A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises

Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to t...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE Vol. 109; no. 5; pp. 820 - 838
Main Authors: Zhou, S. Kevin, Greenspan, Hayit, Davatzikos, Christos, Duncan, James S., Van Ginneken, Bram, Madabhushi, Anant, Prince, Jerry L., Rueckert, Daniel, Summers, Ronald M.
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9219, 1558-2256
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.
AbstractList Since its renaissance, deep learning (DL) has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high-performance computing. However, medical imaging presents unique challenges that confront DL approaches. In this survey article, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in DL are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, and so on. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.
Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.
Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.
Author Davatzikos, Christos
Madabhushi, Anant
Greenspan, Hayit
Duncan, James S.
Van Ginneken, Bram
Summers, Ronald M.
Zhou, S. Kevin
Prince, Jerry L.
Rueckert, Daniel
Author_xml – sequence: 1
  givenname: S. Kevin
  orcidid: 0000-0002-6881-4444
  surname: Zhou
  fullname: Zhou, S. Kevin
  email: zhoushaohua@ict.ac.cn
  organization: School of Biomedical Engineering, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Hayit
  surname: Greenspan
  fullname: Greenspan, Hayit
  organization: Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
– sequence: 3
  givenname: Christos
  surname: Davatzikos
  fullname: Davatzikos, Christos
  organization: Radiology Department, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: James S.
  orcidid: 0000-0002-5167-9856
  surname: Duncan
  fullname: Duncan, James S.
  organization: Department of Biomedical Engineering, Yale University, New Haven, CT, USA
– sequence: 5
  givenname: Bram
  surname: Van Ginneken
  fullname: Van Ginneken, Bram
  organization: Radboud University Medical Center, Nijmegen, GA, The Netherlands
– sequence: 6
  givenname: Anant
  orcidid: 0000-0002-5741-0399
  surname: Madabhushi
  fullname: Madabhushi, Anant
  organization: Department of Biomedical Engineering, CaseWestern Reserve University, Cleveland, OH, USA
– sequence: 7
  givenname: Jerry L.
  orcidid: 0000-0002-6553-0876
  surname: Prince
  fullname: Prince, Jerry L.
  organization: Electrical and Computer Engineering Department, Johns Hopkins University, Baltimore, MD, USA
– sequence: 8
  givenname: Daniel
  orcidid: 0000-0002-5683-5889
  surname: Rueckert
  fullname: Rueckert, Daniel
  organization: Klinikum rechts der Isar, Technical University of Munich (TU Munich), Munich, Germany
– sequence: 9
  givenname: Ronald M.
  orcidid: 0000-0001-8081-7376
  surname: Summers
  fullname: Summers, Ronald M.
  organization: National Institutes of Health Clinical Center, Bethesda, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37786449$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEUtFARTQt_ACRkiQsHEvyxXttcUBVaWhTUqgRxtLy7LxtXGzvYu636G_jTOCSpoAcOlq33ZkbznucIHfjgAaGXlEwoJfr9l6vry-mEEUYnnIiCa_IEjagQasyYKA_QiBCqxppRfYiOUrohhHBR8mfokEupyqLQI_TrBF_DrYM7HBb4E8Aaz8BG73yLncdfoXG17fDFyra59GH_wPNoXZ_e4TnUSx-60N7nEvgml6Y2Af7WD42DhH-4fomvYmgjpITPXbvs8tkwrW_w2dAPETb9lUuQnqOnC9sleLG7j9H3s9P59Hw8u_x8MT2ZjeuCyH4syzyWVqSS0JRcLgpbNSCrugJGAQrVUFopK3TBWVOoRcmtEpDbsualIE3Nj9HHre56qFbQ1OD7aDuzjm5l470J1pl_O94tTRtuDc1bLqRkWeHtTiGGnwOk3uQBaug66yEMyTAlGVVUlCpD3zyC3oQh-jyfYYJqLRnhPKNe_23pwcv-ozJAbQF1DClFWJja9bZ3YePQddma2WTC_MmE2WTC7DKRqewRda_-X9KrLckBwANB85JrKvhvIADDNQ
CODEN IEEPAD
CitedBy_id crossref_primary_10_1177_09622802231158811
crossref_primary_10_1007_s43154_021_00064_3
crossref_primary_10_3389_fnins_2022_954662
crossref_primary_10_1016_j_engappai_2023_106126
crossref_primary_10_1109_LRA_2023_3251844
crossref_primary_10_1002_jhm_13371
crossref_primary_10_3390_app13063693
crossref_primary_10_1007_s10278_024_01114_w
crossref_primary_10_1016_j_bspc_2025_108359
crossref_primary_10_1109_COMST_2023_3280465
crossref_primary_10_1016_j_pacs_2025_100743
crossref_primary_10_1109_ACCESS_2025_3576875
crossref_primary_10_1016_j_media_2022_102652
crossref_primary_10_1016_j_neunet_2025_107228
crossref_primary_10_1146_annurev_biodatasci_020722_100353
crossref_primary_10_1038_s41598_025_90221_x
crossref_primary_10_1080_15321819_2024_2412528
crossref_primary_10_5662_wjm_v15_i4_105326
crossref_primary_10_1002_ps_8473
crossref_primary_10_1016_j_compmedimag_2024_102341
crossref_primary_10_1016_j_jrras_2024_100965
crossref_primary_10_1007_s00530_025_01725_5
crossref_primary_10_1016_j_media_2023_102824
crossref_primary_10_3389_fdgth_2022_890759
crossref_primary_10_1016_j_heliyon_2024_e26801
crossref_primary_10_1186_s13635_024_00171_6
crossref_primary_10_1007_s11042_023_17326_1
crossref_primary_10_1109_TPAMI_2021_3100536
crossref_primary_10_1109_TPAMI_2023_3299038
crossref_primary_10_1109_JBHI_2023_3344392
crossref_primary_10_1016_j_wneu_2024_10_103
crossref_primary_10_7759_cureus_66970
crossref_primary_10_1055_a_2124_1958
crossref_primary_10_57197_JDR_2024_0080
crossref_primary_10_1109_JBHI_2022_3151741
crossref_primary_10_3389_fdgth_2025_1484231
crossref_primary_10_1002_aisy_202400547
crossref_primary_10_1016_j_csbj_2024_12_019
crossref_primary_10_1007_s40619_025_01678_x
crossref_primary_10_3389_fnins_2023_1181703
crossref_primary_10_1186_s12880_021_00599_z
crossref_primary_10_1007_s00521_024_09660_8
crossref_primary_10_1016_j_compbiomed_2022_105966
crossref_primary_10_1007_s00464_023_09990_z
crossref_primary_10_1016_j_media_2022_102429
crossref_primary_10_1016_j_bspc_2025_108366
crossref_primary_10_32604_cmc_2024_058647
crossref_primary_10_1016_j_compmedimag_2025_102544
crossref_primary_10_1109_TMI_2023_3275592
crossref_primary_10_3233_XST_230196
crossref_primary_10_1016_j_asjsur_2025_03_100
crossref_primary_10_1109_TIP_2025_3568746
crossref_primary_10_3390_diagnostics14192234
crossref_primary_10_1088_1742_5468_ad292b
crossref_primary_10_1038_s41598_025_13447_9
crossref_primary_10_3233_JIFS_236842
crossref_primary_10_1016_j_media_2025_103690
crossref_primary_10_1186_s12911_022_02047_6
crossref_primary_10_3390_cancers14174342
crossref_primary_10_1038_s41467_021_25493_8
crossref_primary_10_1109_TMI_2022_3214766
crossref_primary_10_1109_TMI_2024_3385650
crossref_primary_10_1007_s11042_022_12968_z
crossref_primary_10_1007_s11227_025_06985_6
crossref_primary_10_1016_j_earscirev_2024_104887
crossref_primary_10_3390_diagnostics14020174
crossref_primary_10_3390_math13091419
crossref_primary_10_1016_j_compbiomed_2022_105981
crossref_primary_10_3390_a16070346
crossref_primary_10_1007_s10044_024_01254_3
crossref_primary_10_1016_j_future_2022_12_018
crossref_primary_10_1016_j_eswa_2025_127625
crossref_primary_10_1088_1741_2552_acef92
crossref_primary_10_1109_JBHI_2023_3348436
crossref_primary_10_1093_ejcts_ezac526
crossref_primary_10_1016_j_compbiomed_2024_108238
crossref_primary_10_1109_JBHI_2022_3179265
crossref_primary_10_1016_j_ijinfomgt_2023_102749
crossref_primary_10_1109_TIM_2025_3593607
crossref_primary_10_1007_s00247_025_06223_4
crossref_primary_10_3233_THC_248004
crossref_primary_10_3389_frai_2023_1232640
crossref_primary_10_3390_electronics13101813
crossref_primary_10_1109_ACCESS_2023_3335230
crossref_primary_10_1109_JSAC_2023_3288252
crossref_primary_10_3390_diagnostics13101744
crossref_primary_10_1007_s10140_023_02135_8
crossref_primary_10_1016_j_compbiomed_2025_111052
crossref_primary_10_1016_j_fri_2025_200626
crossref_primary_10_1080_21681163_2023_2280619
crossref_primary_10_3390_jimaging11070210
crossref_primary_10_3390_diagnostics13030417
crossref_primary_10_3390_electronics13224549
crossref_primary_10_1002_ima_22838
crossref_primary_10_1016_j_knosys_2024_112181
crossref_primary_10_1186_s13640_024_00656_x
crossref_primary_10_17482_uumfd_1557032
crossref_primary_10_1016_j_compmedimag_2023_102257
crossref_primary_10_1016_j_eswa_2025_126660
crossref_primary_10_1038_s41598_022_07186_4
crossref_primary_10_3103_S1060992X24700863
crossref_primary_10_3390_bioengineering10080924
crossref_primary_10_1016_j_media_2022_102510
crossref_primary_10_1016_j_neuroimage_2024_120646
crossref_primary_10_1016_j_compmedimag_2023_102260
crossref_primary_10_1038_s41746_023_00952_2
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_3390_su15075930
crossref_primary_10_1016_j_bspc_2023_105534
crossref_primary_10_2196_57358
crossref_primary_10_1007_s10462_024_11005_9
crossref_primary_10_1016_j_compbiomed_2023_106901
crossref_primary_10_1016_j_media_2024_103198
crossref_primary_10_1007_s00261_025_05094_5
crossref_primary_10_3390_app13127293
crossref_primary_10_1159_000545107
crossref_primary_10_3233_JIFS_232162
crossref_primary_10_1016_j_procs_2023_01_036
crossref_primary_10_3390_bioengineering10040492
crossref_primary_10_1016_j_compbiomed_2024_109597
crossref_primary_10_1002_mp_16430
crossref_primary_10_1016_j_bspc_2022_104430
crossref_primary_10_1007_s11042_023_17187_8
crossref_primary_10_3390_diagnostics14040374
crossref_primary_10_1088_1361_6560_aca069
crossref_primary_10_1111_nmo_14954
crossref_primary_10_1002_nbm_5143
crossref_primary_10_1016_j_bspc_2024_106059
crossref_primary_10_1016_j_heliyon_2024_e41137
crossref_primary_10_4103_tjem_tjem_45_25
crossref_primary_10_3390_jcm14165877
crossref_primary_10_1016_j_eswa_2025_126440
crossref_primary_10_1016_j_compbiomed_2024_108390
crossref_primary_10_1016_j_media_2024_103224
crossref_primary_10_1038_s41551_023_01049_7
crossref_primary_10_1016_j_media_2021_102309
crossref_primary_10_3390_s22208068
crossref_primary_10_1016_j_biotechadv_2025_108667
crossref_primary_10_3390_mi12121473
crossref_primary_10_3390_s22249847
crossref_primary_10_3389_fonc_2023_1265366
crossref_primary_10_1007_s11548_025_03380_7
crossref_primary_10_1017_S0029665125100657
crossref_primary_10_1016_j_neunet_2023_09_008
crossref_primary_10_1016_j_compbiomed_2024_109256
crossref_primary_10_1136_ard_2024_225862
crossref_primary_10_1038_s41598_025_96804_y
crossref_primary_10_3390_tomography11070078
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_3390_bioengineering11050485
crossref_primary_10_1016_j_compeleceng_2023_109011
crossref_primary_10_1016_j_media_2024_103201
crossref_primary_10_1016_j_media_2024_103200
crossref_primary_10_1007_s00415_024_12651_3
crossref_primary_10_61186_shefa_13_2_11
crossref_primary_10_1016_j_jdent_2024_104970
crossref_primary_10_1002_mp_15598
crossref_primary_10_1016_j_bspc_2025_108527
crossref_primary_10_1016_j_media_2025_103739
crossref_primary_10_1016_j_bspc_2025_107676
crossref_primary_10_3390_ijms221910291
crossref_primary_10_3390_jcm12165361
crossref_primary_10_1016_j_media_2025_103730
crossref_primary_10_1016_j_burns_2025_107650
crossref_primary_10_3390_cancers15153773
crossref_primary_10_1038_s41597_022_01388_1
crossref_primary_10_1016_j_mcpdig_2025_100253
crossref_primary_10_3390_diagnostics13030441
crossref_primary_10_1016_j_eswa_2025_127324
crossref_primary_10_1016_j_bios_2025_117251
crossref_primary_10_1109_TMI_2023_3335098
crossref_primary_10_1177_21582440231181390
crossref_primary_10_3390_ijms22157911
crossref_primary_10_3390_s21165486
crossref_primary_10_1016_j_ultrasmedbio_2022_09_010
crossref_primary_10_1186_s12903_025_06293_8
crossref_primary_10_1016_j_knosys_2025_114264
crossref_primary_10_1007_s00521_023_09172_x
crossref_primary_10_1186_s12911_024_02591_3
crossref_primary_10_1007_s10278_024_01126_6
crossref_primary_10_1038_s41598_024_78557_2
crossref_primary_10_1007_s10278_024_01202_x
crossref_primary_10_1049_cth2_12761
crossref_primary_10_1109_TIP_2023_3293776
crossref_primary_10_1371_journal_pone_0281815
crossref_primary_10_1038_s41598_024_67957_z
crossref_primary_10_1016_j_earscirev_2025_105070
crossref_primary_10_3390_bioengineering11100998
crossref_primary_10_1016_j_jbi_2025_104811
crossref_primary_10_3390_biomedicines11123171
crossref_primary_10_1007_s11042_024_18781_0
crossref_primary_10_1088_1674_4527_ad4963
crossref_primary_10_1093_biomethods_bpaf030
crossref_primary_10_1016_j_wasman_2023_12_014
crossref_primary_10_1109_ACCESS_2024_3401465
crossref_primary_10_1016_j_artmed_2025_103074
crossref_primary_10_1002_acm2_70066
crossref_primary_10_3390_diagnostics12102478
crossref_primary_10_7554_eLife_80547
crossref_primary_10_1109_ACCESS_2024_3454188
crossref_primary_10_3390_mi15121463
crossref_primary_10_1016_j_mlwa_2025_100635
crossref_primary_10_3390_photonics9030176
crossref_primary_10_3390_cancers16213702
crossref_primary_10_1016_j_compbiomed_2022_105596
crossref_primary_10_3390_s22228701
crossref_primary_10_3389_fmed_2024_1394262
crossref_primary_10_3389_fonc_2025_1647701
crossref_primary_10_1016_j_knosys_2025_114277
crossref_primary_10_3389_fphar_2023_1084155
crossref_primary_10_1109_TRPMS_2024_3381849
crossref_primary_10_1016_j_bspc_2023_105081
crossref_primary_10_1155_2023_7714483
crossref_primary_10_1038_s41586_025_09079_8
crossref_primary_10_26599_BDMA_2024_9020090
crossref_primary_10_1007_s42979_021_00720_7
crossref_primary_10_1002_hed_27999
crossref_primary_10_1016_j_bspc_2025_107819
crossref_primary_10_1016_j_rpth_2024_102602
crossref_primary_10_1007_s11042_022_13663_9
crossref_primary_10_1016_j_clinimag_2025_110543
crossref_primary_10_1109_JIOT_2024_3395364
crossref_primary_10_3390_s24061981
crossref_primary_10_1007_s00259_024_06737_3
crossref_primary_10_1002_mp_15854
crossref_primary_10_1002_gch2_202300163
crossref_primary_10_1007_s00530_025_01862_x
crossref_primary_10_1016_j_engappai_2025_110636
crossref_primary_10_3390_s22030813
crossref_primary_10_1007_s00371_025_04029_x
crossref_primary_10_1109_JBHI_2023_3288830
crossref_primary_10_1016_j_ultras_2023_107093
crossref_primary_10_1038_s41598_022_26328_2
crossref_primary_10_1016_j_jormas_2024_101946
crossref_primary_10_2174_0115733947304178240804182938
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_3390_technologies13080329
crossref_primary_10_1109_ACCESS_2021_3086530
crossref_primary_10_1038_s41598_023_29490_3
crossref_primary_10_1109_MSP_2023_3242833
crossref_primary_10_1115_1_4068498
crossref_primary_10_1038_s41746_025_01641_y
crossref_primary_10_1002_jbmr_4916
crossref_primary_10_1097_MS9_0000000000002271
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_1016_j_compbiomed_2023_107861
crossref_primary_10_3390_jcm12124043
crossref_primary_10_3389_finsc_2023_1016277
crossref_primary_10_1016_j_eswa_2025_129215
crossref_primary_10_1049_ipr2_12742
crossref_primary_10_1007_s11548_021_02363_8
crossref_primary_10_1016_j_imavis_2024_105055
crossref_primary_10_1016_j_neunet_2023_07_005
crossref_primary_10_1109_ACCESS_2022_3225107
crossref_primary_10_3390_math13091382
crossref_primary_10_1007_s11042_024_19694_8
crossref_primary_10_1002_ima_70188
crossref_primary_10_1002_mp_16720
crossref_primary_10_1002_mp_15507
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1016_j_bspc_2025_107828
crossref_primary_10_1109_JPROC_2022_3166253
crossref_primary_10_7759_cureus_76185
crossref_primary_10_3390_bioengineering9120811
crossref_primary_10_1016_j_compbiomed_2023_107409
crossref_primary_10_46310_tjim_1580929
crossref_primary_10_1111_jerd_13470
crossref_primary_10_1109_JBHI_2023_3307584
crossref_primary_10_1016_j_compbiomed_2025_110307
crossref_primary_10_1038_s41746_024_01339_7
crossref_primary_10_1007_s00500_025_10854_y
crossref_primary_10_1016_j_neunet_2024_106460
crossref_primary_10_1016_j_nbd_2025_106877
crossref_primary_10_1021_acsnano_5c06795
crossref_primary_10_1016_j_patrec_2023_07_014
crossref_primary_10_1088_1361_6560_ad04aa
crossref_primary_10_1016_j_jacr_2023_11_011
crossref_primary_10_1016_j_neucom_2024_128630
crossref_primary_10_7717_peerj_cs_1065
crossref_primary_10_1111_jdv_18460
crossref_primary_10_1016_j_compbiomed_2025_110640
crossref_primary_10_31020_mutftd_1571307
crossref_primary_10_3389_fonc_2025_1616816
crossref_primary_10_3390_diagnostics15182336
crossref_primary_10_3390_s22062125
crossref_primary_10_2478_amns_2024_3330
crossref_primary_10_1016_j_asoc_2023_110014
crossref_primary_10_1111_coin_70000
crossref_primary_10_3389_fmed_2023_1241570
crossref_primary_10_3390_app122111111
crossref_primary_10_1109_TCSVT_2021_3112551
crossref_primary_10_1109_RBME_2024_3408456
crossref_primary_10_3390_app15179345
crossref_primary_10_1109_ACCESS_2025_3531396
crossref_primary_10_3390_s22114061
crossref_primary_10_1093_pnasnexus_pgae048
crossref_primary_10_3390_app112210982
crossref_primary_10_1007_s42979_024_03166_9
crossref_primary_10_1109_ACCESS_2024_3506164
crossref_primary_10_7717_peerj_cs_1045
crossref_primary_10_1016_j_ijrobp_2023_05_034
crossref_primary_10_3390_diagnostics13193140
crossref_primary_10_7759_cureus_59507
crossref_primary_10_3390_mi13081364
crossref_primary_10_3390_electronics10182208
crossref_primary_10_3390_diagnostics13010076
crossref_primary_10_1038_s41698_025_00979_6
crossref_primary_10_1038_s43856_025_00886_8
crossref_primary_10_1007_s10140_024_02306_1
crossref_primary_10_1007_s13246_024_01466_1
crossref_primary_10_1148_ryai_2021210014
crossref_primary_10_1007_s13721_024_00491_0
crossref_primary_10_1002_ima_23109
crossref_primary_10_1016_j_irbm_2022_05_001
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_1007_s10586_025_05344_7
crossref_primary_10_1016_j_compbiomed_2023_107567
crossref_primary_10_1109_TGRS_2023_3336357
crossref_primary_10_1007_s00330_025_11559_4
crossref_primary_10_1016_j_ebiom_2025_105663
crossref_primary_10_1007_s10489_025_06591_2
crossref_primary_10_1109_TIM_2023_3293887
crossref_primary_10_3390_jimaging9090167
crossref_primary_10_1109_ACCESS_2024_3360930
crossref_primary_10_1109_JBHI_2024_3367756
crossref_primary_10_1016_j_wneu_2024_05_153
crossref_primary_10_1093_iwc_iwae061
crossref_primary_10_1016_j_jdent_2022_104076
crossref_primary_10_1186_s13244_023_01564_w
crossref_primary_10_3390_aerospace11120976
crossref_primary_10_1016_j_metrad_2025_100172
crossref_primary_10_3390_bdcc6040117
crossref_primary_10_1007_s10278_022_00600_3
crossref_primary_10_1109_ACCESS_2024_3441469
crossref_primary_10_1038_s41467_023_38021_7
crossref_primary_10_1016_j_jdent_2025_105668
crossref_primary_10_1016_j_engappai_2022_105703
crossref_primary_10_1097_j_jcrs_0000000000001538
crossref_primary_10_1371_journal_pone_0285414
crossref_primary_10_1016_j_resconrec_2022_106813
crossref_primary_10_3390_ijerph182111086
crossref_primary_10_1016_j_ins_2024_121622
crossref_primary_10_1038_s41598_024_63001_2
crossref_primary_10_3389_fmed_2025_1589587
crossref_primary_10_1093_humrep_deae064
crossref_primary_10_1186_s12911_024_02653_6
crossref_primary_10_1007_s10278_023_00882_1
crossref_primary_10_1109_ACCESS_2024_3442569
crossref_primary_10_1016_j_bspc_2023_105343
crossref_primary_10_1117_1_JMI_11_3_036002
crossref_primary_10_1007_s10462_023_10588_z
crossref_primary_10_1016_j_media_2023_102798
crossref_primary_10_1016_j_clinimag_2022_11_003
crossref_primary_10_2463_mrms_mp_2025_0064
crossref_primary_10_1186_s12883_024_04010_6
crossref_primary_10_1016_j_cll_2022_09_004
crossref_primary_10_1109_TRPMS_2024_3430298
crossref_primary_10_1016_j_bioactmat_2024_11_021
crossref_primary_10_7759_cureus_78217
crossref_primary_10_1016_j_bspc_2024_105995
crossref_primary_10_1016_j_jvcir_2023_103956
crossref_primary_10_1016_j_compbiomed_2022_106089
crossref_primary_10_1016_j_imu_2023_101234
crossref_primary_10_1007_s41666_024_00163_8
crossref_primary_10_1109_ACCESS_2024_3524732
crossref_primary_10_1038_s41598_024_80938_6
crossref_primary_10_1016_j_heliyon_2023_e21965
crossref_primary_10_1111_1754_9485_13276
crossref_primary_10_1007_s00371_022_02630_y
crossref_primary_10_3390_particles8010033
crossref_primary_10_1002_jbio_202500044
crossref_primary_10_1109_TII_2022_3144016
crossref_primary_10_3390_jimaging10080191
crossref_primary_10_1016_j_compbiomed_2024_108628
crossref_primary_10_1016_j_cmpb_2022_106651
crossref_primary_10_1016_j_jacr_2023_03_026
crossref_primary_10_3390_s25020531
crossref_primary_10_1016_j_dental_2024_05_022
crossref_primary_10_1109_ACCESS_2025_3590291
crossref_primary_10_1007_s11831_022_09720_z
crossref_primary_10_1016_j_neucom_2024_127497
crossref_primary_10_3390_bioengineering12080818
crossref_primary_10_1049_ipr2_12923
crossref_primary_10_3390_math10193571
crossref_primary_10_3390_s23167289
crossref_primary_10_1109_ACCESS_2025_3569213
crossref_primary_10_1117_1_JMI_11_4_044001
crossref_primary_10_1016_j_neunet_2024_106973
crossref_primary_10_1002_mp_16188
crossref_primary_10_1139_facets_2024_0229
crossref_primary_10_1177_02841851241305736
crossref_primary_10_3390_biology11070982
crossref_primary_10_1007_s10439_024_03483_3
crossref_primary_10_1016_j_neucom_2024_128478
crossref_primary_10_1016_j_ejmp_2024_103381
crossref_primary_10_3390_su132011249
crossref_primary_10_1007_s10140_023_02121_0
crossref_primary_10_1007_s44163_025_00434_2
crossref_primary_10_1177_14604582241307839
crossref_primary_10_1109_ACCESS_2024_3453661
crossref_primary_10_1186_s12931_024_02913_z
crossref_primary_10_61650_dpjpm_v2i3_109
crossref_primary_10_1016_j_compbiomed_2024_108760
crossref_primary_10_1016_j_slast_2024_100192
crossref_primary_10_1016_j_heliyon_2024_e28538
crossref_primary_10_1038_s41598_024_63144_2
crossref_primary_10_1155_2022_7285600
crossref_primary_10_1148_radiol_232471
crossref_primary_10_1093_mnras_stad2785
crossref_primary_10_1109_ACCESS_2023_3315831
crossref_primary_10_1016_j_engappai_2023_106276
crossref_primary_10_1109_ACCESS_2022_3143033
crossref_primary_10_1145_3623404
crossref_primary_10_3389_fncom_2024_1452457
crossref_primary_10_1145_3768158
crossref_primary_10_1007_s11042_024_19881_7
crossref_primary_10_1016_j_arthro_2024_12_024
crossref_primary_10_1109_OJVT_2025_3595200
crossref_primary_10_2106_JBJS_21_01229
crossref_primary_10_1016_j_inffus_2025_102964
crossref_primary_10_1371_journal_pone_0310304
crossref_primary_10_1186_s12911_021_01588_6
crossref_primary_10_2147_AMEP_S534099
crossref_primary_10_1097_MNM_0000000000001786
crossref_primary_10_1109_TMI_2022_3187170
crossref_primary_10_1016_j_imu_2023_101273
crossref_primary_10_1016_j_mex_2025_103606
crossref_primary_10_3390_app132111820
crossref_primary_10_1016_j_media_2023_102762
crossref_primary_10_1016_j_media_2023_102884
crossref_primary_10_1007_s10140_023_02120_1
crossref_primary_10_1007_s12530_024_09648_8
crossref_primary_10_1007_s10278_025_01600_9
crossref_primary_10_1038_s41571_024_00887_x
Cites_doi 10.1016/j.nicl.2018.08.019
10.1007/978-3-030-20351-1_34
10.1007/978-3-030-32254-0_54
10.1109/TMI.2016.2521800
10.1148/ryct.2020190032
10.1038/s41591-018-0177-5
10.1016/j.media.2019.01.010
10.1007/s00261-017-1294-1
10.1109/CVPR.2017.369
10.1016/j.radonc.2018.10.019
10.1371/journal.pcbi.1006376
10.1148/rg.316105207
10.1148/rg.341135036
10.1007/978-3-030-35817-4_8
10.1109/ISBI.2017.7950500
10.1007/978-3-030-00931-1_24
10.1016/j.celrep.2018.03.086
10.1016/j.media.2017.07.005
10.1007/978-3-030-59719-1_41
10.1016/j.media.2019.101552
10.1016/j.media.2017.10.005
10.1109/TMI.2018.2866845
10.1109/TMI.2020.2995108
10.1007/978-3-030-32245-8_29
10.1109/3DV.2016.79
10.1016/j.media.2018.10.005
10.1177/0846537120949974
10.1109/TMI.2019.2943841
10.1016/j.bpsc.2019.11.007
10.1007/978-3-030-00934-2_79
10.1007/978-3-030-32245-8_14
10.1109/ACCESS.2017.2788044
10.1093/brain/awaa160
10.1016/j.media.2019.02.009
10.1016/j.ebiom.2019.08.023
10.1007/978-3-319-68127-6_2
10.1001/jama.2016.17216
10.1007/978-3-030-00946-5_16
10.1109/ACCESS.2019.2899635
10.1109/3DV.2019.00035
10.1016/j.media.2019.03.009
10.1016/j.media.2019.04.002
10.1007/s10278-019-00207-1
10.1007/978-3-319-66179-7_58
10.1038/srep46450
10.1109/TMI.2018.2858202
10.1038/s41598-020-62148-y
10.1016/j.media.2020.101800
10.1038/s41591-019-0508-1
10.1148/radiol.2018180940
10.1109/RBME.2020.2987975
10.1016/j.media.2013.10.012
10.1016/j.neuroimage.2017.07.059
10.1002/mp.13764
10.1109/ICCV.2017.81
10.1109/TMI.2015.2458702
10.4103/2153-3539.186902
10.1038/s41591-019-0583-3
10.18653/v1/P18-1240
10.1016/j.media.2020.101765
10.1016/j.media.2020.101715
10.1186/s12968-018-0471-x
10.1117/1.JMI.5.4.044501
10.1016/j.media.2020.101724
10.1109/TMI.2017.2743464
10.1109/TMI.2019.2933425
10.1016/j.media.2014.01.010
10.1007/978-3-030-59713-9_5
10.1109/JPROC.2019.2943836
10.24963/ijcai.2018/96
10.1016/S1470-2045(19)30739-9
10.1109/ISBI.2015.7163871
10.1371/journal.pone.0196828
10.1007/978-3-030-59725-2_45
10.3389/fcvm.2020.00017
10.1109/TMI.2020.2986242
10.1007/978-3-030-32226-7_31
10.1016/j.media.2019.04.007
10.1109/CVPR.2017.502
10.1016/j.acra.2018.07.006
10.1016/j.media.2019.101535
10.1109/TCI.2020.2964229
10.1007/978-3-030-59719-1_21
10.1016/j.neuroimage.2017.04.039
10.1016/j.neuroimage.2018.08.003
10.1016/S2589-7500(20)30025-X
10.1007/978-3-030-59719-1_56
10.1016/0090-4295(85)90280-8
10.1109/TMI.2019.2897538
10.1007/978-3-030-32245-8_6
10.1007/978-3-319-24553-9_83
10.1109/TMI.2019.2905990
10.1001/jama.2017.14585
10.1109/CVPR.2015.7298594
10.1016/j.neuroimage.2016.01.024
10.1117/1.JMI.5.3.036501
10.1146/annurev-bioeng-071516-044442
10.1109/TMI.2015.2482920
10.1088/2057-1976/aad100
10.1016/S0168-8278(20)31254-X
10.1007/978-3-030-20351-1_19
10.1002/mp.12399
10.1038/s41467-019-13163-9
10.1109/CVPR.2019.01076
10.1016/j.media.2019.101557
10.1007/978-3-030-00928-1_12
10.1007/978-3-319-66185-8_29
10.1148/radiol.2020201473
10.1016/j.jacr.2019.05.034
10.1038/srep46479
10.1109/TMI.2019.2948320
10.3389/fcvm.2019.00195
10.1007/978-3-030-00937-3_43
10.1016/j.media.2018.01.006
10.1016/j.media.2017.12.009
10.1609/aaai.v33i01.3301590
10.1109/CVPR.2016.90
10.1007/s00330-020-06672-5
10.1109/CVPR.2018.00745
10.1016/j.media.2019.04.014
10.1016/j.media.2019.101619
10.1007/s00138-020-01060-x
10.1016/j.crad.2014.09.017
10.1016/j.neucom.2018.09.013
10.1038/s41746-019-0104-2
10.1109/EMBC.2019.8857465
10.1016/j.media.2020.101693
10.1002/jmri.26907
10.1016/j.neuroimage.2017.04.041
10.1109/CVPR.2018.00963
10.1007/978-3-030-32226-7_75
10.1038/s41598-020-61055-6
10.1007/978-3-030-00937-3_67
10.1016/j.neuroimage.2017.07.008
10.1007/s10278-019-00227-x
10.1109/TMI.2016.2553401
10.1016/j.media.2016.05.004
10.1148/ryai.2020190102
10.1016/j.media.2020.101746
10.1109/TMI.2020.2994459
10.1109/CVPR.2017.243
10.1109/CVPR.2010.5540016
10.1016/S1076-6332(03)00671-8
10.1093/jnci/djx137
10.1016/j.compmedimag.2018.03.001
10.1016/j.neuroimage.2017.03.057
10.1158/1078-0432.CCR-18-2013
10.1001/jamanetworkopen.2019.14645
10.1148/radiol.2020201874
10.1007/978-3-030-32251-9_72
10.1007/978-3-319-59050-9_47
10.1109/ISBI.2018.8363679
10.1016/j.media.2019.06.001
10.1148/rg.2018170173
10.1038/srep32706
10.1007/s00432-019-03098-5
10.1038/s41591-019-0447-x
10.1016/j.media.2016.10.004
10.1016/S1470-2045(19)30793-4
10.1038/s42256-019-0019-2
10.1007/978-3-030-00934-2_94
10.1117/1.JMI.6.2.024007
10.1016/S0140-6736(19)32998-8
10.1038/s41591-019-0462-y
10.1109/TPAMI.2016.2572683
10.1007/978-3-030-00934-2_52
10.1109/ISBI.2019.8759212
10.1007/978-3-030-32251-9_42
10.1016/j.acra.2012.05.013
10.1016/j.neuroimage.2020.116819
10.1186/s40708-018-0080-3
10.1145/3298981
10.1109/ISBI.2018.8363518
10.1007/978-3-030-32692-0_16
10.1002/cyto.a.23065
10.1109/TMI.2016.2528162
10.1073/pnas.1900654116
10.1016/j.neuroimage.2019.03.041
10.1016/j.compmedimag.2019.101684
10.1016/j.mri.2019.05.041
10.1109/JPROC.2019.2956422
10.1038/nature14539
10.1016/j.neuroimage.2017.02.035
10.1088/978-0-7503-2216-4
10.1007/s10278-018-0150-3
10.1016/j.ebiom.2018.03.017
10.1088/1361-6560/ab843e
10.1038/s41571-019-0252-y
10.1016/S1470-2045(19)30738-7
10.1007/978-3-030-05831-9_16
10.1007/978-3-030-00934-2_53
10.1016/j.neuroimage.2012.01.021
10.1007/978-3-030-00937-3_71
10.1007/978-3-319-46723-8_55
10.1148/radiol.10092437
10.3109/15412550903499522
10.1109/CVPR.2018.00716
10.1148/radiol.2019190512
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
8FD
L7M
7X8
5PM
DOI 10.1109/JPROC.2021.3054390
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 838
ExternalDocumentID PMC10544772
37786449
10_1109_JPROC_2021_3054390
9363915
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: 1U24CA199374-01; R01CA202752-01A1; R01CA208236-01A1; R01CA216579-01A1; R01CA220581-01A1; 1U01CA239055-01; 1U54CA254566-01; 1U01CA248226-01; 1R43EB028736-01
  funderid: 10.13039/100000002
– fundername: VA Merit Review
  grantid: IBX004121A
– fundername: Israeli Science Foundation (ISF)
  funderid: 10.13039/501100003977
– fundername: National Institutes of Health Clinical Center
  funderid: 10.13039/100000002
– fundername: Biomedical Laboratory Research and Development Service of the United States Department of Veterans Affairs
– fundername: Ministry of Science & Technology
– fundername: NCI NIH HHS
  grantid: U01 CA248226
– fundername: NIBIB NIH HHS
  grantid: R43 EB028736
– fundername: NCI NIH HHS
  grantid: R01 CA257612
– fundername: NCI NIH HHS
  grantid: R01 CA268207
– fundername: NCI NIH HHS
  grantid: U01 CA239055
– fundername: NCI NIH HHS
  grantid: U01 CA269181
– fundername: NCI NIH HHS
  grantid: U54 CA254566
– fundername: BLRD VA
  grantid: I01 BX004121
– fundername: NCI NIH HHS
  grantid: R01 CA208236
– fundername: NCI NIH HHS
  grantid: R01 CA216579
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
NPM
RIG
7SP
8FD
L7M
7X8
5PM
ID FETCH-LOGICAL-c407t-76018980b7ed637f4abde7bcbe21ee48d11b8a59432d48f63a85ebcb7c3650dc3
IEDL.DBID RIE
ISICitedReferencesCount 562
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645896700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Thu Aug 21 18:36:11 EDT 2025
Thu Sep 04 17:55:29 EDT 2025
Fri Jul 25 07:12:32 EDT 2025
Mon Jul 21 05:53:50 EDT 2025
Sat Nov 29 06:01:43 EST 2025
Tue Nov 18 22:30:41 EST 2025
Wed Aug 27 02:29:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
survey
Medical imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-76018980b7ed637f4abde7bcbe21ee48d11b8a59432d48f63a85ebcb7c3650dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5741-0399
0000-0002-6553-0876
0000-0002-5167-9856
0000-0002-5683-5889
0000-0002-6881-4444
0000-0001-8081-7376
PMID 37786449
PQID 2519972033
PQPubID 85453
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_JPROC_2021_3054390
proquest_miscellaneous_2872181568
ieee_primary_9363915
crossref_primary_10_1109_JPROC_2021_3054390
pubmed_primary_37786449
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10544772
proquest_journals_2519972033
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationTitleAlternate Proc IEEE Inst Electr Electron Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref208
ref59
ref205
ref58
ref206
ref53
ref203
ref204
ref55
ref202
ref209
ref210
ref211
ref51
beutel (ref8) 2000; 2
isensee (ref119) 2019
ref218
ref45
ref219
ref216
ref47
ref217
ref42
ref214
bustos (ref110) 2019
tamada (ref147) 2018
ref41
ref215
oktay (ref49) 2018
ref212
ref213
ref7
ref4
ref3
bagdasaryan (ref83) 2020
ref5
ref100
ref221
ref222
ref40
ref220
campello (ref174) 2020
beutel (ref1) 2000; 1
ref35
ref34
ref37
ref36
ref31
ref30
johnson (ref109) 2019
ref23
ref26
ref25
ref20
ref22
liu (ref139) 2014
xu (ref152) 2017
li (ref133) 2017
howard (ref52) 2017
ref28
ref27
ref29
roth (ref201) 2015
börgers (ref6) 2012; 110
ref200
(ref32) 2013
roth (ref194) 2015
yang (ref155) 2020
ref128
ref129
ref97
ref126
ref247
ref96
ref127
ref99
ref124
ref245
ref98
ref125
ref246
lee (ref43) 2015
yao (ref235) 2020
simpson (ref185) 2019
ref93
ref92
ref134
ref95
ref131
ref132
ref91
ref90
ref89
vu tran (ref164) 2016
ref86
ref137
ref85
ref138
tang (ref190) 2020
ref88
ref135
ref87
ref136
araújo (ref101) 2020; 63
ref144
kone?ný (ref81) 2016
ref145
goodfellow (ref44) 2014
ref142
ref143
ref141
ref80
gozes (ref241) 2020
ref79
ref229
ref108
ref78
ref227
ref106
ref228
ref107
ref75
ref225
ref104
ref74
ref226
ref105
ref77
ref223
ref102
ref76
ref224
ref103
prince (ref9) 2006
ref71
ref232
ref70
ref233
ref112
ref73
ref230
ref72
ref231
ref67
ref238
ref69
ref239
ref118
ref64
ref236
(ref111) 2019
ref115
ref63
ref237
ref116
ref66
ref234
ref113
ref65
ref114
isensee (ref166) 2017
ref243
ref122
ref244
ref123
ref62
ref120
ref61
ref242
ref121
ref240
zhou (ref11) 2019
ref168
ref169
ref170
ref177
ref178
ref175
gal (ref94) 2016
ref176
ref171
ref172
ref179
krizhevsky (ref33) 2012
ref180
ref181
ref188
ref189
ref186
ref187
ref184
ref182
ref183
ref148
ref149
ref146
simonyan (ref39) 2014
zhang (ref48) 2019
sheller (ref84) 2018
ref156
yang (ref173) 2019
ref153
ref154
ref151
ref150
ref159
ref157
ref158
lu (ref140) 2018; 8
lecun (ref21) 2015; 521
ref165
ref162
ref163
ref160
ref161
elsken (ref50) 2018
ref13
ref12
ref15
ref14
ref17
raghu (ref54) 2019
ref16
ref19
ref18
xu (ref46) 2015
wolterink (ref167) 2017
shi (ref68) 2020
murphy (ref117) 2020; 296
zhou (ref24) 2017
ref2
bakas (ref130) 2018
ref191
ref192
chen (ref56) 2019
huang (ref60) 2019
ref199
ref197
ref198
ref195
ref196
ref193
bankman (ref10) 2008
zhao (ref82) 2018
ronneberger (ref38) 2015
References_xml – ident: ref245
  doi: 10.1016/j.nicl.2018.08.019
– ident: ref180
  doi: 10.1007/978-3-030-20351-1_34
– ident: ref90
  doi: 10.1007/978-3-030-32254-0_54
– ident: ref134
  doi: 10.1109/TMI.2016.2521800
– ident: ref176
  doi: 10.1148/ryct.2020190032
– ident: ref219
  doi: 10.1038/s41591-018-0177-5
– ident: ref69
  doi: 10.1016/j.media.2019.01.010
– ident: ref206
  doi: 10.1007/s00261-017-1294-1
– ident: ref65
  doi: 10.1109/CVPR.2017.369
– ident: ref208
  doi: 10.1016/j.radonc.2018.10.019
– ident: ref145
  doi: 10.1371/journal.pcbi.1006376
– ident: ref4
  doi: 10.1148/rg.316105207
– year: 2020
  ident: ref155
  article-title: Smile-GANs: Semi-supervised clustering via GANs for dissecting brain disease heterogeneity from medical images
  publication-title: arXiv 2006 15255
– ident: ref2
  doi: 10.1148/rg.341135036
– ident: ref184
  doi: 10.1007/978-3-030-35817-4_8
– ident: ref149
  doi: 10.1109/ISBI.2017.7950500
– ident: ref91
  doi: 10.1007/978-3-030-00931-1_24
– ident: ref233
  doi: 10.1016/j.celrep.2018.03.086
– ident: ref23
  doi: 10.1016/j.media.2017.07.005
– ident: ref211
  doi: 10.1007/978-3-030-59719-1_41
– ident: ref27
  doi: 10.1016/j.media.2019.101552
– ident: ref142
  doi: 10.1016/j.media.2017.10.005
– ident: ref170
  doi: 10.1109/TMI.2018.2866845
– ident: ref105
  doi: 10.1109/TMI.2020.2995108
– ident: ref74
  doi: 10.1007/978-3-030-32245-8_29
– ident: ref120
  doi: 10.1109/3DV.2016.79
– ident: ref181
  doi: 10.1016/j.media.2018.10.005
– ident: ref7
  doi: 10.1177/0846537120949974
– ident: ref197
  doi: 10.1109/TMI.2019.2943841
– start-page: 512
  year: 2020
  ident: ref190
  article-title: E2Net: An edge enhanced network for accurate liver and tumor segmentation on CT scans
  publication-title: Proc Int Conf Med Image Comput Comput Assist Intervent (MICCAI)
– year: 2016
  ident: ref81
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: arXiv 1610 05492
– start-page: 92
  year: 2018
  ident: ref84
  article-title: Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation
  publication-title: Proc Int MICCAI Brainlesion Workshop
– ident: ref246
  doi: 10.1016/j.bpsc.2019.11.007
– start-page: 2672
  year: 2014
  ident: ref44
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref19
  doi: 10.1007/978-3-030-00934-2_79
– ident: ref95
  doi: 10.1007/978-3-030-32245-8_14
– ident: ref26
  doi: 10.1109/ACCESS.2017.2788044
– ident: ref136
  doi: 10.1093/brain/awaa160
– start-page: 3347
  year: 2019
  ident: ref54
  article-title: Transfusion: Understanding transfer learning for medical imaging
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref67
  doi: 10.1016/j.media.2019.02.009
– ident: ref143
  doi: 10.1016/j.ebiom.2019.08.023
– ident: ref146
  doi: 10.1007/978-3-319-68127-6_2
– ident: ref36
  doi: 10.1001/jama.2016.17216
– ident: ref78
  doi: 10.1007/978-3-030-00946-5_16
– year: 2020
  ident: ref241
  article-title: Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis
  publication-title: arXiv 2003 05037
– ident: ref171
  doi: 10.1109/ACCESS.2019.2899635
– ident: ref51
  doi: 10.1109/3DV.2019.00035
– ident: ref28
  doi: 10.1016/j.media.2019.03.009
– ident: ref187
  doi: 10.1016/j.media.2019.04.002
– ident: ref209
  doi: 10.1007/s10278-019-00207-1
– start-page: 1050
  year: 2016
  ident: ref94
  article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref45
  doi: 10.1007/978-3-319-66179-7_58
– ident: ref216
  doi: 10.1038/srep46450
– ident: ref107
  doi: 10.1109/TMI.2018.2858202
– ident: ref116
  doi: 10.1038/s41598-020-62148-y
– ident: ref243
  doi: 10.1016/j.media.2020.101800
– ident: ref220
  doi: 10.1038/s41591-019-0508-1
– ident: ref151
  doi: 10.1148/radiol.2018180940
– ident: ref242
  doi: 10.1109/RBME.2020.2987975
– start-page: 2048
  year: 2015
  ident: ref46
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc Int Conf Mach Learn
– ident: ref168
  doi: 10.1016/j.media.2013.10.012
– volume: 1
  year: 2000
  ident: ref1
  publication-title: Handbook of Medical Imaging
– start-page: 1097
  year: 2012
  ident: ref33
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref137
  doi: 10.1016/j.neuroimage.2017.07.059
– ident: ref17
  doi: 10.1002/mp.13764
– ident: ref177
  doi: 10.1109/ICCV.2017.81
– ident: ref214
  doi: 10.1109/TMI.2015.2458702
– start-page: 291
  year: 2019
  ident: ref60
  article-title: 3D U2-net: A 3D universal U-net for multi-domain medical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput Assist Intervent (MICCIAI)
– ident: ref215
  doi: 10.4103/2153-3539.186902
– start-page: 101
  year: 2017
  ident: ref167
  article-title: Automatic segmentation and disease classification using cardiac cine MR images
  publication-title: Statistical Atlases and Computational Models of the Heart ACDC and MMWHS Challenges
– volume: 8
  start-page: 1
  year: 2018
  ident: ref140
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images
  publication-title: Sci Rep
– ident: ref229
  doi: 10.1038/s41591-019-0583-3
– ident: ref20
  doi: 10.18653/v1/P18-1240
– year: 2018
  ident: ref147
  article-title: Motion artifact reduction in abdominal MR imaging using the U-NET network
  publication-title: Proc ICMRM Sci Meeting KSMRM
– ident: ref86
  doi: 10.1016/j.media.2020.101765
– volume: 63
  year: 2020
  ident: ref101
  article-title: DR|GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101715
– ident: ref165
  doi: 10.1186/s12968-018-0471-x
– ident: ref191
  doi: 10.1117/1.JMI.5.4.044501
– ident: ref100
  doi: 10.1016/j.media.2020.101724
– ident: ref169
  doi: 10.1109/TMI.2017.2743464
– ident: ref72
  doi: 10.1109/TMI.2019.2933425
– year: 2015
  ident: ref201
  article-title: CT lymph nodes
  publication-title: The Cancer Imaging Archive
– ident: ref66
  doi: 10.1016/j.media.2014.01.010
– ident: ref13
  doi: 10.1007/978-3-030-59713-9_5
– year: 2018
  ident: ref50
  article-title: Neural architecture search: A survey
  publication-title: arXiv 1808 05377
– ident: ref236
  doi: 10.1109/JPROC.2019.2943836
– ident: ref59
  doi: 10.24963/ijcai.2018/96
– year: 2016
  ident: ref164
  article-title: A fully convolutional neural network for cardiac segmentation in short-axis MRI
  publication-title: arXiv 1604 00494 [cs]
– ident: ref222
  doi: 10.1016/S1470-2045(19)30739-9
– start-page: 2938
  year: 2020
  ident: ref83
  article-title: How to backdoor federated learning
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref34
  doi: 10.1109/ISBI.2015.7163871
– ident: ref217
  doi: 10.1371/journal.pone.0196828
– ident: ref175
  doi: 10.1007/978-3-030-59725-2_45
– ident: ref159
  doi: 10.3389/fcvm.2020.00017
– ident: ref77
  doi: 10.1109/TMI.2020.2986242
– ident: ref76
  doi: 10.1007/978-3-030-32226-7_31
– ident: ref162
  doi: 10.1016/j.media.2019.04.007
– ident: ref115
  doi: 10.1109/CVPR.2017.502
– year: 2019
  ident: ref56
  article-title: Med3D: Transfer learning for 3D medical image analysis
  publication-title: arXiv 1904 00625
– ident: ref237
  doi: 10.1016/j.acra.2018.07.006
– year: 2014
  ident: ref39
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref75
  doi: 10.1016/j.media.2019.101535
– ident: ref150
  doi: 10.1109/TCI.2020.2964229
– ident: ref203
  doi: 10.1007/978-3-030-59719-1_21
– year: 2015
  ident: ref194
  article-title: Data from pancreas-CT
  publication-title: The Cancer Imaging Archive
– ident: ref124
  doi: 10.1016/j.neuroimage.2017.04.039
– ident: ref131
  doi: 10.1016/j.neuroimage.2018.08.003
– ident: ref212
  doi: 10.1016/S2589-7500(20)30025-X
– start-page: 562
  year: 2015
  ident: ref43
  article-title: Deeply-supervised nets
  publication-title: Proc Artif Intell Statist
– ident: ref200
  doi: 10.1007/978-3-030-59719-1_56
– ident: ref221
  doi: 10.1016/0090-4295(85)90280-8
– year: 2019
  ident: ref11
  publication-title: Med Image Comput Comput Assist Interv
– year: 2020
  ident: ref68
  article-title: Marginal loss and exclusion loss for partially supervised multi-organ segmentation
  publication-title: arXiv 2007 03868
– ident: ref132
  doi: 10.1109/TMI.2019.2897538
– ident: ref97
  doi: 10.1007/978-3-030-32245-8_6
– ident: ref157
  doi: 10.1007/978-3-319-24553-9_83
– ident: ref183
  doi: 10.1109/TMI.2019.2905990
– ident: ref218
  doi: 10.1001/jama.2017.14585
– ident: ref40
  doi: 10.1109/CVPR.2015.7298594
– ident: ref123
  doi: 10.1016/j.neuroimage.2016.01.024
– ident: ref186
  doi: 10.1117/1.JMI.5.3.036501
– ident: ref25
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: ref199
  doi: 10.1109/TMI.2015.2482920
– ident: ref210
  doi: 10.1088/2057-1976/aad100
– ident: ref230
  doi: 10.1016/S0168-8278(20)31254-X
– ident: ref70
  doi: 10.1007/978-3-030-20351-1_19
– ident: ref204
  doi: 10.1002/mp.12399
– ident: ref138
  doi: 10.1038/s41467-019-13163-9
– volume: 2
  year: 2000
  ident: ref8
  publication-title: Handbook of Medical Imaging Medical Image Processing and Analysis
– ident: ref79
  doi: 10.1109/CVPR.2019.01076
– ident: ref98
  doi: 10.1016/j.media.2019.101557
– ident: ref158
  doi: 10.1007/978-3-030-00928-1_12
– ident: ref63
  doi: 10.1007/978-3-319-66185-8_29
– ident: ref118
  doi: 10.1148/radiol.2020201473
– ident: ref196
  doi: 10.1016/j.jacr.2019.05.034
– ident: ref113
  doi: 10.1038/srep46479
– ident: ref188
  doi: 10.1109/TMI.2019.2948320
– ident: ref161
  doi: 10.3389/fcvm.2019.00195
– ident: ref64
  doi: 10.1007/978-3-030-00937-3_43
– ident: ref193
  doi: 10.1016/j.media.2018.01.006
– ident: ref93
  doi: 10.1016/j.media.2017.12.009
– year: 2008
  ident: ref10
  publication-title: Handbook of Medical Image Processing and Analysis
– year: 2017
  ident: ref152
  article-title: 200x low-dose PET reconstruction using deep learning
  publication-title: arXiv 1712 04119
– ident: ref108
  doi: 10.1609/aaai.v33i01.3301590
– ident: ref41
  doi: 10.1109/CVPR.2016.90
– year: 2019
  ident: ref173
  article-title: Left ventricle full quantification challenge
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref5
  doi: 10.1007/s00330-020-06672-5
– ident: ref47
  doi: 10.1109/CVPR.2018.00745
– ident: ref96
  doi: 10.1016/j.media.2019.04.014
– year: 2017
  ident: ref24
  publication-title: Deep learning for medical image analysis
– ident: ref92
  doi: 10.1016/j.media.2019.101619
– ident: ref31
  doi: 10.1007/s00138-020-01060-x
– ident: ref239
  doi: 10.1016/j.crad.2014.09.017
– ident: ref37
  doi: 10.1016/j.neucom.2018.09.013
– ident: ref207
  doi: 10.1038/s41746-019-0104-2
– year: 2019
  ident: ref109
  article-title: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs
  publication-title: arXiv 1901 07042
– ident: ref73
  doi: 10.1109/EMBC.2019.8857465
– ident: ref15
  doi: 10.1016/j.media.2020.101693
– ident: ref247
  doi: 10.1002/jmri.26907
– year: 2020
  ident: ref174
  article-title: Multi-centre, multi-vendor & multi-disease cardiac image segmentation challenge (M&MS)
  publication-title: Proc Med Image Comput Comput Assist Intervent (MICCAI)
– ident: ref125
  doi: 10.1016/j.neuroimage.2017.04.041
– ident: ref58
  doi: 10.1109/CVPR.2018.00963
– ident: ref99
  doi: 10.1007/978-3-030-32226-7_75
– ident: ref205
  doi: 10.1038/s41598-020-61055-6
– ident: ref179
  doi: 10.1007/978-3-030-00937-3_67
– year: 2017
  ident: ref133
  article-title: Non-rigid image registration using fully convolutional networks with deep self-supervision
  publication-title: arXiv 1709 00799
– ident: ref135
  doi: 10.1016/j.neuroimage.2017.07.008
– ident: ref29
  doi: 10.1007/s10278-019-00227-x
– ident: ref22
  doi: 10.1109/TMI.2016.2553401
– ident: ref128
  doi: 10.1016/j.media.2016.05.004
– ident: ref198
  doi: 10.1148/ryai.2020190102
– ident: ref62
  doi: 10.1016/j.media.2020.101746
– start-page: 1015
  year: 2014
  ident: ref139
  article-title: Early diagnosis of Alzheimer's disease with deep learning
  publication-title: Proc Int Symp Biomed Imag (ISBI)
– ident: ref103
  doi: 10.1109/TMI.2020.2994459
– ident: ref42
  doi: 10.1109/CVPR.2017.243
– ident: ref18
  doi: 10.1109/CVPR.2010.5540016
– ident: ref3
  doi: 10.1016/S1076-6332(03)00671-8
– ident: ref232
  doi: 10.1093/jnci/djx137
– ident: ref195
  doi: 10.1016/j.compmedimag.2018.03.001
– ident: ref244
  doi: 10.1016/j.neuroimage.2017.03.057
– ident: ref234
  doi: 10.1158/1078-0432.CCR-18-2013
– year: 2020
  ident: ref235
  article-title: A hierarchical feature constraint to camouflage medical adversarial attacks
  publication-title: arXiv 2012 09501
– ident: ref231
  doi: 10.1001/jamanetworkopen.2019.14645
– start-page: 120
  year: 2017
  ident: ref166
  article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features
  publication-title: Statistical Atlases and Computational Models of the Heart ACDC and MMWHS Challenges
– volume: 296
  year: 2020
  ident: ref117
  article-title: COVID-19 on the chest radiograph: A multi-reader evaluation of an AI system
  publication-title: Radiology
  doi: 10.1148/radiol.2020201874
– year: 2019
  ident: ref111
  publication-title: Lung CT Screening Reporting & Data System v1 1
– start-page: 7354
  year: 2019
  ident: ref48
  article-title: Self-attention generative adversarial networks
  publication-title: Proc Int Conf Mach Learn
– year: 2018
  ident: ref49
  article-title: Attention U-net: Learning where to look for the pancreas
  publication-title: arXiv 1804 03999
– ident: ref88
  doi: 10.1007/978-3-030-32251-9_72
– year: 2013
  ident: ref32
  publication-title: MIT Tech Rev 2013
– ident: ref57
  doi: 10.1007/978-3-319-59050-9_47
– ident: ref148
  doi: 10.1109/ISBI.2018.8363679
– ident: ref160
  doi: 10.1016/j.media.2019.06.001
– ident: ref202
  doi: 10.1148/rg.2018170173
– year: 2018
  ident: ref82
  article-title: Federated learning with non-IID data
  publication-title: arXiv 1806 00582
– ident: ref225
  doi: 10.1038/srep32706
– ident: ref112
  doi: 10.1007/s00432-019-03098-5
– ident: ref114
  doi: 10.1038/s41591-019-0447-x
– ident: ref129
  doi: 10.1016/j.media.2016.10.004
– ident: ref224
  doi: 10.1016/S1470-2045(19)30793-4
– ident: ref178
  doi: 10.1038/s42256-019-0019-2
– ident: ref55
  doi: 10.1007/978-3-030-00934-2_94
– ident: ref192
  doi: 10.1117/1.JMI.6.2.024007
– ident: ref228
  doi: 10.1016/S0140-6736(19)32998-8
– ident: ref227
  doi: 10.1038/s41591-019-0462-y
– ident: ref163
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref89
  doi: 10.1007/978-3-030-00934-2_52
– ident: ref104
  doi: 10.1109/ISBI.2019.8759212
– year: 2019
  ident: ref110
  article-title: PadChest: A large chest X-ray image dataset with multi-label annotated reports
  publication-title: arXiv 1901 07441
– ident: ref61
  doi: 10.1007/978-3-030-32251-9_42
– ident: ref240
  doi: 10.1016/j.acra.2012.05.013
– ident: ref121
  doi: 10.1016/j.neuroimage.2020.116819
– ident: ref141
  doi: 10.1186/s40708-018-0080-3
– ident: ref80
  doi: 10.1145/3298981
– ident: ref102
  doi: 10.1109/ISBI.2018.8363518
– ident: ref85
  doi: 10.1007/978-3-030-32692-0_16
– ident: ref226
  doi: 10.1002/cyto.a.23065
– year: 2019
  ident: ref119
  article-title: Automated design of deep learning methods for biomedical image segmentation
  publication-title: arXiv 1904 08128
– ident: ref35
  doi: 10.1109/TMI.2016.2528162
– ident: ref87
  doi: 10.1073/pnas.1900654116
– ident: ref127
  doi: 10.1016/j.neuroimage.2019.03.041
– year: 2017
  ident: ref52
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– ident: ref156
  doi: 10.1016/j.compmedimag.2019.101684
– ident: ref14
  doi: 10.1016/j.mri.2019.05.041
– year: 2018
  ident: ref130
  article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
  publication-title: arXiv 1811 02629
– ident: ref30
  doi: 10.1109/JPROC.2019.2956422
– volume: 521
  start-page: 436
  year: 2015
  ident: ref21
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref126
  doi: 10.1016/j.neuroimage.2017.02.035
– ident: ref12
  doi: 10.1088/978-0-7503-2216-4
– ident: ref153
  doi: 10.1007/s10278-018-0150-3
– ident: ref144
  doi: 10.1016/j.ebiom.2018.03.017
– ident: ref16
  doi: 10.1088/1361-6560/ab843e
– volume: 110
  year: 2012
  ident: ref6
  publication-title: Computational Radiology and Imaging Therapy and Diagnostics
– year: 2006
  ident: ref9
  publication-title: Medical Imaging Signals and Systems
– ident: ref213
  doi: 10.1038/s41571-019-0252-y
– ident: ref223
  doi: 10.1016/S1470-2045(19)30738-7
– ident: ref154
  doi: 10.1007/978-3-030-05831-9_16
– ident: ref71
  doi: 10.1007/978-3-030-00934-2_53
– ident: ref122
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: ref172
  doi: 10.1007/978-3-030-00937-3_71
– ident: ref182
  doi: 10.1007/978-3-319-46723-8_55
– start-page: 234
  year: 2015
  ident: ref38
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput Assist Intervent (MICCAI)
– ident: ref238
  doi: 10.1148/radiol.10092437
– ident: ref106
  doi: 10.3109/15412550903499522
– year: 2019
  ident: ref185
  article-title: A large annotated medical image dataset for the development and evaluation of segmentation algorithms
  publication-title: arXiv 1902 09063
– ident: ref53
  doi: 10.1109/CVPR.2018.00716
– ident: ref189
  doi: 10.1148/radiol.2019190512
SSID ssj0003563
Score 2.7412953
Snippet Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging...
Since its renaissance, deep learning (DL) has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 820
SubjectTerms Annotations
Artificial intelligence
Biomedical imaging
Case studies
Clinical diagnosis
Computed tomography
Computer architecture
Deep learning
Deep learning (DL)
Digital imaging
Diseases
Image segmentation
Literature reviews
Medical diagnostic imaging
Medical imaging
Medical services
Network architecture
survey
Trends
Title A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises
URI https://ieeexplore.ieee.org/document/9363915
https://www.ncbi.nlm.nih.gov/pubmed/37786449
https://www.proquest.com/docview/2519972033
https://www.proquest.com/docview/2872181568
https://pubmed.ncbi.nlm.nih.gov/PMC10544772
Volume 109
WOSCitedRecordID wos000645896700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2iQd44Gt8FMYUJN64bu0lbRLepoMTIDROCMS9VW3jbieN3rTr8U_wT2OnubJDExJvkeJWaW3Hduz8DPCqko2zWSljtErGCtM6LkvaDLOsbMg_Ni5B37Xkkz49NfO5ne3AaLgLg4i--AyPeOhz-W5Zr_mo7NjKnPHMd2FXa93f1Rp2XZmFrmkpKTCp4eaCTGKPP86-fJ5QKDhOj0i6yQInW0bId1W5ycH8u07ymuGZ3vu_Jd-Hu8HBFCe9RDyAHWwfwp1rsIP78OtE9CkBsWzEW8RLEVBWz8SiFSF1Iz788A2M3mwGgszaoluNxJ_TeNFX1I7EhGyhCCWJ4vuiOxczrvuiXVRwIckFnwAQWdk6MfUgJjxPEoarR_Bt-u7r5H0cmjLENcV-Xcw1NMaapNLocqkbVVYOdVVXOE4RlXFpWpkyI86PnTJNLkuTIU3rWpIz6Gr5GPbaZYtPQThy7Gtd6aZKOQrKbK5cKhmQLHFV7sYRpBsuFXVALOfGGReFj1wSW3jOFszZInA2gtfDM5c9Xsc_qfeZZQNl4FYEBxthKIJKrwq-4ms5aS0jeDlM06_iDEvZ4nJNNEazy5TlJoInvewM75aM1KeUjcBsSdVAwEDf2zPt4twDfpMPrBSFQc9uXu5zuM0f1ZdhHsBed7XGF3Cr_tktVleHpCxzc-iV5TfegRG0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQAIe-BofhQFB4o3r1jRpm_A2HZw2OI4TGmJvVdukrNLoTbse_wT_NHaaKzs0IfEWKW6V1k5sx_bPAK9LURudFCK0WopQWl6FRYGHYZIUNdrHykTWdS2ZZrOZOjnR8y0YDbUw1lqXfGb3aOhi-WZRreiqbF-LlPDMr8H1RMqY99Vaw7krEt83jeMWxo24LpGJ9P6H-ZfPY3QGY76H8o06ONpQQ66vylUm5t-ZkpdUz-Tu_y36HtzxJiY76GXiPmzZ9gHcvgQ8uAO_DlgfFGCLmr2z9px5nNXvrGmZD96wox-uhdHb9YChYmu65Yj9uY9nfU7tiI1RGzKflMi-Nd0pm1PmF56jjFJJzugOAMmK1rCJgzGheZQxu3wIXyfvj8eHoW_LEFbo_XUhZdEoraIysyYVWS2L0tisrEobc2ulMpyXqkiQ97GRqk5FoRKL01kl0Bw0lXgE2-2itU-AGTTtq6zM6pKTH5ToVBouCJIsMmVq4gD4mkt55THLqXXGWe58l0jnjrM5cTb3nA3gzfDMeY_Y8U_qHWLZQOm5FcDuWhhyv6mXORX5agpbiwBeDdP4qyjGUrR2sUIalZHRlKQqgMe97AzvFoTVJ6UOQG1I1UBAUN-bM21z6iC_0QqWEh2hp1cv9yXcPDz-NM2nR7OPz-AWfWCflLkL293Fyj6HG9XPrllevHBb5jfBpxQT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+deep+learning+in+medical+imaging%3A+Imaging+traits%2C+technology+trends%2C+case+studies+with+progress+highlights%2C+and+future+promises&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Zhou%2C+S+Kevin&rft.au=Greenspan%2C+Hayit&rft.au=Davatzikos%2C+Christos&rft.au=Duncan%2C+James+S&rft.date=2021-05-01&rft.issn=0018-9219&rft.volume=109&rft.issue=5&rft.spage=820&rft_id=info:doi/10.1109%2FJPROC.2021.3054390&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon