Direct Parallel Perceptrons (DPPs): Fast Analytical Calculation of the Parallel Perceptrons Weights With Margin Control for Classification Tasks

Parallel perceptrons (PPs) are very simple and efficient committee machines (a single layer of perceptrons with threshold activation functions and binary outputs, and a majority voting decision scheme), which nevertheless behave as universal approximators. The parallel delta (P-Delta) rule is an eff...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 22; číslo 11; s. 1837 - 1848
Hlavní autoři: Fernandez-Delgado, M., Ribeiro, J., Cernadas, E., Ameneiro, S. B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.11.2011
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1045-9227, 1941-0093, 1941-0093
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Parallel perceptrons (PPs) are very simple and efficient committee machines (a single layer of perceptrons with threshold activation functions and binary outputs, and a majority voting decision scheme), which nevertheless behave as universal approximators. The parallel delta (P-Delta) rule is an effective training algorithm, which, following the ideas of statistical learning theory used by the support vector machine (SVM), raises its generalization ability by maximizing the difference between the perceptron activations for the training patterns and the activation threshold (which corresponds to the separating hyperplane). In this paper, we propose an analytical closed-form expression to calculate the PPs' weights for classification tasks. Our method, called Direct Parallel Perceptrons (DPPs), directly calculates (without iterations) the weights using the training patterns and their desired outputs, without any search or numeric function optimization. The calculated weights globally minimize an error function which simultaneously takes into account the training error and the classification margin. Given its analytical and noniterative nature, DPPs are computationally much more efficient than other related approaches (P-Delta and SVM), and its computational complexity is linear in the input dimensionality. Therefore, DPPs are very appealing, in terms of time complexity and memory consumption, and are very easy to use for high-dimensional classification tasks. On real benchmark datasets with two and multiple classes, DPPs are competitive with SVM and other approaches but they also allow online learning and, as opposed to most of them, have no tunable parameters.
AbstractList Parallel perceptrons (PPs) are very simple and efficient committee machines (a single layer of perceptrons with threshold activation functions and binary outputs, and a majority voting decision scheme), which nevertheless behave as universal approximators. The parallel delta (P-Delta) rule is an effective training algorithm, which, following the ideas of statistical learning theory used by the support vector machine (SVM), raises its generalization ability by maximizing the difference between the perceptron activations for the training patterns and the activation threshold (which corresponds to the separating hyperplane). In this paper, we propose an analytical closed-form expression to calculate the PPs' weights for classification tasks. Our method, called Direct Parallel Perceptrons (DPPs), directly calculates (without iterations) the weights using the training patterns and their desired outputs, without any search or numeric function optimization. The calculated weights globally minimize an error function which simultaneously takes into account the training error and the classification margin. Given its analytical and noniterative nature, DPPs are computationally much more efficient than other related approaches (P-Delta and SVM), and its computational complexity is linear in the input dimensionality. Therefore, DPPs are very appealing, in terms of time complexity and memory consumption, and are very easy to use for high-dimensional classification tasks. On real benchmark datasets with two and multiple classes, DPPs are competitive with SVM and other approaches but they also allow online learning and, as opposed to most of them, have no tunable parameters.Parallel perceptrons (PPs) are very simple and efficient committee machines (a single layer of perceptrons with threshold activation functions and binary outputs, and a majority voting decision scheme), which nevertheless behave as universal approximators. The parallel delta (P-Delta) rule is an effective training algorithm, which, following the ideas of statistical learning theory used by the support vector machine (SVM), raises its generalization ability by maximizing the difference between the perceptron activations for the training patterns and the activation threshold (which corresponds to the separating hyperplane). In this paper, we propose an analytical closed-form expression to calculate the PPs' weights for classification tasks. Our method, called Direct Parallel Perceptrons (DPPs), directly calculates (without iterations) the weights using the training patterns and their desired outputs, without any search or numeric function optimization. The calculated weights globally minimize an error function which simultaneously takes into account the training error and the classification margin. Given its analytical and noniterative nature, DPPs are computationally much more efficient than other related approaches (P-Delta and SVM), and its computational complexity is linear in the input dimensionality. Therefore, DPPs are very appealing, in terms of time complexity and memory consumption, and are very easy to use for high-dimensional classification tasks. On real benchmark datasets with two and multiple classes, DPPs are competitive with SVM and other approaches but they also allow online learning and, as opposed to most of them, have no tunable parameters.
Parallel perceptrons (PPs) are very simple and efficient committee machines (a single layer of perceptrons with threshold activation functions and binary outputs, and a majority voting decision scheme), which nevertheless behave as universal approximators. The parallel delta (P-Delta) rule is an effective training algorithm, which, following the ideas of statistical learning theory used by the support vector machine (SVM), raises its generalization ability by maximizing the difference between the perceptron activations for the training patterns and the activation threshold (which corresponds to the separating hyperplane). In this paper, we propose an analytical closed-form expression to calculate the PPs' weights for classification tasks. Our method, called Direct Parallel Perceptrons (DPPs), directly calculates (without iterations) the weights using the training patterns and their desired outputs, without any search or numeric function optimization. The calculated weights globally minimize an error function which simultaneously takes into account the training error and the classification margin. Given its analytical and noniterative nature, DPPs are computationally much more efficient than other related approaches (P-Delta and SVM), and its computational complexity is linear in the input dimensionality. Therefore, DPPs are very appealing, in terms of time complexity and memory consumption, and are very easy to use for high-dimensional classification tasks. On real benchmark datasets with two and multiple classes, DPPs are competitive with SVM and other approaches but they also allow online learning and, as opposed to most of them, have no tunable parameters.
Author Fernandez-Delgado, M.
Ameneiro, S. B.
Ribeiro, J.
Cernadas, E.
Author_xml – sequence: 1
  givenname: M.
  surname: Fernandez-Delgado
  fullname: Fernandez-Delgado, M.
  email: manuel.fernandez.delgado@usc.es
  organization: Intell. Syst. Group, San Sebastian, Spain
– sequence: 2
  givenname: J.
  surname: Ribeiro
  fullname: Ribeiro, J.
  email: jribeiro@estg.ipvc.pt
  organization: Sch. of Technol. & Manage., Viana do Castelo Polytech. Inst., Viana do Castelo, Portugal
– sequence: 3
  givenname: E.
  surname: Cernadas
  fullname: Cernadas, E.
  email: eva.cernadas@usc.es
  organization: Centro de Investig. en Tecnoloxias da Infor macion da USC (CITIUS), Univ. of Santiago de Compostela, Santiago de Compostela, Spain
– sequence: 4
  givenname: S. B.
  surname: Ameneiro
  fullname: Ameneiro, S. B.
  email: senen.barro@usc.es
  organization: Intell. Syst. Group, San Sebastian, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24750995$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21984498$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vVCEUxYlpY__o3sTEsDHaxRuBBzxw17xaNal1FmNcEh4POijzmAKz6LfwI8t0ppoYo6tLcn_n3HDOCTiY4mQBeIbRDGMk3yyur2cEYTwjmEsk-CNwjCXFDUKyPahvRFkjCemOwEnO3xDClCH-GBwRLAWlUhyDHxc-WVPgXCcdgg1wbpOx65LilOHri_k8n72FlzoXeD7pcFe80QH2OphN0MXHCUYHy9L-Xf_V-ptlqdOXJfyk042fYB-nugzQxQT7oHP2rnreWy10_p6fgEOnQ7ZP9_MUfLl8t-g_NFef33_sz68aQ1FXGoHJiDtB9Ghl6zomBzQwTASXvCVcUGKYFGJoiRktdsPQOV7_PnI6StYxN7Sn4NXOd53i7cbmolY-GxuCnmzcZFV9BMOMs_-TiLQUCdRV8sWe3AwrO6p18iud7tRD3BV4uQd0rkG6pCfj82-OdgxJuT3Jd5xJMedknTK-3IdUkvZBYaS2_avav9r2r_b9VyH6Q_jg_Q_J853EW2t_4Ry1rBOy_QnmRboy
CODEN ITNNEP
CitedBy_id crossref_primary_10_1109_TNNLS_2012_2229293
crossref_primary_10_1109_TNNLS_2012_2199766
crossref_primary_10_3389_fenvs_2022_999483
crossref_primary_10_1016_j_compbiomed_2014_12_024
crossref_primary_10_1109_TNNLS_2012_2195027
crossref_primary_10_1007_s11063_024_11707_9
crossref_primary_10_3390_math10244730
crossref_primary_10_1016_j_neunet_2013_11_002
Cites_doi 10.1109/TNN.2010.2099238
10.1016/S0031-3203(98)00016-8
10.1016/j.patcog.2005.03.017
10.1016/j.neucom.2007.02.006
10.1017/CBO9780511812651
10.1007/11691730_13
10.1016/j.neucom.2007.04.007
10.1109/ICDAR.2003.1227801
10.1109/TNN.2009.2016717
10.1007/11492542_6
10.1109/ICNN.1988.23872
10.1016/S0893-6080(01)00103-4
10.1006/jcss.1997.1504
10.1007/11494669_26
10.1109/TNN.2010.2094624
10.1109/TSMC.1976.4309452
10.1109/TNN.2004.836229
10.1109/72.991427
10.1162/089976600300014827
10.1016/j.neunet.2007.12.036
10.1007/BF00058655
10.1007/11499305_60
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2011.2169086
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE - Academic
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 1848
ExternalDocumentID 21984498
24750995
10_1109_TNN_2011_2169086
6035789
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c407t-812d1782ade93f759b0b5128696326842c5988b32cde1fbb7f6450d64d9575fb3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296469500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
1941-0093
IngestDate Fri Sep 05 14:02:12 EDT 2025
Fri Sep 05 10:21:46 EDT 2025
Thu Apr 03 07:07:43 EDT 2025
Mon Jul 21 09:13:59 EDT 2025
Sat Nov 29 03:59:25 EST 2025
Tue Nov 18 22:00:29 EST 2025
Tue Aug 26 17:18:09 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords parallel perceptrons
Competitiveness
parallel delta rule
Modeling
Optimization
Direct method
Multidimensional analysis
Vector support machine
Linear complexity
Analytical closed-form weight calculation
Probability learning
Electronic vote
Threshold function
Single machine
Dimensionality
Statistical analysis
margin maximization
Error function
linear computational complexity
Neural network
Computational complexity
Hyperplane
Exact solution
Perceptron
Activation function
Storage management
Pattern classification
Time complexity
online learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-812d1782ade93f759b0b5128696326842c5988b32cde1fbb7f6450d64d9575fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21984498
PQID 902340807
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_963851565
pubmed_primary_21984498
crossref_primary_10_1109_TNN_2011_2169086
proquest_miscellaneous_902340807
ieee_primary_6035789
pascalfrancis_primary_24750995
crossref_citationtrail_10_1109_TNN_2011_2169086
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref12
sheskin (ref26) 2006
ref14
witten (ref21) 2005
ref30
liu (ref13) 2003; 1
ref11
ref32
ref10
tomek (ref18) 1976; 6
ref2
ref17
ref19
cantador (ref5) 2005; 3562
vapnik (ref9) 1998
auer (ref1) 2002
collobert (ref24) 2003
simard (ref31) 1993
ref23
ref25
ref20
fernndez-delgado (ref33) 2010
ref22
cantador (ref4) 2005; 3523
ref28
ref27
ref29
daqi (ref8) 2006
delogu (ref16) 2008; 71
blake (ref15) 1998
ref3
ref6
gonzlez (ref7) 2005; 3697
References_xml – ident: ref10
  doi: 10.1109/TNN.2010.2099238
– ident: ref17
  doi: 10.1016/S0031-3203(98)00016-8
– start-page: 50
  year: 1993
  ident: ref31
  publication-title: Advances in neural information processing systems
– ident: ref14
  doi: 10.1016/j.patcog.2005.03.017
– volume: 71
  start-page: 919
  year: 2008
  ident: ref16
  article-title: Geometrical synthesis of MLP neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.02.006
– ident: ref25
  doi: 10.1017/CBO9780511812651
– ident: ref29
  doi: 10.1007/11691730_13
– year: 2006
  ident: ref26
  publication-title: Handbook of Parametric and Nonparametric Statistical Procedures
– year: 1998
  ident: ref9
  publication-title: Statistical Learning Theory
– ident: ref28
  doi: 10.1016/j.neucom.2007.04.007
– ident: ref32
  doi: 10.1109/ICDAR.2003.1227801
– ident: ref11
  doi: 10.1109/TNN.2009.2016717
– start-page: 4797
  year: 2006
  ident: ref8
  article-title: A mixed parallel perceptron classifier and several application problems
  publication-title: Proc Int Joint Conf Neural Netw
– volume: 3523
  start-page: 43
  year: 2005
  ident: ref4
  publication-title: Pattern Recognition and Image Analysis
  doi: 10.1007/11492542_6
– start-page: 123
  year: 2002
  ident: ref1
  article-title: Reducing communication for distributed learning in neural networks
  publication-title: Proc Int Conf Artif Neural Netw
– ident: ref20
  doi: 10.1109/ICNN.1988.23872
– year: 2003
  ident: ref24
  publication-title: Torch A Modular Machine Learning Software Library
– ident: ref12
  doi: 10.1016/S0893-6080(01)00103-4
– ident: ref22
  doi: 10.1006/jcss.1997.1504
– ident: ref6
  doi: 10.1007/11494669_26
– ident: ref19
  doi: 10.1109/TNN.2010.2094624
– year: 2005
  ident: ref21
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– volume: 6
  start-page: 769
  year: 1976
  ident: ref18
  article-title: Two Modifications of CNN
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1976.4309452
– volume: 3697
  start-page: 13
  year: 2005
  ident: ref7
  publication-title: Artificial Neural Networks Formal Models and Their Applications - ICANN
– ident: ref30
  doi: 10.1109/TNN.2004.836229
– ident: ref27
  doi: 10.1109/72.991427
– ident: ref3
  doi: 10.1162/089976600300014827
– ident: ref2
  doi: 10.1016/j.neunet.2007.12.036
– year: 1998
  ident: ref15
  publication-title: UCI repository of machine learning databases
– ident: ref23
  doi: 10.1007/BF00058655
– start-page: 1940
  year: 2010
  ident: ref33
  article-title: Fast weight calculation for kernel-based perceptron in two-class classification problems
  publication-title: Proc Int Joint Conf Neural Netw
– volume: 3562
  start-page: 586
  year: 2005
  ident: ref5
  publication-title: Artificial Intelligence and Knowledge Engineering Applications A Bioinspired Approach
  doi: 10.1007/11499305_60
– volume: 1
  start-page: 41
  year: 2003
  ident: ref13
  article-title: Kernel-based nonlinear discriminator with closed-form solution
  publication-title: Proc Int Conf Neural Netw Signal Process
SSID ssj0014506
Score 2.1148899
Snippet Parallel perceptrons (PPs) are very simple and efficient committee machines (a single layer of perceptrons with threshold activation functions and binary...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1837
SubjectTerms Accuracy
Activation
Algorithmics. Computability. Computer arithmetics
Algorithms
Analytical closed-form weight calculation
Applied sciences
Artificial Intelligence
Classification
Classification - methods
Closed-form solutions
Computer science; control theory; systems
Connectionism. Neural networks
Data processing. List processing. Character string processing
Databases, Factual
Exact sciences and technology
Kernel
Linear approximation
linear computational complexity
Linear Models
margin maximization
Mathematical analysis
Mathematical models
Memory and file management (including protection and security)
Memory organisation. Data processing
Neural Networks (Computer)
online learning
parallel delta rule
parallel perceptrons
pattern classification
Reproducibility of Results
Software
Statistical learning
Support vector machines
Tasks
Theoretical computing
Thresholds
Training
Title Direct Parallel Perceptrons (DPPs): Fast Analytical Calculation of the Parallel Perceptrons Weights With Margin Control for Classification Tasks
URI https://ieeexplore.ieee.org/document/6035789
https://www.ncbi.nlm.nih.gov/pubmed/21984498
https://www.proquest.com/docview/902340807
https://www.proquest.com/docview/963851565
Volume 22
WOSCitedRecordID wos000296469500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB3trjjAgYWWj_JR-YAQKxGapk7s4bYqVJyqHIroLXJiW1RbUtSkSPwLfjJjOw2stKzEKZFiW1H8PHmeGc8DeJUqaU2sbZQkmkdcoogwNjKKLdlCnHKdCe3FJsRyKddrzE_gbX8Wxhjjk8_MO3frY_l6Vx2cq2ySxa42C57CqRBZOKvVRwx46nU0aXeRRpgk4hiSjHGyWi5Drc7ExYRk5gsAo-Qc5bW_kZdXccmRqqHvY4Owxb-Zp_8DLc7_790fwP2OabLLAI2HcGLqAQwva9plf_vJXjOf--md6gM4P4o7sG6tD-DeX5UKh_ArmEaWq70TX9myPCTE7Am07M2HPG8u3rOFalrmq5x4Bzmbq23VqYOxnWVENW_u_8W7Z-m6ab8yp7y7qdk8pNAz4tTMC3e6lKYw1Eo1V80j-Lz4uJp_ijoxh6iiPWMbEZHQU6IjShucWZFiGZdENmRGFsBVnEmqFKUsZ0mlzdSWpbAZTanOuEZilLacPYazelebp8CIUrhgr1JknniVxCi0IdZCTWfa8CmOYHKc1KLqKp07wY1t4Xc8MRaEiMIhougQMYKLvsf3UOXjlrZDN7t9u25iRzC-hpv-ecIdKcN0BOwIpIKWsIvLqNrsDk2BxJs4MXdxSxMyk8Q8MxrlScDgn_E7KD-7-b2ew13vBvfHJ1_AWbs_mJdwp_rRbpr9mFbSWo79SvoNJFgXrQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB0tCxJwYKHlo3wsPiDEShvquk5ic1sVqkUsUQ5F7C1yYltUlBQ1KRL_gp_M2E4DKy0rcUqk2FYUP0-eZ8bzAF7ESlhDtY0Y0zziQqaRpEZE1KItlBOuk1R7sYk0y8T5ucz34Lg_C2OM8cln5rW79bF8va62zlU2TqirzSKvwfWYc0bDaa0-ZsBjr6SJ-4s4koylu6AkleNFloVqncxFhUTiSwBLwbkUF_5HXmDFpUeqBr-QDdIW_-ae_h80P_i_t78LdzquSU4COO7BnqkHMDypcZ_97Sd5SXz2p3erD-BgJ-9AutU-gNt_1Socwq9gHEmuNk5-ZUXykBKzQdiSV2_zvDl6Q-aqaYmvc-Jd5GSmVlWnD0bWliDZvLz_Z--gxeuy_UKc9u6yJrOQRE-QVRMv3emSmsJQC9V8be7Dp_m7xew06uQcogp3jW2EVEJPkJAobeTUprEsaYl0QyRoA1zNGVbFUohyyiptJrYsU5vglOqEa4mc0pbTB7Bfr2vzCAiSChfuVQoNFK8Ylak2yFuw6VQbPpEjGO8mtai6WudOcmNV-D0PlQUionCIKDpEjOCo7_E91Pm4ou3QzW7frpvYERxewE3_nHFHy2Q8ArIDUoGL2EVmVG3W26aQyJw4cvf0iiZoKJF7JjjKw4DBP-N3UH58-Xs9h5uni49nxdn77MMTuOWd4v4w5VPYbzdb8wxuVD_aZbM59OvpNzUTGgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+parallel+perceptrons+%28DPPs%29%3A+fast+analytical+calculation+of+the+parallel+perceptrons+weights+with+margin+control+for+classification+tasks&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Fernandez-Delgado%2C+Manuel&rft.au=Ribeiro%2C+Jorge&rft.au=Cernadas%2C+Eva&rft.au=Ameneiro%2C+Sen%C3%A9n+Barro&rft.date=2011-11-01&rft.issn=1941-0093&rft.eissn=1941-0093&rft.volume=22&rft.issue=11&rft.spage=1837&rft_id=info:doi/10.1109%2FTNN.2011.2169086&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon