročník 22; číslo 1; s. 325 - 342 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-7643, 1433-7479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Mining and analyzing the valuable knowledge hidden behind the amount of data available in social media is becoming a fundamental prerequisite for any effective and successful strategic marketing campaign. Anyway, to the best of our knowledge, a systematic analysis and review of the very recent literature according to a marketing framework is still missing. In this work, we intend to provide, first and foremost, a clear understanding of the main concepts and issues regarding social big data, as well as their features and technologies. Secondly, we focus on marketing, describing an operative methodology to get useful insights from social big data. Then, we carry out a brief but accurate classification of recent use cases from the literature, according to the decision support and the competitive advantages obtained by enterprises whenever they exploit the analytics available from social big data sources. Finally, we outline some open issues and suggestions in order to encourage further research in the field. |
|---|---|
| AbstractList | Mining and analyzing the valuable knowledge hidden behind the amount of data available in social media is becoming a fundamental prerequisite for any effective and successful strategic marketing campaign. Anyway, to the best of our knowledge, a systematic analysis and review of the very recent literature according to a marketing framework is still missing. In this work, we intend to provide, first and foremost, a clear understanding of the main concepts and issues regarding social big data, as well as their features and technologies. Secondly, we focus on marketing, describing an operative methodology to get useful insights from social big data. Then, we carry out a brief but accurate classification of recent use cases from the literature, according to the decision support and the competitive advantages obtained by enterprises whenever they exploit the analytics available from social big data sources. Finally, we outline some open issues and suggestions in order to encourage further research in the field. |
| Author | Ducange, Pietro Mezzina, Paolo Pecori, Riccardo |
| Author_xml | – sequence: 1 givenname: Pietro surname: Ducange fullname: Ducange, Pietro organization: SMART Engineering Solutions & Technologies (SMARTEST) Research Centre, eCAMPUS University – sequence: 2 givenname: Riccardo orcidid: 0000-0002-5948-5845 surname: Pecori fullname: Pecori, Riccardo email: riccardo.pecori@uniecampus.it organization: SMART Engineering Solutions & Technologies (SMARTEST) Research Centre, eCAMPUS University – sequence: 3 givenname: Paolo surname: Mezzina fullname: Mezzina, Paolo organization: SMART Engineering Solutions & Technologies (SMARTEST) Research Centre, eCAMPUS University |
| BookMark | eNp9kMFKAzEURYNUsK1-gLuA62iSSSaTZSlqhYIbXYdMJhnTTic1SZH-vVNHEARdvbe453HfmYFJH3oLwDXBtwRjcZcw5hgjTASivCgROwNTwooCCSbk5GunSJSsuACzlDYYUyJ4MQWrBWw7v9snC0MPa9_CRmcNda-7Y_YmQd_D_Gahi3pnP0LcwuDgTsetzb5vYcpRZ9t6my7BudNdslffcw5eH-5fliu0fn58Wi7WyDAsMqpIzWtcU0ak4Y1ztm5qY0yJtSkagkte1ZU2hDeEUVE5qRthHGPClhRLV9NiDm7Gu_sY3g82ZbUJhzjUTYpKIqSQJZdDSowpE0NK0TplfNbZh34o7DtFsDppU6M2NWhTJ22KDST5Re6jHx4-_svQkUlDtm9t_On0N_QJSZWBVA |
| CitedBy_id | crossref_primary_10_26794_2587_5671_2025_29_3_218_228 crossref_primary_10_1155_2020_2390941 crossref_primary_10_1007_s12559_018_9613_6 crossref_primary_10_1177_20438869211057284 crossref_primary_10_1016_j_cosrev_2021_100389 crossref_primary_10_1080_01442872_2020_1724926 crossref_primary_10_3390_fi10010004 crossref_primary_10_1590_s0034_759020190607 crossref_primary_10_1155_2020_6682296 crossref_primary_10_26599_BDMA_2022_9020009 crossref_primary_10_1007_s10994_022_06279_5 crossref_primary_10_1016_j_techfore_2021_121460 crossref_primary_10_1007_s00500_019_03770_5 crossref_primary_10_1108_JKM_11_2019_0637 crossref_primary_10_1007_s13198_021_01225_5 crossref_primary_10_1007_s43546_024_00724_4 crossref_primary_10_1108_VJIKMS_08_2020_0151 crossref_primary_10_1016_j_procs_2024_01_007 crossref_primary_10_3390_su142416356 crossref_primary_10_1155_2020_5186870 crossref_primary_10_1007_s10660_023_09759_5 crossref_primary_10_1080_2331186X_2024_2448063 crossref_primary_10_1016_j_techfore_2023_122567 crossref_primary_10_1109_TBDATA_2024_3394700 crossref_primary_10_3390_foods12244511 crossref_primary_10_3390_informatics8040074 crossref_primary_10_1016_j_eswa_2021_115597 crossref_primary_10_1080_0965254X_2022_2108881 crossref_primary_10_1007_s10462_024_10938_5 crossref_primary_10_1186_s40537_020_00298_6 crossref_primary_10_1080_08839514_2021_1922843 crossref_primary_10_1080_23311975_2022_2041384 crossref_primary_10_1155_2022_8460574 crossref_primary_10_1108_IJOEM_08_2022_1223 crossref_primary_10_1186_s40537_018_0141_8 crossref_primary_10_3390_su15010265 crossref_primary_10_1007_s10115_021_01582_4 crossref_primary_10_1016_j_eswa_2018_09_009 crossref_primary_10_1108_EJIM_09_2022_0510 crossref_primary_10_1109_ACCESS_2020_2998754 crossref_primary_10_3390_sym9100244 |
| Cites_doi | 10.1109/HICSS.2014.464 10.1177/1096348012471381 10.1016/j.bushor.2015.01.010 10.1109/MIS.2010.151 10.1016/j.jbusres.2015.07.001 10.1016/j.dss.2015.07.005 10.1145/2623330.2623366 10.1109/BigDataService.2015.62 10.1109/MIS.2014.20 10.1109/HMI.2016.7449165 10.1109/ACCESS.2014.2325029 10.1016/j.comnet.2015.11.010 10.1109/SKG.2013.16 10.1509/jmr.10.0355 10.1109/BigData.2015.7363939 10.1147/JRD.2014.2344514 10.1002/asi.2152 10.1109/ISEI.2015.7358734 10.1109/MCI.2016.2572518 10.4018/978-1-4666-9776-8.ch005 10.1109/TEM.2015.2488698 10.1109/ICIS.2016.7550891 10.1109/BigMM.2016.38 10.1109/BigData.Congress.2014.72 10.1109/TrustCom.2014.81 10.1109/TITS.2015.2404431 10.1007/s00500-016-2301-0 10.1016/j.ijpe.2014.12.031 10.1109/IS3C.2016.107 10.1016/j.comnet.2014.08.025 10.1016/j.ijpe.2014.12.032 10.1109/MITP.2015.66 10.1016/j.inffus.2015.08.005 10.1109/COMSNETS.2014.6734907 10.1109/ICDM.2014.48 10.1109/SRII.2014.38 10.1109/BigDataCongress.2016.24 10.1109/BigData.2014.7004411 10.1007/978-3-319-47364-2_66 10.1109/TKDE.2013.109 10.1109/HICSS.2016.444 10.1145/1327452.1327492 10.1080/20932685.2014.908528 10.1109/JSAC.2013.130605 10.1109/IAdCC.2014.6779389 10.1016/j.intmar.2016.04.001 10.1109/SCC.2014.107 10.1007/s00500-015-1812-4 10.1109/TVCG.2015.2440241 10.1109/TSC.2016.2592520 10.1109/ICIS.2015.7166604 10.1109/MSP.2013.81 10.1007/978-3-319-49130-1_4 10.1109/MIPRO.2016.7522385 10.1109/ICCTIM.2015.7224610 10.1016/j.ijhm.2014.10.013 10.1147/JRD.2015.2426576 10.1016/j.jbusres.2015.10.151 10.1109/SustainIT.2013.6685198 10.2200/S00416ED1V01Y201204HLT016 10.1007/s00500-015-1679-4 10.1007/s00500-015-1935-7 10.1109/SOLI.2016.7551682 10.1504/IJTM.2006.009466 10.1109/ICSTM.2015.7225392 10.1109/CSCloud.2016.11 10.1016/j.ijinfomgt.2016.04.010 10.1109/ICoICT.2016.7571912 10.1007/978-1-4614-3442-9_12 10.1109/MCI.2014.2307227 10.1108/JEIM-09-2012-0061 10.1111/j.1467-9310.2010.00618.x 10.1007/s00500-009-0499-9 10.1177/0002716215570866 10.1080/13614568.2014.889225 10.1007/s00500-015-1945-5 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2017 Springer-Verlag Berlin Heidelberg 2017. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: Springer-Verlag Berlin Heidelberg 2017. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-017-2536-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 342 |
| ExternalDocumentID | 10_1007_s00500_017_2536_4 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c407t-81b5b0b2419c5dffebdbccc60ac3d10658b8ac15d14278f9ad7cf447e6209fb23 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419355900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 09:09:52 EST 2025 Tue Nov 18 21:24:47 EST 2025 Sat Nov 29 03:35:46 EST 2025 Fri Feb 21 02:39:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Social networks Social big data Strategic marketing Social media |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-81b5b0b2419c5dffebdbccc60ac3d10658b8ac15d14278f9ad7cf447e6209fb23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5948-5845 |
| OpenAccessLink | http://hdl.handle.net/11568/988867 |
| PQID | 2917979659 |
| PQPubID | 2043697 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2917979659 crossref_citationtrail_10_1007_s00500_017_2536_4 crossref_primary_10_1007_s00500_017_2536_4 springer_journals_10_1007_s00500_017_2536_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20180100 2018-1-00 20180101 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 1 year: 2018 text: 20180100 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Jiang W, Chai H (2016) Research on big data in business model innovation based on GA–BP model. In: 2016 IEEE international conference on service operations and logistics, and informatics (SOLI), pp 174–177 Liu G, Fu Y, Xu T, Xiong H, Chen G (2014) Discovering temporal retweeting patterns for social media marketing campaigns. In: 2014 IEEE international conference on data mining, pp 905–910 ErevellesSFukawaNSwayneLBig data consumer analytics and the transformation of marketingJ Bus Res201669289790410.1016/j.jbusres.2015.07.001 Tanimoto S, Iwashita M, Seki Y, Sato H, Kanai A (2016) Risk assessment quantification of social-media utilization in enterprise. In: 2016 IEEE/ACIS 15th international conference on computer and information science (ICIS), pp 1–6 Mayer-SchönbergerVCukierKBig data: a revolution that will transform how we live, work, and think2013BostonHoughton Mifflin Harcourt ChenXWLinXBig data deep learning: challenges and perspectivesIEEE Access2014251452510.1109/ACCESS.2014.2325029 Varlamis I, Eirinaki M, Proios D (2015) Tipme: personalized advertising and aspect-based opinion mining for users and businesses. In: 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 1489–1494 BehrendtSRichterATrierMMixed methods analysis of enterprise social networksComput Netw201475Part B56057710.1016/j.comnet.2014.08.025(special issue on online social networks the connectedness, pervasiveness and ubiquity of online social networks) Coursaris CK, Osch WV (2016) Disentangling the drivers of brand benefits: evidence from social media marketing of two cosmetics companies. In: 2016 international conference on telecommunications and multimedia (TEMU), pp 1–6 PhanMParkSYIntroduction: social media marketing and luxury brandsJ Global Fashion Market20145319519610.1080/20932685.2014.908528 Fourati-Jamoussi F (2015) E-reputation: a case study of organic cosmetics in social media. In: 2015 6th international conference on information systems and economic intelligence, pp 125–132 Lauherta-Otero E, Cordero-Gutierrez R (2016) How big data helps to find influencers on Twitter: an empirical study. In: AEMARK conference, pp 627–641 WambaSFAkterSEdwardsAChopinGGnanzouDHow big data can make big impact: findings from a systematic review and a longitudinal case studyInt J Prod Econ201516523424610.1016/j.ijpe.2014.12.031 CLT (2014) What happens online in 60 seconds?. https://clt.vtc.edu.hk/what-happens-online-in-60-seconds OwaisSSHusseinNSExtract five categories CPIVW from the 9Vs characteristics of the big dataInt J Adv Comput Sci Appl201673254258 BergerKKlierJKlierMProbstFA review of information systems research on online social networksCommun Assoc Inf Syst2014351145172 Davcheva P (2014) Identifying sports talents by social media mining as a marketing instrument. In: 2014 annual SRII global conference, pp 223–227 Brown R, Harmon R (2014) Viral geofencing: an exploration of emerging big-data driven direct digital marketing services. In: 2014 Portland international conference on management of engineering technology, pp 3300–3308 SashittalHCHodisMSriramachandramurthyREntifying your brand among Twitter—using millennialsBus Horiz201558332533310.1016/j.bushor.2015.01.010 Sand G, Tsitouras L, Dimitrakopoulos G, Chatzigiannakis V (2014) A big data aggregation, analysis and exploitation integrated platform for increasing social management intelligence. In: 2014 IEEE international conference on big data, pp 40–47 Agarwal D, Ghosh S, Wei K, You S (2014) Budget pacing for targeted online advertisements at linkedin. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1613–1619. ACM WhiteTHadoop: the definitive guide20154NewtonO’Reilly Media del Val E, Martínez C, Botti V (2016) Analyzing users’ activity in online social networks over time through a multi-agent framework. Soft Comput 20:4331–4345 SchwarzEKrishnamurthyRParrisCBradburyJNnebeIGschwindMThe SIMD accelerator for business analytics on the IBM z13IBM J Res Dev2015594/52:12:1610.1147/JRD.2015.2426576 JhaADaveMMadanSA review on the study and analysis of big data using data mining techniquesInt J Latest Trends Eng Technol (IJLTET)20166394102 Oh C, Yergeau S, Woo Y, Wurtsmith B, Vaughn S (2015) Is Twitter psychic? Social media analytics and television ratings. In: Second international conference on computing technology and information management (ICCTIM 2015), pp 150–155 PecoriRS-Kademlia: a trust and reputation method to mitigate a Sybil attack in KademliaComput Netw201694 Part C20521810.1016/j.comnet.2015.11.010 BerkhoutGHartmannDTrottPConnecting technological capabilities with market needs using a cyclic innovation modelR&D Manag201040547449010.1111/j.1467-9310.2010.00618.x HargittaiEIs bigger always better? Potential biases of big data derived from social network sitesAnn Am Acad Polit Soc Sci20156591637610.1177/0002716215570866 SaniLEfficient search of relevant structures in complex systems2016ChamSpringer International Publishing3548 Calderon NA, Fisher B, Hemsley J, Ceskavich B, Jansen G, Marciano R, Lemieux VL (2015) Mixed-initiative social media analytics at the world bank: observations of citizen sentiment in Twitter data to explore “trust” of political actors and state institutions and its relationship to social protest. In: 2015 IEEE international conference on big data, pp 1678–1687 HayesJLKingKWRamirezABrands, friends, and viral advertising: a social exchange perspective on the ad referral processesJ Interact Mark201636314510.1016/j.intmar.2016.04.001 BaoJDeshpandeAMcFaddinSNarayanaswamiCPartner-marketing using geo-social media data for smarter commerceIBM J Res Dev2014585/66:16:1210.1147/JRD.2014.2344514 Kumar N, Maheshwari V, Kumar J (2016) A comparative study of user experience in online social media branding web pages using eye tracker. In: 2016 international conference on advances in human machine interaction (HMI), pp 1–8 Hridoy S, Ekram M, Islam M, Ahmed F, Rahman R (2015) Investigation of localized sentiment for a given product by analyzing tweets. In: 2015 IEEE/ACIS 14th international conference on computer and information science, pp 265–270 KetelaarPEJanssenLVergeerMvan ReijmersdalEACrutzenRvant RietJThe success of viral ads: social and attitudinal predictors of consumer pass-on behavior on social network sitesJ Bus Res20166972603261310.1016/j.jbusres.2015.10.151 DuttaDBoseIManaging a big data project: the case of Ramco Cements LimitedInt J Prod Econ201516529330610.1016/j.ijpe.2014.12.032 DeanJGhemawatSMapreduce: simplified data processing on large clustersCommun ACM200851110711310.1145/1327452.1327492 MorenoMVDufourLSkarmetaAFJaraAJGenoudDLadevieBBezianJJBig data: the key to energy efficiency in smart buildingsSoft Comput20162051749176210.1007/s00500-015-1679-4 GastaldiMIntegration of mobile, big data, sensors, and social media: impact on daily life and businessIST-Afr Conf Proc20142014110 Coursaris CK, Osch WV, Balogh BA (2016) Do Facebook likes lead to shares or sales? exploring the empirical links between social media content, brand equity, purchase intention, and engagement. In: 2016 49th Hawaii international conference on system sciences (HICSS), pp 3546–3555 YanEResearch dynamics, impact, and dissemination: a topic-level analysisJASIST20156623572372 DucangePPecoriRSartiLVecchioMEducational big data mining: how to enhance virtual learning environments2017ChamSpringer International Publishing681690 IbrahimOASLanda-SilvaDTerm frequency with average term occurrences for textual information retrievalSoft Comput20162083045306110.1007/s00500-015-1935-7 Anjaria M, Guddeti R (2014) Influence factor based opinion mining of twitter data using supervised learning. In: 2014 sixth international conference on communication systems and networks, pp 1–8 Hamed A, Wu X (2014) Does social media big data make the world smaller? An exploratory analysis of keyword-hashtag networks. In: 2014 IEEE international congress on big data, pp 454–461 Bello-OrgazGJungJJCamachoDSocial big data: recent achievements and new challengesInform Fusion201628455910.1016/j.inffus.2015.08.005 LeungXYBaiBStahuraKAThe marketing effectiveness of social media in the hotel industry: a comparison of Facebook and TwitterJ Hosp Tour Res201539214716910.1177/1096348012471381 SongPPhangCWPromoting continuance through shaping members’ social identity in knowledge-based versus support/advocacy virtual communitiesIEEE Trans Eng Manag2016631162610.1109/TEM.2015.2488698 Kafeza E, Makris C, Vikatos P (2016) Marketing campaigns in Twitter using a pattern based diffusion policy. In: 2016 IEEE international congress on big data (BigData Congress), pp 125–132 LiuBSentiment analysis and opinion miningSynthes Lect Hum Lang Technol201251116710.2200/S00416ED1V01Y201204HLT016 Wong RK, Chi CH, Yu Z, Zhao Y (2014) A system of systems service design for social media analytics. In: 2014 IEEE international conference on services computing (SCC), pp 789–796 BerkhoutAJInnovating the innovation processInt J Technol Manage20063439040410.1504/IJTM.2006.009466 MilolidakisGAkoumianakisDKimbleCDigital traces for business intelligence: a case study of mobile telecoms service brands in GreeceJ Enterp Inf Manag2014271669810.1108/JEIM-09-2012-0061 TuckerCESocial networks, personalized advertising, and privacy controlsJ Mark Res201451554656210.1509/jmr.10.0355 Wang Z, Zhao H (2016) Empirical study of using big data for business process improvement at private manufacturing firm in cloud computing. In: 2016 IEEE 3rd international conference on cyber security and cloud computing (CSCloud), pp 129–135 LiJFongSZhuangYKhouryRHierarchical classification in text mining for sentiment analysis of online newsSoft Comput20162093411342010.1007/s00500-015-1812-4 ZengDChenHLuschRLiSHSocial media analytics and intelligenceIEEE Intell Syst2010256131610.1109/MIS.2010.151 WangDKaplanLAbdelzaherTAggarwalCOn credibility estimation tradeoffs in assured social sensingIEEE J Sel Areas Commun20133161026103710.1109/JSAC.2013.130605 W 2536_CR8 E Hargittai (2536_CR40) 2015; 659 B Heinrich (2536_CR43) 2015; 78 J Bao (2536_CR6) 2014; 58 R Pecori (2536_CR69) 2016; 94 Part C E Cambria (2536_CR18) 2014; 9 M Cobo (2536_CR22) 2011; 62 MV Moreno (2536_CR66) 2016; 20 L Sani (2536_CR73) 2016 2536_CR34 2536_CR78 G Bello-Orgaz (2536_CR10) 2016; 28 2536_CR33 2536_CR79 K Berger (2536_CR11) 2014; 35 2536_CR38 2536_CR39 M Phan (2536_CR71) 2014; 5 2536_CR1 2536_CR3 2536_CR72 2536_CR2 XY Leung (2536_CR55) 2015; 39 2536_CR5 D Lin (2536_CR57) 2010; 14 2536_CR4 S Milgram (2536_CR64) 1967; 2 J Dean (2536_CR27) 2008; 51 S Erevelles (2536_CR31) 2016; 69 JL Hayes (2536_CR41) 2016; 36 CE Tucker (2536_CR81) 2014; 51 2536_CR90 X Wu (2536_CR91) 2014; 26 Y Zhang (2536_CR95) 2016; 9 D Wang (2536_CR85) 2013; 31 Z Xiang (2536_CR92) 2015; 44 PE Ketelaar (2536_CR50) 2016; 69 2536_CR44 2536_CR88 2536_CR46 D Bell (2536_CR9) 2008 2536_CR49 2536_CR48 2536_CR80 2536_CR83 2536_CR82 E Yan (2536_CR93) 2015; 66 2536_CR87 2536_CR86 HC Sashittal (2536_CR74) 2015; 58 E Schwarz (2536_CR75) 2015; 59 A Jha (2536_CR47) 2016; 6 G Bowen (2536_CR14) 2016; 7 SF Wamba (2536_CR84) 2015; 165 P Song (2536_CR77) 2016; 63 RG Pensa (2536_CR70) 2016; 11 G Berkhout (2536_CR13) 2010; 40 2536_CR16 2536_CR15 2536_CR59 2536_CR17 T White (2536_CR89) 2015 2536_CR52 2536_CR96 W He (2536_CR42) 2014; 20 2536_CR51 SS Owais (2536_CR68) 2016; 7 G Milolidakis (2536_CR65) 2014; 27 2536_CR53 M Lesk (2536_CR54) 2013; 11 S Behrendt (2536_CR7) 2014; 75 M Gastaldi (2536_CR35) 2014; 2014 E D’Andrea (2536_CR25) 2015; 16 V Mayer-Schönberger (2536_CR62) 2013 OAS Ibrahim (2536_CR45) 2016; 20 DM Gilfoil (2536_CR37) 2014; 8 T Erl (2536_CR32) 2016 MT Chi (2536_CR20) 2015; 21 2536_CR23 B Geddes (2536_CR36) 2014 2536_CR67 XW Chen (2536_CR19) 2014; 2 2536_CR24 J Li (2536_CR56) 2016; 20 2536_CR26 AJ Berkhout (2536_CR12) 2006; 34 2536_CR28 D Zeng (2536_CR94) 2010; 25 2536_CR61 B Liu (2536_CR58) 2012; 5 2536_CR60 2536_CR63 D Dutta (2536_CR30) 2015; 165 2536_CR21 P Ducange (2536_CR29) 2017 M Song (2536_CR76) 2014; 29 |
| References_xml | – reference: DucangePPecoriRSartiLVecchioMEducational big data mining: how to enhance virtual learning environments2017ChamSpringer International Publishing681690 – reference: Lauherta-Otero E, Cordero-Gutierrez R (2016) How big data helps to find influencers on Twitter: an empirical study. In: AEMARK conference, pp 627–641 – reference: To WM, Lai L (2015) Data analytics in China: trends, issues, and challenges. IT Prof 17(4):49–55 – reference: Bello-OrgazGJungJJCamachoDSocial big data: recent achievements and new challengesInform Fusion201628455910.1016/j.inffus.2015.08.005 – reference: Zhang M, Guo L, Hu M, Liu W (2016) Influence of customer engagement with company social networks on stickiness: mediating effect of customer value creation. Int J Inf Manag. doi:10.1016/j.ijinfomgt.2016.04.010 – reference: SashittalHCHodisMSriramachandramurthyREntifying your brand among Twitter—using millennialsBus Horiz201558332533310.1016/j.bushor.2015.01.010 – reference: LeungXYBaiBStahuraKAThe marketing effectiveness of social media in the hotel industry: a comparison of Facebook and TwitterJ Hosp Tour Res201539214716910.1177/1096348012471381 – reference: SongPPhangCWPromoting continuance through shaping members’ social identity in knowledge-based versus support/advocacy virtual communitiesIEEE Trans Eng Manag2016631162610.1109/TEM.2015.2488698 – reference: PhanMParkSYIntroduction: social media marketing and luxury brandsJ Global Fashion Market20145319519610.1080/20932685.2014.908528 – reference: CLT (2014) What happens online in 60 seconds?. https://clt.vtc.edu.hk/what-happens-online-in-60-seconds/ – reference: BerkhoutGHartmannDTrottPConnecting technological capabilities with market needs using a cyclic innovation modelR&D Manag201040547449010.1111/j.1467-9310.2010.00618.x – reference: HeWWangFKZhaSEnhancing social media competitiveness of small businesses: insights from small pizzeriasNew Rev Hypermedia Multimed201420322525010.1080/13614568.2014.889225 – reference: WhiteTHadoop: the definitive guide20154NewtonO’Reilly Media – reference: Agarwal D, Ghosh S, Wei K, You S (2014) Budget pacing for targeted online advertisements at linkedin. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1613–1619. ACM – reference: Lu Q, Li Z, Zhang W, Yang LT (2015) Autonomic deployment decision making for big data analytics applications in the cloud. Soft Comput. doi:10.1007/s00500-015-1945-5 – reference: PensaRGSapinoMLSchifanellaCVignaroliLLeveraging cross-domain social media analytics to understand TV topics popularityIEEE Comput Intell Mag2016113102110.1109/MCI.2016.2572518 – reference: BowenGBowenDSocial media: strategic decision making toolJ Bus Econ20167389401 – reference: CambriaEWhiteBJumping nlp curves: a review of natural language processing researchIEEE Comput Intell Mag201492485710.1109/MCI.2014.2307227(review article) – reference: HayesJLKingKWRamirezABrands, friends, and viral advertising: a social exchange perspective on the ad referral processesJ Interact Mark201636314510.1016/j.intmar.2016.04.001 – reference: IbrahimOASLanda-SilvaDTerm frequency with average term occurrences for textual information retrievalSoft Comput20162083045306110.1007/s00500-015-1935-7 – reference: WambaSFAkterSEdwardsAChopinGGnanzouDHow big data can make big impact: findings from a systematic review and a longitudinal case studyInt J Prod Econ201516523424610.1016/j.ijpe.2014.12.031 – reference: GeddesBAdvanced Google AdWords2014HobokenWiley – reference: HeinrichBKlierMZimmermannSAutomated planning of process models: design of a novel approach to construct exclusive choicesDecis Support Syst20157811410.1016/j.dss.2015.07.005 – reference: MilolidakisGAkoumianakisDKimbleCDigital traces for business intelligence: a case study of mobile telecoms service brands in GreeceJ Enterp Inf Manag2014271669810.1108/JEIM-09-2012-0061 – reference: LeskMBig data, big brother, big moneyIEEE Secur Priv2013114858910.1109/MSP.2013.81 – reference: Tanimoto S, Iwashita M, Seki Y, Sato H, Kanai A (2016) Risk assessment quantification of social-media utilization in enterprise. In: 2016 IEEE/ACIS 15th international conference on computer and information science (ICIS), pp 1–6 – reference: DuttaDBoseIManaging a big data project: the case of Ramco Cements LimitedInt J Prod Econ201516529330610.1016/j.ijpe.2014.12.032 – reference: LiJFongSZhuangYKhouryRHierarchical classification in text mining for sentiment analysis of online newsSoft Comput20162093411342010.1007/s00500-015-1812-4 – reference: Wang Z, Zhao H (2016) Empirical study of using big data for business process improvement at private manufacturing firm in cloud computing. In: 2016 IEEE 3rd international conference on cyber security and cloud computing (CSCloud), pp 129–135 – reference: BehrendtSRichterATrierMMixed methods analysis of enterprise social networksComput Netw201475Part B56057710.1016/j.comnet.2014.08.025(special issue on online social networks the connectedness, pervasiveness and ubiquity of online social networks) – reference: ZhangYGrorec: a group-centric intelligent recommender system integrating social, mobile and big data technologiesIEEE Trans Serv Comput2016978679510.1109/TSC.2016.2592520 – reference: Oh C, Yergeau S, Woo Y, Wurtsmith B, Vaughn S (2015) Is Twitter psychic? Social media analytics and television ratings. In: Second international conference on computing technology and information management (ICCTIM 2015), pp 150–155 – reference: HargittaiEIs bigger always better? Potential biases of big data derived from social network sitesAnn Am Acad Polit Soc Sci20156591637610.1177/0002716215570866 – reference: Hridoy S, Ekram M, Islam M, Ahmed F, Rahman R (2015) Investigation of localized sentiment for a given product by analyzing tweets. In: 2015 IEEE/ACIS 14th international conference on computer and information science, pp 265–270 – reference: Bekmamedova N, Shanks G (2014) Social media analytics and business value: a theoretical framework and case study. In: 2014 47th Hawaii international conference on system sciences, pp 3728–3737. doi:10.1109/HICSS.2014.464 – reference: BellDThe coming of post-industrial society2008LondonBasic Books – reference: GilfoilDMAukersSMJobsCGDeveloping and implementing a social media program while optimizing return on investment: an MBA program case studyAm J Bus Educ2014813148 – reference: Liu G, Fu Y, Xu T, Xiong H, Chen G (2014) Discovering temporal retweeting patterns for social media marketing campaigns. In: 2014 IEEE international conference on data mining, pp 905–910 – reference: Fiarni C, Maharani H, Pratama R (2016) Sentiment analysis system for indonesia online retail shop review using hierarchy naive Bayes technique. In: 2016 4th international conference on information and communication technology (ICoICT), pp 1–6 – reference: ChenXWLinXBig data deep learning: challenges and perspectivesIEEE Access2014251452510.1109/ACCESS.2014.2325029 – reference: Mayer-SchönbergerVCukierKBig data: a revolution that will transform how we live, work, and think2013BostonHoughton Mifflin Harcourt – reference: Arora D, Malik P (2015) Analytics: key to go from generating big data to deriving business value. In: 2015 IEEE first international conference on big data computing service and applications, pp 446–452 – reference: del Val E, Martínez C, Botti V (2016) Analyzing users’ activity in online social networks over time through a multi-agent framework. Soft Comput 20:4331–4345 – reference: SaniLEfficient search of relevant structures in complex systems2016ChamSpringer International Publishing3548 – reference: Varlamis I, Eirinaki M, Proios D (2015) Tipme: personalized advertising and aspect-based opinion mining for users and businesses. In: 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 1489–1494 – reference: ZengDChenHLuschRLiSHSocial media analytics and intelligenceIEEE Intell Syst2010256131610.1109/MIS.2010.151 – reference: GastaldiMIntegration of mobile, big data, sensors, and social media: impact on daily life and businessIST-Afr Conf Proc20142014110 – reference: TuckerCESocial networks, personalized advertising, and privacy controlsJ Mark Res201451554656210.1509/jmr.10.0355 – reference: YanEResearch dynamics, impact, and dissemination: a topic-level analysisJASIST20156623572372 – reference: Calderon NA, Fisher B, Hemsley J, Ceskavich B, Jansen G, Marciano R, Lemieux VL (2015) Mixed-initiative social media analytics at the world bank: observations of citizen sentiment in Twitter data to explore “trust” of political actors and state institutions and its relationship to social protest. In: 2015 IEEE international conference on big data, pp 1678–1687 – reference: Wang Y, Wiebe VJ (2014) Big data analyses for collective opinion elicitation in social networks. In: 2014 IEEE 13th international conference on trust, security and privacy in computing and communications, pp 630–637 – reference: PecoriRS-Kademlia: a trust and reputation method to mitigate a Sybil attack in KademliaComput Netw201694 Part C20521810.1016/j.comnet.2015.11.010 – reference: Banker S (2014) Amazon and anticipatory shipping: a dubious patent? http://www.forbes.com/sites/stevebanker/2014/01/24/amazon-and-anticipatory-shipping-a-dubious-patent – reference: Su CJ, Chen YA (2016) Social media analytics based product improvement framework. In: 2016 international symposium on computer, consumer and control (IS3C), pp 393–396 – reference: ChiMTLinSSChenSYLinCHLeeTYMorphable word clouds for time-varying text data visualizationIEEE Trans Visual Comput Graphics201521121415142610.1109/TVCG.2015.2440241 – reference: Coursaris CK, Osch WV, Balogh BA (2016) Do Facebook likes lead to shares or sales? exploring the empirical links between social media content, brand equity, purchase intention, and engagement. In: 2016 49th Hawaii international conference on system sciences (HICSS), pp 3546–3555 – reference: Sand G, Tsitouras L, Dimitrakopoulos G, Chatzigiannakis V (2014) A big data aggregation, analysis and exploitation integrated platform for increasing social management intelligence. In: 2014 IEEE international conference on big data, pp 40–47 – reference: Davcheva P (2014) Identifying sports talents by social media mining as a marketing instrument. In: 2014 annual SRII global conference, pp 223–227 – reference: ErlTKhattakWBuhlerPBig data fundamentals: concepts, drivers and techniques2016Upper Saddle RiverPrentice Hall Press – reference: McCafferty D (2014) Surprising statistics about big data. http://www.baselinemag.com/analytics-big-data/slideshows/surprising-statistics-about-big-data.html – reference: Vadivu VM, Neelamalar M (2015) Digital brand management—a study on the factors affecting customers’ engagement in Facebook pages. In: 2015 international conference on smart technologies and management for computing. communication, controls, energy and materials (ICSTM), pp 71–75 – reference: Kafeza E, Makris C, Vikatos P (2016) Marketing campaigns in Twitter using a pattern based diffusion policy. In: 2016 IEEE international congress on big data (BigData Congress), pp 125–132 – reference: Brown R, Harmon R (2014) Viral geofencing: an exploration of emerging big-data driven direct digital marketing services. In: 2014 Portland international conference on management of engineering technology, pp 3300–3308 – reference: KetelaarPEJanssenLVergeerMvan ReijmersdalEACrutzenRvant RietJThe success of viral ads: social and attitudinal predictors of consumer pass-on behavior on social network sitesJ Bus Res20166972603261310.1016/j.jbusres.2015.10.151 – reference: Jiang W, Chai H (2016) Research on big data in business model innovation based on GA–BP model. In: 2016 IEEE international conference on service operations and logistics, and informatics (SOLI), pp 174–177 – reference: SchwarzEKrishnamurthyRParrisCBradburyJNnebeIGschwindMThe SIMD accelerator for business analytics on the IBM z13IBM J Res Dev2015594/52:12:1610.1147/JRD.2015.2426576 – reference: WangDKaplanLAbdelzaherTAggarwalCOn credibility estimation tradeoffs in assured social sensingIEEE J Sel Areas Commun20133161026103710.1109/JSAC.2013.130605 – reference: Wong RK, Chi CH, Yu Z, Zhao Y (2014) A system of systems service design for social media analytics. In: 2014 IEEE international conference on services computing (SCC), pp 789–796 – reference: Bubanja I (2016) The social marketing as prerequisite for the competitiveness of south-east European companies. In: 2016 39th international convention on information and communication technology, electronics and microelectronics (MIPRO), pp 1552–1556 – reference: OwaisSSHusseinNSExtract five categories CPIVW from the 9Vs characteristics of the big dataInt J Adv Comput Sci Appl201673254258 – reference: MorenoMVDufourLSkarmetaAFJaraAJGenoudDLadevieBBezianJJBig data: the key to energy efficiency in smart buildingsSoft Comput20162051749176210.1007/s00500-015-1679-4 – reference: BaoJDeshpandeAMcFaddinSNarayanaswamiCPartner-marketing using geo-social media data for smarter commerceIBM J Res Dev2014585/66:16:1210.1147/JRD.2014.2344514 – reference: LinDLiSCaoDMaking intelligent business decisions by mining the implicit relation from bloggers postsSoft Comput201014121317132710.1007/s00500-009-0499-9 – reference: JhaADaveMMadanSA review on the study and analysis of big data using data mining techniquesInt J Latest Trends Eng Technol (IJLTET)20166394102 – reference: Hamed A, Wu X (2014) Does social media big data make the world smaller? An exploratory analysis of keyword-hashtag networks. In: 2014 IEEE international congress on big data, pp 454–461 – reference: Kumar N, Maheshwari V, Kumar J (2016) A comparative study of user experience in online social media branding web pages using eye tracker. In: 2016 international conference on advances in human machine interaction (HMI), pp 1–8 – reference: WuXZhuXWuGQDingWData mining with big dataIEEE Trans Knowl Data Eng20142619710710.1109/TKDE.2013.109 – reference: CoboMLopez-HerreraAHerrera-ViedmaEHerreraFScience mapping software tools: review, analysis and cooperative study among toolsJ Am Soc Inform Sci Technol20116271382140210.1002/asi.215251196.68198 – reference: SongMKimMCJeongYKAnalyzing the political landscape of 2012 Korean presidential election in TwitterIEEE Intell Syst2014292182610.1109/MIS.2014.20 – reference: Fourati-Jamoussi F (2015) E-reputation: a case study of organic cosmetics in social media. In: 2015 6th international conference on information systems and economic intelligence, pp 125–132 – reference: MilgramSThe small world problemPsychol Today1967216067 – reference: ErevellesSFukawaNSwayneLBig data consumer analytics and the transformation of marketingJ Bus Res201669289790410.1016/j.jbusres.2015.07.001 – reference: Gull KC, Angadi AB, Seema CG, Kanakaraddi SG (2014) A clustering technique to rise up the marketing tactics by looking out the key users taking Facebook as a case study. In: 2014 IEEE international advance computing conference (IACC), pp 579–585 – reference: BergerKKlierJKlierMProbstFA review of information systems research on online social networksCommun Assoc Inf Syst2014351145172 – reference: Coursaris CK, Osch WV (2016) Disentangling the drivers of brand benefits: evidence from social media marketing of two cosmetics companies. In: 2016 international conference on telecommunications and multimedia (TEMU), pp 1–6 – reference: Lou P, Zhao G, Qian X, Wang H, Hou X (2016) Schedule a rich sentimental travel via sentimental poi mining and recommendation. In: 2016 IEEE second international conference on multimedia big data (BigMM), pp 33–40 – reference: Jamshidi M, Tannahill B, Yetis Y, Kaplan H (2015) Big data analytic via soft computing paradigms. In: Frontiers of higher order fuzzy sets, pp 229–258. Springer – reference: Laney D (2001) 3D data management: controlling data volume, velocity, and variety. Technical reports, META Group – reference: Wang X, Luo X (2013) Sentimental space based analysis of user personalized sentiments. In: 2013 ninth international conference on semantics, knowledge and grids, pp 151–156 – reference: Anjaria M, Guddeti R (2014) Influence factor based opinion mining of twitter data using supervised learning. In: 2014 sixth international conference on communication systems and networks, pp 1–8 – reference: D’AndreaEDucangePLazzeriniBMarcelloniFReal-time detection of traffic from Twitter stream analysisIEEE Trans Intell Transp Syst20151642269228310.1109/TITS.2015.2404431 – reference: XiangZSchwartzZGerdesJHUysalMWhat can big data and text analytics tell us about hotel guest experience and satisfaction?Int J Hosp Manag20154412013010.1016/j.ijhm.2014.10.013 – reference: Anastasi G, Antonelli M, Bechini A, Brienza S, D’Andrea E, De Guglielmo D, Ducange P, Lazzerini B, Marcelloni F, Segatori A (2013) Urban and social sensing for sustainable mobility in smart cities. In: Sustainable internet and ICT for sustainability (SustainIT), 2013, pp 1–4. IEEE – reference: LiuBSentiment analysis and opinion miningSynthes Lect Hum Lang Technol201251116710.2200/S00416ED1V01Y201204HLT016 – reference: DeanJGhemawatSMapreduce: simplified data processing on large clustersCommun ACM200851110711310.1145/1327452.1327492 – reference: BerkhoutAJInnovating the innovation processInt J Technol Manage20063439040410.1504/IJTM.2006.009466 – ident: 2536_CR8 doi: 10.1109/HICSS.2014.464 – volume: 39 start-page: 147 issue: 2 year: 2015 ident: 2536_CR55 publication-title: J Hosp Tour Res doi: 10.1177/1096348012471381 – volume: 58 start-page: 325 issue: 3 year: 2015 ident: 2536_CR74 publication-title: Bus Horiz doi: 10.1016/j.bushor.2015.01.010 – volume: 25 start-page: 13 issue: 6 year: 2010 ident: 2536_CR94 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2010.151 – volume: 2014 start-page: 1 year: 2014 ident: 2536_CR35 publication-title: IST-Afr Conf Proc – volume: 69 start-page: 897 issue: 2 year: 2016 ident: 2536_CR31 publication-title: J Bus Res doi: 10.1016/j.jbusres.2015.07.001 – volume: 78 start-page: 1 year: 2015 ident: 2536_CR43 publication-title: Decis Support Syst doi: 10.1016/j.dss.2015.07.005 – ident: 2536_CR1 doi: 10.1145/2623330.2623366 – ident: 2536_CR4 doi: 10.1109/BigDataService.2015.62 – volume: 29 start-page: 18 issue: 2 year: 2014 ident: 2536_CR76 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2014.20 – ident: 2536_CR51 doi: 10.1109/HMI.2016.7449165 – volume: 2 start-page: 514 year: 2014 ident: 2536_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2325029 – volume: 94 Part C start-page: 205 year: 2016 ident: 2536_CR69 publication-title: Comput Netw doi: 10.1016/j.comnet.2015.11.010 – ident: 2536_CR86 doi: 10.1109/SKG.2013.16 – volume: 6 start-page: 94 issue: 3 year: 2016 ident: 2536_CR47 publication-title: Int J Latest Trends Eng Technol (IJLTET) – volume: 51 start-page: 546 issue: 5 year: 2014 ident: 2536_CR81 publication-title: J Mark Res doi: 10.1509/jmr.10.0355 – ident: 2536_CR17 doi: 10.1109/BigData.2015.7363939 – volume: 58 start-page: 6:1 issue: 5/6 year: 2014 ident: 2536_CR6 publication-title: IBM J Res Dev doi: 10.1147/JRD.2014.2344514 – volume: 62 start-page: 1382 issue: 7 year: 2011 ident: 2536_CR22 publication-title: J Am Soc Inform Sci Technol doi: 10.1002/asi.2152 – ident: 2536_CR34 doi: 10.1109/ISEI.2015.7358734 – volume: 11 start-page: 10 issue: 3 year: 2016 ident: 2536_CR70 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2016.2572518 – volume: 35 start-page: 145 issue: 1 year: 2014 ident: 2536_CR11 publication-title: Commun Assoc Inf Syst – volume: 7 start-page: 389 year: 2016 ident: 2536_CR14 publication-title: J Bus Econ doi: 10.4018/978-1-4666-9776-8.ch005 – volume: 63 start-page: 16 issue: 1 year: 2016 ident: 2536_CR77 publication-title: IEEE Trans Eng Manag doi: 10.1109/TEM.2015.2488698 – ident: 2536_CR79 doi: 10.1109/ICIS.2016.7550891 – ident: 2536_CR60 doi: 10.1109/BigMM.2016.38 – ident: 2536_CR39 doi: 10.1109/BigData.Congress.2014.72 – ident: 2536_CR87 doi: 10.1109/TrustCom.2014.81 – volume-title: Hadoop: the definitive guide year: 2015 ident: 2536_CR89 – volume: 7 start-page: 254 issue: 3 year: 2016 ident: 2536_CR68 publication-title: Int J Adv Comput Sci Appl – volume: 16 start-page: 2269 issue: 4 year: 2015 ident: 2536_CR25 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2015.2404431 – ident: 2536_CR28 doi: 10.1007/s00500-016-2301-0 – volume: 165 start-page: 234 year: 2015 ident: 2536_CR84 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2014.12.031 – volume-title: Advanced Google AdWords year: 2014 ident: 2536_CR36 – ident: 2536_CR78 doi: 10.1109/IS3C.2016.107 – volume: 75 start-page: 560 issue: Part B year: 2014 ident: 2536_CR7 publication-title: Comput Netw doi: 10.1016/j.comnet.2014.08.025 – volume: 2 start-page: 60 issue: 1 year: 1967 ident: 2536_CR64 publication-title: Psychol Today – volume: 165 start-page: 293 year: 2015 ident: 2536_CR30 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2014.12.032 – volume: 8 start-page: 31 issue: 1 year: 2014 ident: 2536_CR37 publication-title: Am J Bus Educ – ident: 2536_CR52 – ident: 2536_CR80 doi: 10.1109/MITP.2015.66 – volume: 28 start-page: 45 year: 2016 ident: 2536_CR10 publication-title: Inform Fusion doi: 10.1016/j.inffus.2015.08.005 – ident: 2536_CR24 – ident: 2536_CR3 doi: 10.1109/COMSNETS.2014.6734907 – ident: 2536_CR59 doi: 10.1109/ICDM.2014.48 – ident: 2536_CR26 doi: 10.1109/SRII.2014.38 – ident: 2536_CR49 doi: 10.1109/BigDataCongress.2016.24 – ident: 2536_CR72 doi: 10.1109/BigData.2014.7004411 – start-page: 681 volume-title: Educational big data mining: how to enhance virtual learning environments year: 2017 ident: 2536_CR29 doi: 10.1007/978-3-319-47364-2_66 – volume: 26 start-page: 97 issue: 1 year: 2014 ident: 2536_CR91 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.109 – ident: 2536_CR83 – ident: 2536_CR23 doi: 10.1109/HICSS.2016.444 – ident: 2536_CR63 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 2536_CR27 publication-title: Commun ACM doi: 10.1145/1327452.1327492 – ident: 2536_CR15 – volume: 5 start-page: 195 issue: 3 year: 2014 ident: 2536_CR71 publication-title: J Global Fashion Market doi: 10.1080/20932685.2014.908528 – volume: 31 start-page: 1026 issue: 6 year: 2013 ident: 2536_CR85 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2013.130605 – ident: 2536_CR38 doi: 10.1109/IAdCC.2014.6779389 – volume: 36 start-page: 31 year: 2016 ident: 2536_CR41 publication-title: J Interact Mark doi: 10.1016/j.intmar.2016.04.001 – ident: 2536_CR90 doi: 10.1109/SCC.2014.107 – ident: 2536_CR53 – volume: 20 start-page: 3411 issue: 9 year: 2016 ident: 2536_CR56 publication-title: Soft Comput doi: 10.1007/s00500-015-1812-4 – volume: 21 start-page: 1415 issue: 12 year: 2015 ident: 2536_CR20 publication-title: IEEE Trans Visual Comput Graphics doi: 10.1109/TVCG.2015.2440241 – volume: 9 start-page: 786 year: 2016 ident: 2536_CR95 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2016.2592520 – ident: 2536_CR44 doi: 10.1109/ICIS.2015.7166604 – volume: 11 start-page: 85 issue: 4 year: 2013 ident: 2536_CR54 publication-title: IEEE Secur Priv doi: 10.1109/MSP.2013.81 – volume: 66 start-page: 2357 year: 2015 ident: 2536_CR93 publication-title: JASIST – ident: 2536_CR21 – start-page: 35 volume-title: Efficient search of relevant structures in complex systems year: 2016 ident: 2536_CR73 doi: 10.1007/978-3-319-49130-1_4 – ident: 2536_CR16 doi: 10.1109/MIPRO.2016.7522385 – ident: 2536_CR67 doi: 10.1109/ICCTIM.2015.7224610 – volume: 44 start-page: 120 year: 2015 ident: 2536_CR92 publication-title: Int J Hosp Manag doi: 10.1016/j.ijhm.2014.10.013 – volume: 59 start-page: 2:1 issue: 4/5 year: 2015 ident: 2536_CR75 publication-title: IBM J Res Dev doi: 10.1147/JRD.2015.2426576 – volume-title: Big data: a revolution that will transform how we live, work, and think year: 2013 ident: 2536_CR62 – volume: 69 start-page: 2603 issue: 7 year: 2016 ident: 2536_CR50 publication-title: J Bus Res doi: 10.1016/j.jbusres.2015.10.151 – volume-title: The coming of post-industrial society year: 2008 ident: 2536_CR9 – ident: 2536_CR2 doi: 10.1109/SustainIT.2013.6685198 – ident: 2536_CR5 – volume: 5 start-page: 1 issue: 1 year: 2012 ident: 2536_CR58 publication-title: Synthes Lect Hum Lang Technol doi: 10.2200/S00416ED1V01Y201204HLT016 – volume: 20 start-page: 1749 issue: 5 year: 2016 ident: 2536_CR66 publication-title: Soft Comput doi: 10.1007/s00500-015-1679-4 – volume: 20 start-page: 3045 issue: 8 year: 2016 ident: 2536_CR45 publication-title: Soft Comput doi: 10.1007/s00500-015-1935-7 – ident: 2536_CR48 doi: 10.1109/SOLI.2016.7551682 – volume: 34 start-page: 390 year: 2006 ident: 2536_CR12 publication-title: Int J Technol Manage doi: 10.1504/IJTM.2006.009466 – ident: 2536_CR82 doi: 10.1109/ICSTM.2015.7225392 – ident: 2536_CR88 doi: 10.1109/CSCloud.2016.11 – ident: 2536_CR96 doi: 10.1016/j.ijinfomgt.2016.04.010 – ident: 2536_CR33 doi: 10.1109/ICoICT.2016.7571912 – ident: 2536_CR46 doi: 10.1007/978-1-4614-3442-9_12 – volume: 9 start-page: 48 issue: 2 year: 2014 ident: 2536_CR18 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2014.2307227 – volume-title: Big data fundamentals: concepts, drivers and techniques year: 2016 ident: 2536_CR32 – volume: 27 start-page: 66 issue: 1 year: 2014 ident: 2536_CR65 publication-title: J Enterp Inf Manag doi: 10.1108/JEIM-09-2012-0061 – volume: 40 start-page: 474 issue: 5 year: 2010 ident: 2536_CR13 publication-title: R&D Manag doi: 10.1111/j.1467-9310.2010.00618.x – volume: 14 start-page: 1317 issue: 12 year: 2010 ident: 2536_CR57 publication-title: Soft Comput doi: 10.1007/s00500-009-0499-9 – volume: 659 start-page: 63 issue: 1 year: 2015 ident: 2536_CR40 publication-title: Ann Am Acad Polit Soc Sci doi: 10.1177/0002716215570866 – volume: 20 start-page: 225 issue: 3 year: 2014 ident: 2536_CR42 publication-title: New Rev Hypermedia Multimed doi: 10.1080/13614568.2014.889225 – ident: 2536_CR61 doi: 10.1007/s00500-015-1945-5 |
| SSID | ssj0021753 |
| Score | 2.475247 |
| Snippet | Mining and analyzing the valuable knowledge hidden behind the amount of data available in social media is becoming a fundamental prerequisite for any effective... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 325 |
| SubjectTerms | Artificial Intelligence Big Data Competitive advantage Computational Intelligence Control Data analysis Engineering Internet Machine learning Market strategy Marketing Mathematical Logic and Foundations Mechatronics Methodologies and Application Real time Robotics Social networks Society |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDJyWwzb6yxyIWD1LER-ltybMU2m3prv5-k-1mq6KCnjcJyyTZ75udmW8ALgVhNAlCgUMmPBwQGWAuSIi59EniUa6jsrZqeB8PBnQ0Sh6qOu7cZbu7kGT5pa6L3axUiU2issoCfoSDTdgyaEdtv4bHp2HtZVXSk4YHGOpo8NaFMr9b4jMYrRnml6BoiTX95r_ech_2KmqJequzcAAbKmtB07VtQNUtbsHuBw3CQ7jrofF0MlvkCs0zxCdjZJNGEbNiJVbCGU0yZEgi0i6LC801mrlaaZQXTmviCF76t883d7hqr4CF8eIKbAhryD1uIDwRodRaccmFEJHHhC-7lppwykQ3lF3bjkMnTMZCB0GsIuIlmhP_GBrZPFMngIQwXoqZLGNlPCDGKOfEk4bNce0T5dM2eM7Oqai0x20LjGlaqyaXdkuN3VJrtzRow1U9ZbES3vhtcMdtXlrdwTwlxhNNYiuY2IZrt1nrxz8udvqn0WewYzgUXf2V6UCjWL6qc9gWb8UkX16UR_Mdl4fdBw priority: 102 providerName: Springer Nature |
| Title | A glimpse on big data analytics in the framework of marketing strategies |
| URI | https://link.springer.com/article/10.1007/s00500-017-2536-4 https://www.proquest.com/docview/2917979659 |
| Volume | 22 |
| WOSCitedRecordID | wos000419355900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-7479 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH4R8OBF_BlRJD140jSObmPbyaCBkGgIQSXEy7K-roZEBjL077cdLUQTvXjZpWuz7LV933vt-z6AC2RJGHk-Uj9Bh3pMeJQj8ykXLouckMtWUVs1egj6_XA8jgYm4Zaba5V2Tyw2ajFDnSO_ZiquiAJNf3czf6daNUqfrhoJjRJUNEuClm4Y-C_rgMuwUCpIoFCkcr32VNMpSER9XVPd1DwFbot63_3SBmz-OB8t3E63-t8P3oNdAzhJezVD9mErzQ6gasUciFnbh9Brk9e3yXSep2SWET55JfryKEk0aYmmciaTjCiwSKS9zUVmkkxtzTTJl5Zz4gieu52nux41MgsUVTS3pAq4-tzhypVH6AspUy44IracBF3R1BCFhwk2fdHUshwySkSA0vOCtMWcSHLmHkM5m2XpCRBEFa2oziJIVSSUJCHnzBEK1XHpstQNa-DYnxyj4SDXUhhv8Zo9ubBLrOwSa7vEXg0u113mKwKOv16uW1vEZi3m8cYQNbiy1tw0_zrY6d-DncGOAk_hKh1Th_Jy8ZGewzZ-Lif5ogGV205_MGxA6T6gjWJaqufwcfQF03PnEw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1FBYleaCmtGlpgD-VCtaqztmP7gFBUiBIlRBwCys31zu5GkRInxKGof6q_kVnHmwgkcsuBs70r2fP1ZnfmDcAViixOghB5mKHHA6ECLlGEXCpfJF4sTbPsrfrejwaDeDRKvtbg0fXC2LJK5xNLR63maM_IbwTlFUlk6e8-Ln5wOzXK3q66ERprtejph1-UshUfup9Ivu-EaH8e3nZ4NVWAIyUvK044LZSepMiVYKiM0VJJRGx6GfqqYSOyjDNshKphp1CYJFMRmiCIdFN4iZGW6IBc_pPAjyNrV72IbxK8ivWSIAihVgr17hbVK0lLQ9vD3bC8CH6TB3_GwS24_es-tgxz7aP_7Qcdw_MKULPW2gJeQE3nJ3DkhlWwyne9hE6LjaeT2aLQbJ4zORkzWxzLMkvKYqmq2SRnBIaZcdVqbG7YzPWEs2LlODVO4dtevucMDvJ5rs-BIVI2RotVpCnTy7JYSuEpQq3S-EL7cR08J9QUK451O-pjmm7YoUs9SEkPUqsHaVCH95slizXByK6XL53s08rXFOlW8HW4dtqzffzPzV7t3uwtPOsMv_TTfnfQu4BDAorx-ujpEg5Wy5_6NTzF-9WkWL4pjYDB3b6V6jfK5EKL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDP6bidGoefFLKuvT341DHxDEG6thbaJJmFLZurNW_36RtOhUVxOcmIVwS7vt6d98BXDEc-oHtMMMJmWnYmNsGZdgxKLdwYPpUuHlt1ajvDQb-eBwMyz6nqc521yHJoqZBqTQlWWvBRasqfFOyJSqhSqkMWK5hr8OGrfLoFV1_GlWMq5ShlJhAwkjpe3VY87slPjumFdr8EiDN_U5379873ofdEnKiTnFHDmAtSuqwp9s5oPJ112HngzbhIfQ6aDKNZ4s0QvME0XiCVDIpCpWIiZJ2RnGCJHhEQmd3oblAM11DjdJMa1AcwUv3_vm2Z5RtFwwm2V1mSCDrUJNK1x4whwsRUU4ZY64ZMou3FWShfsjaDm-rNh0iCLnHhG17kYvNQFBsHUMtmSfRCSDGJHuRk7kXSWYUhj6l2OTynKiwcGT5DTC1zQkrNclVa4wpqdSUc7sRaTei7EbsBlxXUxaFIMdvg5v6IEn5NlOCJUMNPCWk2IAbfXCrzz8udvqn0ZewNbzrkv7D4PEMtiXM8osfN02oZcvX6Bw22VsWp8uL_Ma-A2BE6M8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+glimpse+on+big+data+analytics+in+the+framework+of+marketing+strategies&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Ducange%2C+Pietro&rft.au=Pecori%2C+Riccardo&rft.au=Mezzina%2C+Paolo&rft.date=2018-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=22&rft.issue=1&rft.spage=325&rft.epage=342&rft_id=info:doi/10.1007%2Fs00500-017-2536-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |