A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises
Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to t...
Saved in:
| Published in: | Proceedings of the IEEE Vol. 109; no. 5; pp. 820 - 838 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9219, 1558-2256 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions. |
|---|---|
| AbstractList | Since its renaissance, deep learning (DL) has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high-performance computing. However, medical imaging presents unique challenges that confront DL approaches. In this survey article, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in DL are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, and so on. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions. Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions. Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions. |
| Author | Davatzikos, Christos Madabhushi, Anant Greenspan, Hayit Duncan, James S. Van Ginneken, Bram Summers, Ronald M. Zhou, S. Kevin Prince, Jerry L. Rueckert, Daniel |
| Author_xml | – sequence: 1 givenname: S. Kevin orcidid: 0000-0002-6881-4444 surname: Zhou fullname: Zhou, S. Kevin email: zhoushaohua@ict.ac.cn organization: School of Biomedical Engineering, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Hayit surname: Greenspan fullname: Greenspan, Hayit organization: Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel – sequence: 3 givenname: Christos surname: Davatzikos fullname: Davatzikos, Christos organization: Radiology Department, University of Pennsylvania, Philadelphia, PA, USA – sequence: 4 givenname: James S. orcidid: 0000-0002-5167-9856 surname: Duncan fullname: Duncan, James S. organization: Department of Biomedical Engineering, Yale University, New Haven, CT, USA – sequence: 5 givenname: Bram surname: Van Ginneken fullname: Van Ginneken, Bram organization: Radboud University Medical Center, Nijmegen, GA, The Netherlands – sequence: 6 givenname: Anant orcidid: 0000-0002-5741-0399 surname: Madabhushi fullname: Madabhushi, Anant organization: Department of Biomedical Engineering, CaseWestern Reserve University, Cleveland, OH, USA – sequence: 7 givenname: Jerry L. orcidid: 0000-0002-6553-0876 surname: Prince fullname: Prince, Jerry L. organization: Electrical and Computer Engineering Department, Johns Hopkins University, Baltimore, MD, USA – sequence: 8 givenname: Daniel orcidid: 0000-0002-5683-5889 surname: Rueckert fullname: Rueckert, Daniel organization: Klinikum rechts der Isar, Technical University of Munich (TU Munich), Munich, Germany – sequence: 9 givenname: Ronald M. orcidid: 0000-0001-8081-7376 surname: Summers fullname: Summers, Ronald M. organization: National Institutes of Health Clinical Center, Bethesda, MD, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37786449$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1vEzEUtFARTQt_ACRkiQsHEvyxXttcUBVaWhTUqgRxtLy7LxtXGzvYu636G_jTOCSpoAcOlq33ZkbznucIHfjgAaGXlEwoJfr9l6vry-mEEUYnnIiCa_IEjagQasyYKA_QiBCqxppRfYiOUrohhHBR8mfokEupyqLQI_TrBF_DrYM7HBb4E8Aaz8BG73yLncdfoXG17fDFyra59GH_wPNoXZ_e4TnUSx-60N7nEvgml6Y2Af7WD42DhH-4fomvYmgjpITPXbvs8tkwrW_w2dAPETb9lUuQnqOnC9sleLG7j9H3s9P59Hw8u_x8MT2ZjeuCyH4syzyWVqSS0JRcLgpbNSCrugJGAQrVUFopK3TBWVOoRcmtEpDbsualIE3Nj9HHre56qFbQ1OD7aDuzjm5l470J1pl_O94tTRtuDc1bLqRkWeHtTiGGnwOk3uQBaug66yEMyTAlGVVUlCpD3zyC3oQh-jyfYYJqLRnhPKNe_23pwcv-ozJAbQF1DClFWJja9bZ3YePQddma2WTC_MmE2WTC7DKRqewRda_-X9KrLckBwANB85JrKvhvIADDNQ |
| CODEN | IEEPAD |
| CitedBy_id | crossref_primary_10_1177_09622802231158811 crossref_primary_10_1007_s43154_021_00064_3 crossref_primary_10_3389_fnins_2022_954662 crossref_primary_10_1016_j_engappai_2023_106126 crossref_primary_10_1109_LRA_2023_3251844 crossref_primary_10_1002_jhm_13371 crossref_primary_10_3390_app13063693 crossref_primary_10_1007_s10278_024_01114_w crossref_primary_10_1016_j_bspc_2025_108359 crossref_primary_10_1109_COMST_2023_3280465 crossref_primary_10_1016_j_pacs_2025_100743 crossref_primary_10_1109_ACCESS_2025_3576875 crossref_primary_10_1016_j_media_2022_102652 crossref_primary_10_1016_j_neunet_2025_107228 crossref_primary_10_1146_annurev_biodatasci_020722_100353 crossref_primary_10_1038_s41598_025_90221_x crossref_primary_10_1080_15321819_2024_2412528 crossref_primary_10_5662_wjm_v15_i4_105326 crossref_primary_10_1002_ps_8473 crossref_primary_10_1016_j_compmedimag_2024_102341 crossref_primary_10_1016_j_jrras_2024_100965 crossref_primary_10_1007_s00530_025_01725_5 crossref_primary_10_1016_j_media_2023_102824 crossref_primary_10_3389_fdgth_2022_890759 crossref_primary_10_1016_j_heliyon_2024_e26801 crossref_primary_10_1186_s13635_024_00171_6 crossref_primary_10_1007_s11042_023_17326_1 crossref_primary_10_1109_TPAMI_2021_3100536 crossref_primary_10_1109_TPAMI_2023_3299038 crossref_primary_10_1109_JBHI_2023_3344392 crossref_primary_10_1016_j_wneu_2024_10_103 crossref_primary_10_7759_cureus_66970 crossref_primary_10_1055_a_2124_1958 crossref_primary_10_57197_JDR_2024_0080 crossref_primary_10_1109_JBHI_2022_3151741 crossref_primary_10_3389_fdgth_2025_1484231 crossref_primary_10_1002_aisy_202400547 crossref_primary_10_1016_j_csbj_2024_12_019 crossref_primary_10_1007_s40619_025_01678_x crossref_primary_10_3389_fnins_2023_1181703 crossref_primary_10_1186_s12880_021_00599_z crossref_primary_10_1007_s00521_024_09660_8 crossref_primary_10_1016_j_compbiomed_2022_105966 crossref_primary_10_1007_s00464_023_09990_z crossref_primary_10_1016_j_media_2022_102429 crossref_primary_10_1016_j_bspc_2025_108366 crossref_primary_10_32604_cmc_2024_058647 crossref_primary_10_1016_j_compmedimag_2025_102544 crossref_primary_10_1109_TMI_2023_3275592 crossref_primary_10_3233_XST_230196 crossref_primary_10_1016_j_asjsur_2025_03_100 crossref_primary_10_1109_TIP_2025_3568746 crossref_primary_10_3390_diagnostics14192234 crossref_primary_10_1088_1742_5468_ad292b crossref_primary_10_1038_s41598_025_13447_9 crossref_primary_10_3233_JIFS_236842 crossref_primary_10_1016_j_media_2025_103690 crossref_primary_10_1186_s12911_022_02047_6 crossref_primary_10_3390_cancers14174342 crossref_primary_10_1038_s41467_021_25493_8 crossref_primary_10_1109_TMI_2022_3214766 crossref_primary_10_1109_TMI_2024_3385650 crossref_primary_10_1007_s11042_022_12968_z crossref_primary_10_1007_s11227_025_06985_6 crossref_primary_10_1016_j_earscirev_2024_104887 crossref_primary_10_3390_diagnostics14020174 crossref_primary_10_3390_math13091419 crossref_primary_10_1016_j_compbiomed_2022_105981 crossref_primary_10_3390_a16070346 crossref_primary_10_1007_s10044_024_01254_3 crossref_primary_10_1016_j_future_2022_12_018 crossref_primary_10_1016_j_eswa_2025_127625 crossref_primary_10_1088_1741_2552_acef92 crossref_primary_10_1109_JBHI_2023_3348436 crossref_primary_10_1093_ejcts_ezac526 crossref_primary_10_1016_j_compbiomed_2024_108238 crossref_primary_10_1109_JBHI_2022_3179265 crossref_primary_10_1016_j_ijinfomgt_2023_102749 crossref_primary_10_1109_TIM_2025_3593607 crossref_primary_10_1007_s00247_025_06223_4 crossref_primary_10_3233_THC_248004 crossref_primary_10_3389_frai_2023_1232640 crossref_primary_10_3390_electronics13101813 crossref_primary_10_1109_ACCESS_2023_3335230 crossref_primary_10_1109_JSAC_2023_3288252 crossref_primary_10_3390_diagnostics13101744 crossref_primary_10_1007_s10140_023_02135_8 crossref_primary_10_1016_j_compbiomed_2025_111052 crossref_primary_10_1016_j_fri_2025_200626 crossref_primary_10_1080_21681163_2023_2280619 crossref_primary_10_3390_jimaging11070210 crossref_primary_10_3390_diagnostics13030417 crossref_primary_10_3390_electronics13224549 crossref_primary_10_1002_ima_22838 crossref_primary_10_1016_j_knosys_2024_112181 crossref_primary_10_1186_s13640_024_00656_x crossref_primary_10_17482_uumfd_1557032 crossref_primary_10_1016_j_compmedimag_2023_102257 crossref_primary_10_1016_j_eswa_2025_126660 crossref_primary_10_1038_s41598_022_07186_4 crossref_primary_10_3103_S1060992X24700863 crossref_primary_10_3390_bioengineering10080924 crossref_primary_10_1016_j_media_2022_102510 crossref_primary_10_1016_j_neuroimage_2024_120646 crossref_primary_10_1016_j_compmedimag_2023_102260 crossref_primary_10_1038_s41746_023_00952_2 crossref_primary_10_1016_j_media_2023_102802 crossref_primary_10_3390_su15075930 crossref_primary_10_1016_j_bspc_2023_105534 crossref_primary_10_2196_57358 crossref_primary_10_1007_s10462_024_11005_9 crossref_primary_10_1016_j_compbiomed_2023_106901 crossref_primary_10_1016_j_media_2024_103198 crossref_primary_10_1007_s00261_025_05094_5 crossref_primary_10_3390_app13127293 crossref_primary_10_1159_000545107 crossref_primary_10_3233_JIFS_232162 crossref_primary_10_1016_j_procs_2023_01_036 crossref_primary_10_3390_bioengineering10040492 crossref_primary_10_1016_j_compbiomed_2024_109597 crossref_primary_10_1002_mp_16430 crossref_primary_10_1016_j_bspc_2022_104430 crossref_primary_10_1007_s11042_023_17187_8 crossref_primary_10_3390_diagnostics14040374 crossref_primary_10_1088_1361_6560_aca069 crossref_primary_10_1111_nmo_14954 crossref_primary_10_1002_nbm_5143 crossref_primary_10_1016_j_bspc_2024_106059 crossref_primary_10_1016_j_heliyon_2024_e41137 crossref_primary_10_4103_tjem_tjem_45_25 crossref_primary_10_3390_jcm14165877 crossref_primary_10_1016_j_eswa_2025_126440 crossref_primary_10_1016_j_compbiomed_2024_108390 crossref_primary_10_1016_j_media_2024_103224 crossref_primary_10_1038_s41551_023_01049_7 crossref_primary_10_1016_j_media_2021_102309 crossref_primary_10_3390_s22208068 crossref_primary_10_1016_j_biotechadv_2025_108667 crossref_primary_10_3390_mi12121473 crossref_primary_10_3390_s22249847 crossref_primary_10_3389_fonc_2023_1265366 crossref_primary_10_1007_s11548_025_03380_7 crossref_primary_10_1017_S0029665125100657 crossref_primary_10_1016_j_neunet_2023_09_008 crossref_primary_10_1016_j_compbiomed_2024_109256 crossref_primary_10_1136_ard_2024_225862 crossref_primary_10_1038_s41598_025_96804_y crossref_primary_10_3390_tomography11070078 crossref_primary_10_1109_JSAC_2021_3126076 crossref_primary_10_3390_bioengineering11050485 crossref_primary_10_1016_j_compeleceng_2023_109011 crossref_primary_10_1016_j_media_2024_103201 crossref_primary_10_1016_j_media_2024_103200 crossref_primary_10_1007_s00415_024_12651_3 crossref_primary_10_61186_shefa_13_2_11 crossref_primary_10_1016_j_jdent_2024_104970 crossref_primary_10_1002_mp_15598 crossref_primary_10_1016_j_bspc_2025_108527 crossref_primary_10_1016_j_media_2025_103739 crossref_primary_10_1016_j_bspc_2025_107676 crossref_primary_10_3390_ijms221910291 crossref_primary_10_3390_jcm12165361 crossref_primary_10_1016_j_media_2025_103730 crossref_primary_10_1016_j_burns_2025_107650 crossref_primary_10_3390_cancers15153773 crossref_primary_10_1038_s41597_022_01388_1 crossref_primary_10_1016_j_mcpdig_2025_100253 crossref_primary_10_3390_diagnostics13030441 crossref_primary_10_1016_j_eswa_2025_127324 crossref_primary_10_1016_j_bios_2025_117251 crossref_primary_10_1109_TMI_2023_3335098 crossref_primary_10_1177_21582440231181390 crossref_primary_10_3390_ijms22157911 crossref_primary_10_3390_s21165486 crossref_primary_10_1016_j_ultrasmedbio_2022_09_010 crossref_primary_10_1186_s12903_025_06293_8 crossref_primary_10_1016_j_knosys_2025_114264 crossref_primary_10_1007_s00521_023_09172_x crossref_primary_10_1186_s12911_024_02591_3 crossref_primary_10_1007_s10278_024_01126_6 crossref_primary_10_1038_s41598_024_78557_2 crossref_primary_10_1007_s10278_024_01202_x crossref_primary_10_1049_cth2_12761 crossref_primary_10_1109_TIP_2023_3293776 crossref_primary_10_1371_journal_pone_0281815 crossref_primary_10_1038_s41598_024_67957_z crossref_primary_10_1016_j_earscirev_2025_105070 crossref_primary_10_3390_bioengineering11100998 crossref_primary_10_1016_j_jbi_2025_104811 crossref_primary_10_3390_biomedicines11123171 crossref_primary_10_1007_s11042_024_18781_0 crossref_primary_10_1088_1674_4527_ad4963 crossref_primary_10_1093_biomethods_bpaf030 crossref_primary_10_1016_j_wasman_2023_12_014 crossref_primary_10_1109_ACCESS_2024_3401465 crossref_primary_10_1016_j_artmed_2025_103074 crossref_primary_10_1002_acm2_70066 crossref_primary_10_3390_diagnostics12102478 crossref_primary_10_7554_eLife_80547 crossref_primary_10_1109_ACCESS_2024_3454188 crossref_primary_10_3390_mi15121463 crossref_primary_10_1016_j_mlwa_2025_100635 crossref_primary_10_3390_photonics9030176 crossref_primary_10_3390_cancers16213702 crossref_primary_10_1016_j_compbiomed_2022_105596 crossref_primary_10_3390_s22228701 crossref_primary_10_3389_fmed_2024_1394262 crossref_primary_10_3389_fonc_2025_1647701 crossref_primary_10_1016_j_knosys_2025_114277 crossref_primary_10_3389_fphar_2023_1084155 crossref_primary_10_1109_TRPMS_2024_3381849 crossref_primary_10_1016_j_bspc_2023_105081 crossref_primary_10_1155_2023_7714483 crossref_primary_10_1038_s41586_025_09079_8 crossref_primary_10_26599_BDMA_2024_9020090 crossref_primary_10_1007_s42979_021_00720_7 crossref_primary_10_1002_hed_27999 crossref_primary_10_1016_j_bspc_2025_107819 crossref_primary_10_1016_j_rpth_2024_102602 crossref_primary_10_1007_s11042_022_13663_9 crossref_primary_10_1016_j_clinimag_2025_110543 crossref_primary_10_1109_JIOT_2024_3395364 crossref_primary_10_3390_s24061981 crossref_primary_10_1007_s00259_024_06737_3 crossref_primary_10_1002_mp_15854 crossref_primary_10_1002_gch2_202300163 crossref_primary_10_1007_s00530_025_01862_x crossref_primary_10_1016_j_engappai_2025_110636 crossref_primary_10_3390_s22030813 crossref_primary_10_1007_s00371_025_04029_x crossref_primary_10_1109_JBHI_2023_3288830 crossref_primary_10_1016_j_ultras_2023_107093 crossref_primary_10_1038_s41598_022_26328_2 crossref_primary_10_1016_j_jormas_2024_101946 crossref_primary_10_2174_0115733947304178240804182938 crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_3390_technologies13080329 crossref_primary_10_1109_ACCESS_2021_3086530 crossref_primary_10_1038_s41598_023_29490_3 crossref_primary_10_1109_MSP_2023_3242833 crossref_primary_10_1115_1_4068498 crossref_primary_10_1038_s41746_025_01641_y crossref_primary_10_1002_jbmr_4916 crossref_primary_10_1097_MS9_0000000000002271 crossref_primary_10_1016_j_compbiomed_2022_106496 crossref_primary_10_1016_j_compbiomed_2023_107861 crossref_primary_10_3390_jcm12124043 crossref_primary_10_3389_finsc_2023_1016277 crossref_primary_10_1016_j_eswa_2025_129215 crossref_primary_10_1049_ipr2_12742 crossref_primary_10_1007_s11548_021_02363_8 crossref_primary_10_1016_j_imavis_2024_105055 crossref_primary_10_1016_j_neunet_2023_07_005 crossref_primary_10_1109_ACCESS_2022_3225107 crossref_primary_10_3390_math13091382 crossref_primary_10_1007_s11042_024_19694_8 crossref_primary_10_1002_ima_70188 crossref_primary_10_1002_mp_16720 crossref_primary_10_1002_mp_15507 crossref_primary_10_3390_jimaging10080176 crossref_primary_10_1016_j_bspc_2025_107828 crossref_primary_10_1109_JPROC_2022_3166253 crossref_primary_10_7759_cureus_76185 crossref_primary_10_3390_bioengineering9120811 crossref_primary_10_1016_j_compbiomed_2023_107409 crossref_primary_10_46310_tjim_1580929 crossref_primary_10_1111_jerd_13470 crossref_primary_10_1109_JBHI_2023_3307584 crossref_primary_10_1016_j_compbiomed_2025_110307 crossref_primary_10_1038_s41746_024_01339_7 crossref_primary_10_1007_s00500_025_10854_y crossref_primary_10_1016_j_neunet_2024_106460 crossref_primary_10_1016_j_nbd_2025_106877 crossref_primary_10_1021_acsnano_5c06795 crossref_primary_10_1016_j_patrec_2023_07_014 crossref_primary_10_1088_1361_6560_ad04aa crossref_primary_10_1016_j_jacr_2023_11_011 crossref_primary_10_1016_j_neucom_2024_128630 crossref_primary_10_7717_peerj_cs_1065 crossref_primary_10_1111_jdv_18460 crossref_primary_10_1016_j_compbiomed_2025_110640 crossref_primary_10_31020_mutftd_1571307 crossref_primary_10_3389_fonc_2025_1616816 crossref_primary_10_3390_diagnostics15182336 crossref_primary_10_3390_s22062125 crossref_primary_10_2478_amns_2024_3330 crossref_primary_10_1016_j_asoc_2023_110014 crossref_primary_10_1111_coin_70000 crossref_primary_10_3389_fmed_2023_1241570 crossref_primary_10_3390_app122111111 crossref_primary_10_1109_TCSVT_2021_3112551 crossref_primary_10_1109_RBME_2024_3408456 crossref_primary_10_3390_app15179345 crossref_primary_10_1109_ACCESS_2025_3531396 crossref_primary_10_3390_s22114061 crossref_primary_10_1093_pnasnexus_pgae048 crossref_primary_10_3390_app112210982 crossref_primary_10_1007_s42979_024_03166_9 crossref_primary_10_1109_ACCESS_2024_3506164 crossref_primary_10_7717_peerj_cs_1045 crossref_primary_10_1016_j_ijrobp_2023_05_034 crossref_primary_10_3390_diagnostics13193140 crossref_primary_10_7759_cureus_59507 crossref_primary_10_3390_mi13081364 crossref_primary_10_3390_electronics10182208 crossref_primary_10_3390_diagnostics13010076 crossref_primary_10_1038_s41698_025_00979_6 crossref_primary_10_1038_s43856_025_00886_8 crossref_primary_10_1007_s10140_024_02306_1 crossref_primary_10_1007_s13246_024_01466_1 crossref_primary_10_1148_ryai_2021210014 crossref_primary_10_1007_s13721_024_00491_0 crossref_primary_10_1002_ima_23109 crossref_primary_10_1016_j_irbm_2022_05_001 crossref_primary_10_1016_j_compbiomed_2024_108709 crossref_primary_10_1007_s10586_025_05344_7 crossref_primary_10_1016_j_compbiomed_2023_107567 crossref_primary_10_1109_TGRS_2023_3336357 crossref_primary_10_1007_s00330_025_11559_4 crossref_primary_10_1016_j_ebiom_2025_105663 crossref_primary_10_1007_s10489_025_06591_2 crossref_primary_10_1109_TIM_2023_3293887 crossref_primary_10_3390_jimaging9090167 crossref_primary_10_1109_ACCESS_2024_3360930 crossref_primary_10_1109_JBHI_2024_3367756 crossref_primary_10_1016_j_wneu_2024_05_153 crossref_primary_10_1093_iwc_iwae061 crossref_primary_10_1016_j_jdent_2022_104076 crossref_primary_10_1186_s13244_023_01564_w crossref_primary_10_3390_aerospace11120976 crossref_primary_10_1016_j_metrad_2025_100172 crossref_primary_10_3390_bdcc6040117 crossref_primary_10_1007_s10278_022_00600_3 crossref_primary_10_1109_ACCESS_2024_3441469 crossref_primary_10_1038_s41467_023_38021_7 crossref_primary_10_1016_j_jdent_2025_105668 crossref_primary_10_1016_j_engappai_2022_105703 crossref_primary_10_1097_j_jcrs_0000000000001538 crossref_primary_10_1371_journal_pone_0285414 crossref_primary_10_1016_j_resconrec_2022_106813 crossref_primary_10_3390_ijerph182111086 crossref_primary_10_1016_j_ins_2024_121622 crossref_primary_10_1038_s41598_024_63001_2 crossref_primary_10_3389_fmed_2025_1589587 crossref_primary_10_1093_humrep_deae064 crossref_primary_10_1186_s12911_024_02653_6 crossref_primary_10_1007_s10278_023_00882_1 crossref_primary_10_1109_ACCESS_2024_3442569 crossref_primary_10_1016_j_bspc_2023_105343 crossref_primary_10_1117_1_JMI_11_3_036002 crossref_primary_10_1007_s10462_023_10588_z crossref_primary_10_1016_j_media_2023_102798 crossref_primary_10_1016_j_clinimag_2022_11_003 crossref_primary_10_2463_mrms_mp_2025_0064 crossref_primary_10_1186_s12883_024_04010_6 crossref_primary_10_1016_j_cll_2022_09_004 crossref_primary_10_1109_TRPMS_2024_3430298 crossref_primary_10_1016_j_bioactmat_2024_11_021 crossref_primary_10_7759_cureus_78217 crossref_primary_10_1016_j_bspc_2024_105995 crossref_primary_10_1016_j_jvcir_2023_103956 crossref_primary_10_1016_j_compbiomed_2022_106089 crossref_primary_10_1016_j_imu_2023_101234 crossref_primary_10_1007_s41666_024_00163_8 crossref_primary_10_1109_ACCESS_2024_3524732 crossref_primary_10_1038_s41598_024_80938_6 crossref_primary_10_1016_j_heliyon_2023_e21965 crossref_primary_10_1111_1754_9485_13276 crossref_primary_10_1007_s00371_022_02630_y crossref_primary_10_3390_particles8010033 crossref_primary_10_1002_jbio_202500044 crossref_primary_10_1109_TII_2022_3144016 crossref_primary_10_3390_jimaging10080191 crossref_primary_10_1016_j_compbiomed_2024_108628 crossref_primary_10_1016_j_cmpb_2022_106651 crossref_primary_10_1016_j_jacr_2023_03_026 crossref_primary_10_3390_s25020531 crossref_primary_10_1016_j_dental_2024_05_022 crossref_primary_10_1109_ACCESS_2025_3590291 crossref_primary_10_1007_s11831_022_09720_z crossref_primary_10_1016_j_neucom_2024_127497 crossref_primary_10_3390_bioengineering12080818 crossref_primary_10_1049_ipr2_12923 crossref_primary_10_3390_math10193571 crossref_primary_10_3390_s23167289 crossref_primary_10_1109_ACCESS_2025_3569213 crossref_primary_10_1117_1_JMI_11_4_044001 crossref_primary_10_1016_j_neunet_2024_106973 crossref_primary_10_1002_mp_16188 crossref_primary_10_1139_facets_2024_0229 crossref_primary_10_1177_02841851241305736 crossref_primary_10_3390_biology11070982 crossref_primary_10_1007_s10439_024_03483_3 crossref_primary_10_1016_j_neucom_2024_128478 crossref_primary_10_1016_j_ejmp_2024_103381 crossref_primary_10_3390_su132011249 crossref_primary_10_1007_s10140_023_02121_0 crossref_primary_10_1007_s44163_025_00434_2 crossref_primary_10_1177_14604582241307839 crossref_primary_10_1109_ACCESS_2024_3453661 crossref_primary_10_1186_s12931_024_02913_z crossref_primary_10_61650_dpjpm_v2i3_109 crossref_primary_10_1016_j_compbiomed_2024_108760 crossref_primary_10_1016_j_slast_2024_100192 crossref_primary_10_1016_j_heliyon_2024_e28538 crossref_primary_10_1038_s41598_024_63144_2 crossref_primary_10_1155_2022_7285600 crossref_primary_10_1148_radiol_232471 crossref_primary_10_1093_mnras_stad2785 crossref_primary_10_1109_ACCESS_2023_3315831 crossref_primary_10_1016_j_engappai_2023_106276 crossref_primary_10_1109_ACCESS_2022_3143033 crossref_primary_10_1145_3623404 crossref_primary_10_3389_fncom_2024_1452457 crossref_primary_10_1145_3768158 crossref_primary_10_1007_s11042_024_19881_7 crossref_primary_10_1016_j_arthro_2024_12_024 crossref_primary_10_1109_OJVT_2025_3595200 crossref_primary_10_2106_JBJS_21_01229 crossref_primary_10_1016_j_inffus_2025_102964 crossref_primary_10_1371_journal_pone_0310304 crossref_primary_10_1186_s12911_021_01588_6 crossref_primary_10_2147_AMEP_S534099 crossref_primary_10_1097_MNM_0000000000001786 crossref_primary_10_1109_TMI_2022_3187170 crossref_primary_10_1016_j_imu_2023_101273 crossref_primary_10_1016_j_mex_2025_103606 crossref_primary_10_3390_app132111820 crossref_primary_10_1016_j_media_2023_102762 crossref_primary_10_1016_j_media_2023_102884 crossref_primary_10_1007_s10140_023_02120_1 crossref_primary_10_1007_s12530_024_09648_8 crossref_primary_10_1007_s10278_025_01600_9 crossref_primary_10_1038_s41571_024_00887_x |
| Cites_doi | 10.1016/j.nicl.2018.08.019 10.1007/978-3-030-20351-1_34 10.1007/978-3-030-32254-0_54 10.1109/TMI.2016.2521800 10.1148/ryct.2020190032 10.1038/s41591-018-0177-5 10.1016/j.media.2019.01.010 10.1007/s00261-017-1294-1 10.1109/CVPR.2017.369 10.1016/j.radonc.2018.10.019 10.1371/journal.pcbi.1006376 10.1148/rg.316105207 10.1148/rg.341135036 10.1007/978-3-030-35817-4_8 10.1109/ISBI.2017.7950500 10.1007/978-3-030-00931-1_24 10.1016/j.celrep.2018.03.086 10.1016/j.media.2017.07.005 10.1007/978-3-030-59719-1_41 10.1016/j.media.2019.101552 10.1016/j.media.2017.10.005 10.1109/TMI.2018.2866845 10.1109/TMI.2020.2995108 10.1007/978-3-030-32245-8_29 10.1109/3DV.2016.79 10.1016/j.media.2018.10.005 10.1177/0846537120949974 10.1109/TMI.2019.2943841 10.1016/j.bpsc.2019.11.007 10.1007/978-3-030-00934-2_79 10.1007/978-3-030-32245-8_14 10.1109/ACCESS.2017.2788044 10.1093/brain/awaa160 10.1016/j.media.2019.02.009 10.1016/j.ebiom.2019.08.023 10.1007/978-3-319-68127-6_2 10.1001/jama.2016.17216 10.1007/978-3-030-00946-5_16 10.1109/ACCESS.2019.2899635 10.1109/3DV.2019.00035 10.1016/j.media.2019.03.009 10.1016/j.media.2019.04.002 10.1007/s10278-019-00207-1 10.1007/978-3-319-66179-7_58 10.1038/srep46450 10.1109/TMI.2018.2858202 10.1038/s41598-020-62148-y 10.1016/j.media.2020.101800 10.1038/s41591-019-0508-1 10.1148/radiol.2018180940 10.1109/RBME.2020.2987975 10.1016/j.media.2013.10.012 10.1016/j.neuroimage.2017.07.059 10.1002/mp.13764 10.1109/ICCV.2017.81 10.1109/TMI.2015.2458702 10.4103/2153-3539.186902 10.1038/s41591-019-0583-3 10.18653/v1/P18-1240 10.1016/j.media.2020.101765 10.1016/j.media.2020.101715 10.1186/s12968-018-0471-x 10.1117/1.JMI.5.4.044501 10.1016/j.media.2020.101724 10.1109/TMI.2017.2743464 10.1109/TMI.2019.2933425 10.1016/j.media.2014.01.010 10.1007/978-3-030-59713-9_5 10.1109/JPROC.2019.2943836 10.24963/ijcai.2018/96 10.1016/S1470-2045(19)30739-9 10.1109/ISBI.2015.7163871 10.1371/journal.pone.0196828 10.1007/978-3-030-59725-2_45 10.3389/fcvm.2020.00017 10.1109/TMI.2020.2986242 10.1007/978-3-030-32226-7_31 10.1016/j.media.2019.04.007 10.1109/CVPR.2017.502 10.1016/j.acra.2018.07.006 10.1016/j.media.2019.101535 10.1109/TCI.2020.2964229 10.1007/978-3-030-59719-1_21 10.1016/j.neuroimage.2017.04.039 10.1016/j.neuroimage.2018.08.003 10.1016/S2589-7500(20)30025-X 10.1007/978-3-030-59719-1_56 10.1016/0090-4295(85)90280-8 10.1109/TMI.2019.2897538 10.1007/978-3-030-32245-8_6 10.1007/978-3-319-24553-9_83 10.1109/TMI.2019.2905990 10.1001/jama.2017.14585 10.1109/CVPR.2015.7298594 10.1016/j.neuroimage.2016.01.024 10.1117/1.JMI.5.3.036501 10.1146/annurev-bioeng-071516-044442 10.1109/TMI.2015.2482920 10.1088/2057-1976/aad100 10.1016/S0168-8278(20)31254-X 10.1007/978-3-030-20351-1_19 10.1002/mp.12399 10.1038/s41467-019-13163-9 10.1109/CVPR.2019.01076 10.1016/j.media.2019.101557 10.1007/978-3-030-00928-1_12 10.1007/978-3-319-66185-8_29 10.1148/radiol.2020201473 10.1016/j.jacr.2019.05.034 10.1038/srep46479 10.1109/TMI.2019.2948320 10.3389/fcvm.2019.00195 10.1007/978-3-030-00937-3_43 10.1016/j.media.2018.01.006 10.1016/j.media.2017.12.009 10.1609/aaai.v33i01.3301590 10.1109/CVPR.2016.90 10.1007/s00330-020-06672-5 10.1109/CVPR.2018.00745 10.1016/j.media.2019.04.014 10.1016/j.media.2019.101619 10.1007/s00138-020-01060-x 10.1016/j.crad.2014.09.017 10.1016/j.neucom.2018.09.013 10.1038/s41746-019-0104-2 10.1109/EMBC.2019.8857465 10.1016/j.media.2020.101693 10.1002/jmri.26907 10.1016/j.neuroimage.2017.04.041 10.1109/CVPR.2018.00963 10.1007/978-3-030-32226-7_75 10.1038/s41598-020-61055-6 10.1007/978-3-030-00937-3_67 10.1016/j.neuroimage.2017.07.008 10.1007/s10278-019-00227-x 10.1109/TMI.2016.2553401 10.1016/j.media.2016.05.004 10.1148/ryai.2020190102 10.1016/j.media.2020.101746 10.1109/TMI.2020.2994459 10.1109/CVPR.2017.243 10.1109/CVPR.2010.5540016 10.1016/S1076-6332(03)00671-8 10.1093/jnci/djx137 10.1016/j.compmedimag.2018.03.001 10.1016/j.neuroimage.2017.03.057 10.1158/1078-0432.CCR-18-2013 10.1001/jamanetworkopen.2019.14645 10.1148/radiol.2020201874 10.1007/978-3-030-32251-9_72 10.1007/978-3-319-59050-9_47 10.1109/ISBI.2018.8363679 10.1016/j.media.2019.06.001 10.1148/rg.2018170173 10.1038/srep32706 10.1007/s00432-019-03098-5 10.1038/s41591-019-0447-x 10.1016/j.media.2016.10.004 10.1016/S1470-2045(19)30793-4 10.1038/s42256-019-0019-2 10.1007/978-3-030-00934-2_94 10.1117/1.JMI.6.2.024007 10.1016/S0140-6736(19)32998-8 10.1038/s41591-019-0462-y 10.1109/TPAMI.2016.2572683 10.1007/978-3-030-00934-2_52 10.1109/ISBI.2019.8759212 10.1007/978-3-030-32251-9_42 10.1016/j.acra.2012.05.013 10.1016/j.neuroimage.2020.116819 10.1186/s40708-018-0080-3 10.1145/3298981 10.1109/ISBI.2018.8363518 10.1007/978-3-030-32692-0_16 10.1002/cyto.a.23065 10.1109/TMI.2016.2528162 10.1073/pnas.1900654116 10.1016/j.neuroimage.2019.03.041 10.1016/j.compmedimag.2019.101684 10.1016/j.mri.2019.05.041 10.1109/JPROC.2019.2956422 10.1038/nature14539 10.1016/j.neuroimage.2017.02.035 10.1088/978-0-7503-2216-4 10.1007/s10278-018-0150-3 10.1016/j.ebiom.2018.03.017 10.1088/1361-6560/ab843e 10.1038/s41571-019-0252-y 10.1016/S1470-2045(19)30738-7 10.1007/978-3-030-05831-9_16 10.1007/978-3-030-00934-2_53 10.1016/j.neuroimage.2012.01.021 10.1007/978-3-030-00937-3_71 10.1007/978-3-319-46723-8_55 10.1148/radiol.10092437 10.3109/15412550903499522 10.1109/CVPR.2018.00716 10.1148/radiol.2019190512 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SP 8FD L7M 7X8 5PM |
| DOI | 10.1109/JPROC.2021.3054390 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef PubMed Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2256 |
| EndPage | 838 |
| ExternalDocumentID | PMC10544772 37786449 10_1109_JPROC_2021_3054390 9363915 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: 1U24CA199374-01; R01CA202752-01A1; R01CA208236-01A1; R01CA216579-01A1; R01CA220581-01A1; 1U01CA239055-01; 1U54CA254566-01; 1U01CA248226-01; 1R43EB028736-01 funderid: 10.13039/100000002 – fundername: VA Merit Review grantid: IBX004121A – fundername: Israeli Science Foundation (ISF) funderid: 10.13039/501100003977 – fundername: National Institutes of Health Clinical Center funderid: 10.13039/100000002 – fundername: Biomedical Laboratory Research and Development Service of the United States Department of Veterans Affairs – fundername: Ministry of Science & Technology – fundername: NCI NIH HHS grantid: U01 CA248226 – fundername: NIBIB NIH HHS grantid: R43 EB028736 – fundername: NCI NIH HHS grantid: R01 CA257612 – fundername: NCI NIH HHS grantid: R01 CA268207 – fundername: NCI NIH HHS grantid: U01 CA239055 – fundername: NCI NIH HHS grantid: U01 CA269181 – fundername: NCI NIH HHS grantid: U54 CA254566 – fundername: BLRD VA grantid: I01 BX004121 – fundername: NCI NIH HHS grantid: R01 CA208236 – fundername: NCI NIH HHS grantid: R01 CA216579 |
| GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION NPM RIG 7SP 8FD L7M 7X8 5PM |
| ID | FETCH-LOGICAL-c407t-76018980b7ed637f4abde7bcbe21ee48d11b8a59432d48f63a85ebcb7c3650dc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 562 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645896700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9219 |
| IngestDate | Thu Aug 21 18:36:11 EDT 2025 Thu Sep 04 17:55:29 EDT 2025 Fri Jul 25 07:12:32 EDT 2025 Mon Jul 21 05:53:50 EDT 2025 Sat Nov 29 06:01:43 EST 2025 Tue Nov 18 22:30:41 EST 2025 Wed Aug 27 02:29:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | deep learning survey Medical imaging |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-76018980b7ed637f4abde7bcbe21ee48d11b8a59432d48f63a85ebcb7c3650dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5741-0399 0000-0002-6553-0876 0000-0002-5167-9856 0000-0002-5683-5889 0000-0002-6881-4444 0000-0001-8081-7376 |
| PMID | 37786449 |
| PQID | 2519972033 |
| PQPubID | 85453 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1109_JPROC_2021_3054390 proquest_miscellaneous_2872181568 ieee_primary_9363915 crossref_primary_10_1109_JPROC_2021_3054390 pubmed_primary_37786449 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10544772 proquest_journals_2519972033 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Proceedings of the IEEE |
| PublicationTitleAbbrev | JPROC |
| PublicationTitleAlternate | Proc IEEE Inst Electr Electron Eng |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 ref208 ref59 ref205 ref58 ref206 ref53 ref203 ref204 ref55 ref202 ref209 ref210 ref211 ref51 beutel (ref8) 2000; 2 isensee (ref119) 2019 ref218 ref45 ref219 ref216 ref47 ref217 ref42 ref214 bustos (ref110) 2019 tamada (ref147) 2018 ref41 ref215 oktay (ref49) 2018 ref212 ref213 ref7 ref4 ref3 bagdasaryan (ref83) 2020 ref5 ref100 ref221 ref222 ref40 ref220 campello (ref174) 2020 beutel (ref1) 2000; 1 ref35 ref34 ref37 ref36 ref31 ref30 johnson (ref109) 2019 ref23 ref26 ref25 ref20 ref22 liu (ref139) 2014 xu (ref152) 2017 li (ref133) 2017 howard (ref52) 2017 ref28 ref27 ref29 roth (ref201) 2015 börgers (ref6) 2012; 110 ref200 (ref32) 2013 roth (ref194) 2015 yang (ref155) 2020 ref128 ref129 ref97 ref126 ref247 ref96 ref127 ref99 ref124 ref245 ref98 ref125 ref246 lee (ref43) 2015 yao (ref235) 2020 simpson (ref185) 2019 ref93 ref92 ref134 ref95 ref131 ref132 ref91 ref90 ref89 vu tran (ref164) 2016 ref86 ref137 ref85 ref138 tang (ref190) 2020 ref88 ref135 ref87 ref136 araújo (ref101) 2020; 63 ref144 kone?ný (ref81) 2016 ref145 goodfellow (ref44) 2014 ref142 ref143 ref141 ref80 gozes (ref241) 2020 ref79 ref229 ref108 ref78 ref227 ref106 ref228 ref107 ref75 ref225 ref104 ref74 ref226 ref105 ref77 ref223 ref102 ref76 ref224 ref103 prince (ref9) 2006 ref71 ref232 ref70 ref233 ref112 ref73 ref230 ref72 ref231 ref67 ref238 ref69 ref239 ref118 ref64 ref236 (ref111) 2019 ref115 ref63 ref237 ref116 ref66 ref234 ref113 ref65 ref114 isensee (ref166) 2017 ref243 ref122 ref244 ref123 ref62 ref120 ref61 ref242 ref121 ref240 zhou (ref11) 2019 ref168 ref169 ref170 ref177 ref178 ref175 gal (ref94) 2016 ref176 ref171 ref172 ref179 krizhevsky (ref33) 2012 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref182 ref183 ref148 ref149 ref146 simonyan (ref39) 2014 zhang (ref48) 2019 sheller (ref84) 2018 ref156 yang (ref173) 2019 ref153 ref154 ref151 ref150 ref159 ref157 ref158 lu (ref140) 2018; 8 lecun (ref21) 2015; 521 ref165 ref162 ref163 ref160 ref161 elsken (ref50) 2018 ref13 ref12 ref15 ref14 ref17 raghu (ref54) 2019 ref16 ref19 ref18 xu (ref46) 2015 wolterink (ref167) 2017 shi (ref68) 2020 murphy (ref117) 2020; 296 zhou (ref24) 2017 ref2 bakas (ref130) 2018 ref191 ref192 chen (ref56) 2019 huang (ref60) 2019 ref199 ref197 ref198 ref195 ref196 ref193 bankman (ref10) 2008 zhao (ref82) 2018 ronneberger (ref38) 2015 |
| References_xml | – ident: ref245 doi: 10.1016/j.nicl.2018.08.019 – ident: ref180 doi: 10.1007/978-3-030-20351-1_34 – ident: ref90 doi: 10.1007/978-3-030-32254-0_54 – ident: ref134 doi: 10.1109/TMI.2016.2521800 – ident: ref176 doi: 10.1148/ryct.2020190032 – ident: ref219 doi: 10.1038/s41591-018-0177-5 – ident: ref69 doi: 10.1016/j.media.2019.01.010 – ident: ref206 doi: 10.1007/s00261-017-1294-1 – ident: ref65 doi: 10.1109/CVPR.2017.369 – ident: ref208 doi: 10.1016/j.radonc.2018.10.019 – ident: ref145 doi: 10.1371/journal.pcbi.1006376 – ident: ref4 doi: 10.1148/rg.316105207 – year: 2020 ident: ref155 article-title: Smile-GANs: Semi-supervised clustering via GANs for dissecting brain disease heterogeneity from medical images publication-title: arXiv 2006 15255 – ident: ref2 doi: 10.1148/rg.341135036 – ident: ref184 doi: 10.1007/978-3-030-35817-4_8 – ident: ref149 doi: 10.1109/ISBI.2017.7950500 – ident: ref91 doi: 10.1007/978-3-030-00931-1_24 – ident: ref233 doi: 10.1016/j.celrep.2018.03.086 – ident: ref23 doi: 10.1016/j.media.2017.07.005 – ident: ref211 doi: 10.1007/978-3-030-59719-1_41 – ident: ref27 doi: 10.1016/j.media.2019.101552 – ident: ref142 doi: 10.1016/j.media.2017.10.005 – ident: ref170 doi: 10.1109/TMI.2018.2866845 – ident: ref105 doi: 10.1109/TMI.2020.2995108 – ident: ref74 doi: 10.1007/978-3-030-32245-8_29 – ident: ref120 doi: 10.1109/3DV.2016.79 – ident: ref181 doi: 10.1016/j.media.2018.10.005 – ident: ref7 doi: 10.1177/0846537120949974 – ident: ref197 doi: 10.1109/TMI.2019.2943841 – start-page: 512 year: 2020 ident: ref190 article-title: E2Net: An edge enhanced network for accurate liver and tumor segmentation on CT scans publication-title: Proc Int Conf Med Image Comput Comput Assist Intervent (MICCAI) – year: 2016 ident: ref81 article-title: Federated learning: Strategies for improving communication efficiency publication-title: arXiv 1610 05492 – start-page: 92 year: 2018 ident: ref84 article-title: Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation publication-title: Proc Int MICCAI Brainlesion Workshop – ident: ref246 doi: 10.1016/j.bpsc.2019.11.007 – start-page: 2672 year: 2014 ident: ref44 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref19 doi: 10.1007/978-3-030-00934-2_79 – ident: ref95 doi: 10.1007/978-3-030-32245-8_14 – ident: ref26 doi: 10.1109/ACCESS.2017.2788044 – ident: ref136 doi: 10.1093/brain/awaa160 – start-page: 3347 year: 2019 ident: ref54 article-title: Transfusion: Understanding transfer learning for medical imaging publication-title: Proc Adv Neural Inf Process Syst – ident: ref67 doi: 10.1016/j.media.2019.02.009 – ident: ref143 doi: 10.1016/j.ebiom.2019.08.023 – ident: ref146 doi: 10.1007/978-3-319-68127-6_2 – ident: ref36 doi: 10.1001/jama.2016.17216 – ident: ref78 doi: 10.1007/978-3-030-00946-5_16 – year: 2020 ident: ref241 article-title: Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis publication-title: arXiv 2003 05037 – ident: ref171 doi: 10.1109/ACCESS.2019.2899635 – ident: ref51 doi: 10.1109/3DV.2019.00035 – ident: ref28 doi: 10.1016/j.media.2019.03.009 – ident: ref187 doi: 10.1016/j.media.2019.04.002 – ident: ref209 doi: 10.1007/s10278-019-00207-1 – start-page: 1050 year: 2016 ident: ref94 article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning publication-title: Proc Int Conf Mach Learn – ident: ref45 doi: 10.1007/978-3-319-66179-7_58 – ident: ref216 doi: 10.1038/srep46450 – ident: ref107 doi: 10.1109/TMI.2018.2858202 – ident: ref116 doi: 10.1038/s41598-020-62148-y – ident: ref243 doi: 10.1016/j.media.2020.101800 – ident: ref220 doi: 10.1038/s41591-019-0508-1 – ident: ref151 doi: 10.1148/radiol.2018180940 – ident: ref242 doi: 10.1109/RBME.2020.2987975 – start-page: 2048 year: 2015 ident: ref46 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: Proc Int Conf Mach Learn – ident: ref168 doi: 10.1016/j.media.2013.10.012 – volume: 1 year: 2000 ident: ref1 publication-title: Handbook of Medical Imaging – start-page: 1097 year: 2012 ident: ref33 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref137 doi: 10.1016/j.neuroimage.2017.07.059 – ident: ref17 doi: 10.1002/mp.13764 – ident: ref177 doi: 10.1109/ICCV.2017.81 – ident: ref214 doi: 10.1109/TMI.2015.2458702 – start-page: 291 year: 2019 ident: ref60 article-title: 3D U2-net: A 3D universal U-net for multi-domain medical image segmentation publication-title: Proc Int Conf Med Image Comput Comput Assist Intervent (MICCIAI) – ident: ref215 doi: 10.4103/2153-3539.186902 – start-page: 101 year: 2017 ident: ref167 article-title: Automatic segmentation and disease classification using cardiac cine MR images publication-title: Statistical Atlases and Computational Models of the Heart ACDC and MMWHS Challenges – volume: 8 start-page: 1 year: 2018 ident: ref140 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images publication-title: Sci Rep – ident: ref229 doi: 10.1038/s41591-019-0583-3 – ident: ref20 doi: 10.18653/v1/P18-1240 – year: 2018 ident: ref147 article-title: Motion artifact reduction in abdominal MR imaging using the U-NET network publication-title: Proc ICMRM Sci Meeting KSMRM – ident: ref86 doi: 10.1016/j.media.2020.101765 – volume: 63 year: 2020 ident: ref101 article-title: DR|GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images publication-title: Med Image Anal doi: 10.1016/j.media.2020.101715 – ident: ref165 doi: 10.1186/s12968-018-0471-x – ident: ref191 doi: 10.1117/1.JMI.5.4.044501 – ident: ref100 doi: 10.1016/j.media.2020.101724 – ident: ref169 doi: 10.1109/TMI.2017.2743464 – ident: ref72 doi: 10.1109/TMI.2019.2933425 – year: 2015 ident: ref201 article-title: CT lymph nodes publication-title: The Cancer Imaging Archive – ident: ref66 doi: 10.1016/j.media.2014.01.010 – ident: ref13 doi: 10.1007/978-3-030-59713-9_5 – year: 2018 ident: ref50 article-title: Neural architecture search: A survey publication-title: arXiv 1808 05377 – ident: ref236 doi: 10.1109/JPROC.2019.2943836 – ident: ref59 doi: 10.24963/ijcai.2018/96 – year: 2016 ident: ref164 article-title: A fully convolutional neural network for cardiac segmentation in short-axis MRI publication-title: arXiv 1604 00494 [cs] – ident: ref222 doi: 10.1016/S1470-2045(19)30739-9 – start-page: 2938 year: 2020 ident: ref83 article-title: How to backdoor federated learning publication-title: Proc Int Conf Artif Intell Statist – ident: ref34 doi: 10.1109/ISBI.2015.7163871 – ident: ref217 doi: 10.1371/journal.pone.0196828 – ident: ref175 doi: 10.1007/978-3-030-59725-2_45 – ident: ref159 doi: 10.3389/fcvm.2020.00017 – ident: ref77 doi: 10.1109/TMI.2020.2986242 – ident: ref76 doi: 10.1007/978-3-030-32226-7_31 – ident: ref162 doi: 10.1016/j.media.2019.04.007 – ident: ref115 doi: 10.1109/CVPR.2017.502 – year: 2019 ident: ref56 article-title: Med3D: Transfer learning for 3D medical image analysis publication-title: arXiv 1904 00625 – ident: ref237 doi: 10.1016/j.acra.2018.07.006 – year: 2014 ident: ref39 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref75 doi: 10.1016/j.media.2019.101535 – ident: ref150 doi: 10.1109/TCI.2020.2964229 – ident: ref203 doi: 10.1007/978-3-030-59719-1_21 – year: 2015 ident: ref194 article-title: Data from pancreas-CT publication-title: The Cancer Imaging Archive – ident: ref124 doi: 10.1016/j.neuroimage.2017.04.039 – ident: ref131 doi: 10.1016/j.neuroimage.2018.08.003 – ident: ref212 doi: 10.1016/S2589-7500(20)30025-X – start-page: 562 year: 2015 ident: ref43 article-title: Deeply-supervised nets publication-title: Proc Artif Intell Statist – ident: ref200 doi: 10.1007/978-3-030-59719-1_56 – ident: ref221 doi: 10.1016/0090-4295(85)90280-8 – year: 2019 ident: ref11 publication-title: Med Image Comput Comput Assist Interv – year: 2020 ident: ref68 article-title: Marginal loss and exclusion loss for partially supervised multi-organ segmentation publication-title: arXiv 2007 03868 – ident: ref132 doi: 10.1109/TMI.2019.2897538 – ident: ref97 doi: 10.1007/978-3-030-32245-8_6 – ident: ref157 doi: 10.1007/978-3-319-24553-9_83 – ident: ref183 doi: 10.1109/TMI.2019.2905990 – ident: ref218 doi: 10.1001/jama.2017.14585 – ident: ref40 doi: 10.1109/CVPR.2015.7298594 – ident: ref123 doi: 10.1016/j.neuroimage.2016.01.024 – ident: ref186 doi: 10.1117/1.JMI.5.3.036501 – ident: ref25 doi: 10.1146/annurev-bioeng-071516-044442 – ident: ref199 doi: 10.1109/TMI.2015.2482920 – ident: ref210 doi: 10.1088/2057-1976/aad100 – ident: ref230 doi: 10.1016/S0168-8278(20)31254-X – ident: ref70 doi: 10.1007/978-3-030-20351-1_19 – ident: ref204 doi: 10.1002/mp.12399 – ident: ref138 doi: 10.1038/s41467-019-13163-9 – volume: 2 year: 2000 ident: ref8 publication-title: Handbook of Medical Imaging Medical Image Processing and Analysis – ident: ref79 doi: 10.1109/CVPR.2019.01076 – ident: ref98 doi: 10.1016/j.media.2019.101557 – ident: ref158 doi: 10.1007/978-3-030-00928-1_12 – ident: ref63 doi: 10.1007/978-3-319-66185-8_29 – ident: ref118 doi: 10.1148/radiol.2020201473 – ident: ref196 doi: 10.1016/j.jacr.2019.05.034 – ident: ref113 doi: 10.1038/srep46479 – ident: ref188 doi: 10.1109/TMI.2019.2948320 – ident: ref161 doi: 10.3389/fcvm.2019.00195 – ident: ref64 doi: 10.1007/978-3-030-00937-3_43 – ident: ref193 doi: 10.1016/j.media.2018.01.006 – ident: ref93 doi: 10.1016/j.media.2017.12.009 – year: 2008 ident: ref10 publication-title: Handbook of Medical Image Processing and Analysis – year: 2017 ident: ref152 article-title: 200x low-dose PET reconstruction using deep learning publication-title: arXiv 1712 04119 – ident: ref108 doi: 10.1609/aaai.v33i01.3301590 – ident: ref41 doi: 10.1109/CVPR.2016.90 – year: 2019 ident: ref173 article-title: Left ventricle full quantification challenge publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref5 doi: 10.1007/s00330-020-06672-5 – ident: ref47 doi: 10.1109/CVPR.2018.00745 – ident: ref96 doi: 10.1016/j.media.2019.04.014 – year: 2017 ident: ref24 publication-title: Deep learning for medical image analysis – ident: ref92 doi: 10.1016/j.media.2019.101619 – ident: ref31 doi: 10.1007/s00138-020-01060-x – ident: ref239 doi: 10.1016/j.crad.2014.09.017 – ident: ref37 doi: 10.1016/j.neucom.2018.09.013 – ident: ref207 doi: 10.1038/s41746-019-0104-2 – year: 2019 ident: ref109 article-title: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs publication-title: arXiv 1901 07042 – ident: ref73 doi: 10.1109/EMBC.2019.8857465 – ident: ref15 doi: 10.1016/j.media.2020.101693 – ident: ref247 doi: 10.1002/jmri.26907 – year: 2020 ident: ref174 article-title: Multi-centre, multi-vendor & multi-disease cardiac image segmentation challenge (M&MS) publication-title: Proc Med Image Comput Comput Assist Intervent (MICCAI) – ident: ref125 doi: 10.1016/j.neuroimage.2017.04.041 – ident: ref58 doi: 10.1109/CVPR.2018.00963 – ident: ref99 doi: 10.1007/978-3-030-32226-7_75 – ident: ref205 doi: 10.1038/s41598-020-61055-6 – ident: ref179 doi: 10.1007/978-3-030-00937-3_67 – year: 2017 ident: ref133 article-title: Non-rigid image registration using fully convolutional networks with deep self-supervision publication-title: arXiv 1709 00799 – ident: ref135 doi: 10.1016/j.neuroimage.2017.07.008 – ident: ref29 doi: 10.1007/s10278-019-00227-x – ident: ref22 doi: 10.1109/TMI.2016.2553401 – ident: ref128 doi: 10.1016/j.media.2016.05.004 – ident: ref198 doi: 10.1148/ryai.2020190102 – ident: ref62 doi: 10.1016/j.media.2020.101746 – start-page: 1015 year: 2014 ident: ref139 article-title: Early diagnosis of Alzheimer's disease with deep learning publication-title: Proc Int Symp Biomed Imag (ISBI) – ident: ref103 doi: 10.1109/TMI.2020.2994459 – ident: ref42 doi: 10.1109/CVPR.2017.243 – ident: ref18 doi: 10.1109/CVPR.2010.5540016 – ident: ref3 doi: 10.1016/S1076-6332(03)00671-8 – ident: ref232 doi: 10.1093/jnci/djx137 – ident: ref195 doi: 10.1016/j.compmedimag.2018.03.001 – ident: ref244 doi: 10.1016/j.neuroimage.2017.03.057 – ident: ref234 doi: 10.1158/1078-0432.CCR-18-2013 – year: 2020 ident: ref235 article-title: A hierarchical feature constraint to camouflage medical adversarial attacks publication-title: arXiv 2012 09501 – ident: ref231 doi: 10.1001/jamanetworkopen.2019.14645 – start-page: 120 year: 2017 ident: ref166 article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features publication-title: Statistical Atlases and Computational Models of the Heart ACDC and MMWHS Challenges – volume: 296 year: 2020 ident: ref117 article-title: COVID-19 on the chest radiograph: A multi-reader evaluation of an AI system publication-title: Radiology doi: 10.1148/radiol.2020201874 – year: 2019 ident: ref111 publication-title: Lung CT Screening Reporting & Data System v1 1 – start-page: 7354 year: 2019 ident: ref48 article-title: Self-attention generative adversarial networks publication-title: Proc Int Conf Mach Learn – year: 2018 ident: ref49 article-title: Attention U-net: Learning where to look for the pancreas publication-title: arXiv 1804 03999 – ident: ref88 doi: 10.1007/978-3-030-32251-9_72 – year: 2013 ident: ref32 publication-title: MIT Tech Rev 2013 – ident: ref57 doi: 10.1007/978-3-319-59050-9_47 – ident: ref148 doi: 10.1109/ISBI.2018.8363679 – ident: ref160 doi: 10.1016/j.media.2019.06.001 – ident: ref202 doi: 10.1148/rg.2018170173 – year: 2018 ident: ref82 article-title: Federated learning with non-IID data publication-title: arXiv 1806 00582 – ident: ref225 doi: 10.1038/srep32706 – ident: ref112 doi: 10.1007/s00432-019-03098-5 – ident: ref114 doi: 10.1038/s41591-019-0447-x – ident: ref129 doi: 10.1016/j.media.2016.10.004 – ident: ref224 doi: 10.1016/S1470-2045(19)30793-4 – ident: ref178 doi: 10.1038/s42256-019-0019-2 – ident: ref55 doi: 10.1007/978-3-030-00934-2_94 – ident: ref192 doi: 10.1117/1.JMI.6.2.024007 – ident: ref228 doi: 10.1016/S0140-6736(19)32998-8 – ident: ref227 doi: 10.1038/s41591-019-0462-y – ident: ref163 doi: 10.1109/TPAMI.2016.2572683 – ident: ref89 doi: 10.1007/978-3-030-00934-2_52 – ident: ref104 doi: 10.1109/ISBI.2019.8759212 – year: 2019 ident: ref110 article-title: PadChest: A large chest X-ray image dataset with multi-label annotated reports publication-title: arXiv 1901 07441 – ident: ref61 doi: 10.1007/978-3-030-32251-9_42 – ident: ref240 doi: 10.1016/j.acra.2012.05.013 – ident: ref121 doi: 10.1016/j.neuroimage.2020.116819 – ident: ref141 doi: 10.1186/s40708-018-0080-3 – ident: ref80 doi: 10.1145/3298981 – ident: ref102 doi: 10.1109/ISBI.2018.8363518 – ident: ref85 doi: 10.1007/978-3-030-32692-0_16 – ident: ref226 doi: 10.1002/cyto.a.23065 – year: 2019 ident: ref119 article-title: Automated design of deep learning methods for biomedical image segmentation publication-title: arXiv 1904 08128 – ident: ref35 doi: 10.1109/TMI.2016.2528162 – ident: ref87 doi: 10.1073/pnas.1900654116 – ident: ref127 doi: 10.1016/j.neuroimage.2019.03.041 – year: 2017 ident: ref52 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – ident: ref156 doi: 10.1016/j.compmedimag.2019.101684 – ident: ref14 doi: 10.1016/j.mri.2019.05.041 – year: 2018 ident: ref130 article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge publication-title: arXiv 1811 02629 – ident: ref30 doi: 10.1109/JPROC.2019.2956422 – volume: 521 start-page: 436 year: 2015 ident: ref21 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref126 doi: 10.1016/j.neuroimage.2017.02.035 – ident: ref12 doi: 10.1088/978-0-7503-2216-4 – ident: ref153 doi: 10.1007/s10278-018-0150-3 – ident: ref144 doi: 10.1016/j.ebiom.2018.03.017 – ident: ref16 doi: 10.1088/1361-6560/ab843e – volume: 110 year: 2012 ident: ref6 publication-title: Computational Radiology and Imaging Therapy and Diagnostics – year: 2006 ident: ref9 publication-title: Medical Imaging Signals and Systems – ident: ref213 doi: 10.1038/s41571-019-0252-y – ident: ref223 doi: 10.1016/S1470-2045(19)30738-7 – ident: ref154 doi: 10.1007/978-3-030-05831-9_16 – ident: ref71 doi: 10.1007/978-3-030-00934-2_53 – ident: ref122 doi: 10.1016/j.neuroimage.2012.01.021 – ident: ref172 doi: 10.1007/978-3-030-00937-3_71 – ident: ref182 doi: 10.1007/978-3-319-46723-8_55 – start-page: 234 year: 2015 ident: ref38 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput Assist Intervent (MICCAI) – ident: ref238 doi: 10.1148/radiol.10092437 – ident: ref106 doi: 10.3109/15412550903499522 – year: 2019 ident: ref185 article-title: A large annotated medical image dataset for the development and evaluation of segmentation algorithms publication-title: arXiv 1902 09063 – ident: ref53 doi: 10.1109/CVPR.2018.00716 – ident: ref189 doi: 10.1148/radiol.2019190512 |
| SSID | ssj0003563 |
| Score | 2.7412953 |
| Snippet | Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging... Since its renaissance, deep learning (DL) has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 820 |
| SubjectTerms | Annotations Artificial intelligence Biomedical imaging Case studies Clinical diagnosis Computed tomography Computer architecture Deep learning Deep learning (DL) Digital imaging Diseases Image segmentation Literature reviews Medical diagnostic imaging Medical imaging Medical services Network architecture survey Trends |
| Title | A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises |
| URI | https://ieeexplore.ieee.org/document/9363915 https://www.ncbi.nlm.nih.gov/pubmed/37786449 https://www.proquest.com/docview/2519972033 https://www.proquest.com/docview/2872181568 https://pubmed.ncbi.nlm.nih.gov/PMC10544772 |
| Volume | 109 |
| WOSCitedRecordID | wos000645896700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-2256 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003563 issn: 0018-9219 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2iQd44Gt8FMYUJN64bu0lbRLepoMTIDROCMS9VW3jbieN3rTr8U_wT2OnubJDExJvkeJWaW3Hduz8DPCqko2zWSljtErGCtM6LkvaDLOsbMg_Ni5B37Xkkz49NfO5ne3AaLgLg4i--AyPeOhz-W5Zr_mo7NjKnPHMd2FXa93f1Rp2XZmFrmkpKTCp4eaCTGKPP86-fJ5QKDhOj0i6yQInW0bId1W5ycH8u07ymuGZ3vu_Jd-Hu8HBFCe9RDyAHWwfwp1rsIP78OtE9CkBsWzEW8RLEVBWz8SiFSF1Iz788A2M3mwGgszaoluNxJ_TeNFX1I7EhGyhCCWJ4vuiOxczrvuiXVRwIckFnwAQWdk6MfUgJjxPEoarR_Bt-u7r5H0cmjLENcV-Xcw1NMaapNLocqkbVVYOdVVXOE4RlXFpWpkyI86PnTJNLkuTIU3rWpIz6Gr5GPbaZYtPQThy7Gtd6aZKOQrKbK5cKhmQLHFV7sYRpBsuFXVALOfGGReFj1wSW3jOFszZInA2gtfDM5c9Xsc_qfeZZQNl4FYEBxthKIJKrwq-4ms5aS0jeDlM06_iDEvZ4nJNNEazy5TlJoInvewM75aM1KeUjcBsSdVAwEDf2zPt4twDfpMPrBSFQc9uXu5zuM0f1ZdhHsBed7XGF3Cr_tktVleHpCxzc-iV5TfegRG0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQAIe-BofhQFB4o3r1jRpm_A2HZw2OI4TGmJvVdukrNLoTbse_wT_NHaaKzs0IfEWKW6V1k5sx_bPAK9LURudFCK0WopQWl6FRYGHYZIUNdrHykTWdS2ZZrOZOjnR8y0YDbUw1lqXfGb3aOhi-WZRreiqbF-LlPDMr8H1RMqY99Vaw7krEt83jeMWxo24LpGJ9P6H-ZfPY3QGY76H8o06ONpQQ66vylUm5t-ZkpdUz-Tu_y36HtzxJiY76GXiPmzZ9gHcvgQ8uAO_DlgfFGCLmr2z9px5nNXvrGmZD96wox-uhdHb9YChYmu65Yj9uY9nfU7tiI1RGzKflMi-Nd0pm1PmF56jjFJJzugOAMmK1rCJgzGheZQxu3wIXyfvj8eHoW_LEFbo_XUhZdEoraIysyYVWS2L0tisrEobc2ulMpyXqkiQ97GRqk5FoRKL01kl0Bw0lXgE2-2itU-AGTTtq6zM6pKTH5ToVBouCJIsMmVq4gD4mkt55THLqXXGWe58l0jnjrM5cTb3nA3gzfDMeY_Y8U_qHWLZQOm5FcDuWhhyv6mXORX5agpbiwBeDdP4qyjGUrR2sUIalZHRlKQqgMe97AzvFoTVJ6UOQG1I1UBAUN-bM21z6iC_0QqWEh2hp1cv9yXcPDz-NM2nR7OPz-AWfWCflLkL293Fyj6HG9XPrllevHBb5jfBpxQT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+deep+learning+in+medical+imaging%3A+Imaging+traits%2C+technology+trends%2C+case+studies+with+progress+highlights%2C+and+future+promises&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Zhou%2C+S+Kevin&rft.au=Greenspan%2C+Hayit&rft.au=Davatzikos%2C+Christos&rft.au=Duncan%2C+James+S&rft.date=2021-05-01&rft.issn=0018-9219&rft.volume=109&rft.issue=5&rft.spage=820&rft_id=info:doi/10.1109%2FJPROC.2021.3054390&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |