turboTDDFT 2.0—Hybrid functionals and new algorithms within time-dependent density-functional perturbation theory
We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville–Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute sele...
Saved in:
| Published in: | Computer physics communications Vol. 185; no. 7; pp. 2080 - 2089 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.07.2014
Elsevier |
| Subjects: | |
| ISSN: | 0010-4655, 1879-2944 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville–Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C21O11H21) molecule using the Gaussian 09 and turboTDDFT 1.0 codes.
Program title: turboTDDFT 2.0
Catalogue identifier: AEIX_v2_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIX_v2_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License, version 2
No. of lines in distributed program, including test data, etc.: 5995995
No. of bytes in distributed program, including test data, etc.: 122184812
Distribution format: tar.gz
Programming language: Fortran 95, MPI.
Computer: Any computer architecture.
Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS’s.
Classification: 16.2, 16.6, 7.7.
External routines:
turboTDDFT 2.0 is a tightly integrated component of the Quantum ESPRESSO distribution and requires the standard libraries linked by it: BLAS, LAPACK, FFTW, MPI.
Does the new version supercede the previous version?: Yes
Nature of problem:
Calculation of the optical absorption spectra of molecular systems.
Solution method:
Electronic excited states are addressed by linearized time-dependent density-functional theory within the plane-wave pseudo-potential method. The dynamical polarizability can be computed in terms of the resolvent of the Liouvillian super-operator, using a pseudo-Hermitian variant of the Lanczos recursion scheme. As an alternative, individual eigenvalues of the Liouvillian can be computed via a newly introduced variant of the Davidson method. In both cases, hybrid functionals can now be used.
Reasons for new version:
To implement new features.
Summary of revisions:
New features implemented: 1.Hybrid functionals.2.Pseudo-Hermitian Lanczos recursion algorithm.3.All-new Davidson-like solver for the Liouvillian eigenvalue equation (“Casida equation”).
Restrictions:
Spin-restricted formalism. Linear-response regime. Adiabatic XC kernels only. Hybrid functionals are only accessible using norm-conserving pseudo-potentials.
Unusual features:
No virtual orbitals are used, nor even calculated. Within the Lanczos method a single recursion gives access to the whole optical spectrum; when computing individual excitations using the Davidson method, interior eigenvalues can be easily targeted.
Additional comments:
!!! The distribution file for this program is over 121 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent.
Running time:
From a few minutes for small molecules on serial machines up to many hours on multiple processors for complex nanosystems with hundreds of atoms. |
|---|---|
| AbstractList | We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville–Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C21O11H21) molecule using the Gaussian 09 and turboTDDFT 1.0 codes.
Program title: turboTDDFT 2.0
Catalogue identifier: AEIX_v2_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIX_v2_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License, version 2
No. of lines in distributed program, including test data, etc.: 5995995
No. of bytes in distributed program, including test data, etc.: 122184812
Distribution format: tar.gz
Programming language: Fortran 95, MPI.
Computer: Any computer architecture.
Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS’s.
Classification: 16.2, 16.6, 7.7.
External routines:
turboTDDFT 2.0 is a tightly integrated component of the Quantum ESPRESSO distribution and requires the standard libraries linked by it: BLAS, LAPACK, FFTW, MPI.
Does the new version supercede the previous version?: Yes
Nature of problem:
Calculation of the optical absorption spectra of molecular systems.
Solution method:
Electronic excited states are addressed by linearized time-dependent density-functional theory within the plane-wave pseudo-potential method. The dynamical polarizability can be computed in terms of the resolvent of the Liouvillian super-operator, using a pseudo-Hermitian variant of the Lanczos recursion scheme. As an alternative, individual eigenvalues of the Liouvillian can be computed via a newly introduced variant of the Davidson method. In both cases, hybrid functionals can now be used.
Reasons for new version:
To implement new features.
Summary of revisions:
New features implemented: 1.Hybrid functionals.2.Pseudo-Hermitian Lanczos recursion algorithm.3.All-new Davidson-like solver for the Liouvillian eigenvalue equation (“Casida equation”).
Restrictions:
Spin-restricted formalism. Linear-response regime. Adiabatic XC kernels only. Hybrid functionals are only accessible using norm-conserving pseudo-potentials.
Unusual features:
No virtual orbitals are used, nor even calculated. Within the Lanczos method a single recursion gives access to the whole optical spectrum; when computing individual excitations using the Davidson method, interior eigenvalues can be easily targeted.
Additional comments:
!!! The distribution file for this program is over 121 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent.
Running time:
From a few minutes for small molecules on serial machines up to many hours on multiple processors for complex nanosystems with hundreds of atoms. We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville-Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C21O11H21) molecule using the Gaussian 09 and turboTDDFT 1.0 codes... We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville-Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C21O11H21) molecule using the Gaussian 09 and turboTDDFT 1.0 codes. Program summary Program title: turboTDDFT 2.0 Catalogue identifier: AEIX_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEIX_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 5995995 No. of bytes in distributed program, including test data, etc.: 122184812 Distribution format: tar.gz Programming language: Fortran 95, MPI. Computer: Any computer architecture. Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS's. Classification: 16.2, 16.6, 7.7. External routines: turboTDDFT 2.0 is a tightly integrated component of the Quantum ESPRESSO distribution and requires the standard libraries linked by it: BLAS, LAPACK, FFTW, MPI. Does the new version supercede the previous version?: Yes Nature of problem: Calculation of the optical absorption spectra of molecular systems. Solution method: Electronic excited states are addressed by linearized time-dependent density-functional theory within the plane-wave pseudo-potential method. The dynamical polarizability can be computed in terms of the resolvent of the Liouvillian super-operator, using a pseudo-Hermitian variant of the Lanczos recursion scheme. As an alternative, individual eigenvalues of the Liouvillian can be computed via a newly introduced variant of the Davidson method. In both cases, hybrid functionals can now be used. Reasons for new version: To implement new features. Summary of revisions: New features implemented: Hybrid functionals. Pseudo-Hermitian Lanczos recursion algorithm. All-new Davidson-like solver for the Liouvillian eigenvalue equation ("Casida equation"). Restrictions: Spin-restricted formalism. Linear-response regime. Adiabatic XC kernels only. Hybrid functionals are only accessible using norm-conserving pseudo-potentials. Unusual features: No virtual orbitals are used, nor even calculated. Within the Lanczos method a single recursion gives access to the whole optical spectrum; when computing individual excitations using the Davidson method, interior eigenvalues can be easily targeted. Additional comments: !!! The distribution file for this program is over 121 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: From a few minutes for small molecules on serial machines up to many hours on multiple processors for complex nanosystems with hundreds of atoms. |
| Author | Baroni, Stefano Ge, Xiaochuan Rocca, Dario Binnie, Simon J. Gebauer, Ralph |
| Author_xml | – sequence: 1 givenname: Xiaochuan surname: Ge fullname: Ge, Xiaochuan organization: SISSA–Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy – sequence: 2 givenname: Simon J. surname: Binnie fullname: Binnie, Simon J. organization: SISSA–Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy – sequence: 3 givenname: Dario surname: Rocca fullname: Rocca, Dario organization: Université de Lorraine, CRM2, UMR 7036, Institut Jean Barriol, 54506 Vandoeuvre-lès-Nancy, France – sequence: 4 givenname: Ralph surname: Gebauer fullname: Gebauer, Ralph organization: ICTP–The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy – sequence: 5 givenname: Stefano surname: Baroni fullname: Baroni, Stefano email: baroni@sissa.it organization: SISSA–Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy |
| BackLink | https://hal.univ-lorraine.fr/hal-01521317$$DView record in HAL |
| BookMark | eNp9kc9uEzEQhy1UJNLCA3DzEQ67Hf_ZrFecqpYSpEhcwtnyemeJo4292E6r3HgInpAnwWlASBx68cjW983Y_l2SCx88EvKWQc2ALa93tZ1tzYHJGkQN0LwgC6baruKdlBdkAcCgksumeUUuU9oBQNt2YkFSPsQ-bO7u7jeU1_Drx8_VsY9uoOPB2-yCN1Oixg_U4yM107cQXd7uE30sxXma3R6rAWf0A_pMy5JcPlb_ZDpjPI0wpy3NWwzx-Jq8HEtbfPOnXpGv9x83t6tq_eXT59ubdWUltLlqoVMG2GAFdmoUTAE2alS8F1wO_dKwUam-lwOXxgLYnhembyV0DA0HZcQVeX_uuzWTnqPbm3jUwTi9ulnr0xmwhjPB2gdW2Hdndo7h-wFT1nuXLE6T8RgOSbOl5JwpIZqCtmfUxpBSxFFbl5_el6Nxk2agT5HonS6R6FMkGoQukRST_Wf-vdVzzoezg-WnHhxGnaxDb3FwEW3WQ3DP2L8B78Gn7A |
| CitedBy_id | crossref_primary_10_1038_s41598_022_23658_z crossref_primary_10_1002_ejic_201701392 crossref_primary_10_1016_j_jpcs_2019_109244 crossref_primary_10_3390_cryst13040600 crossref_primary_10_3390_molecules29112625 crossref_primary_10_1088_1361_648X_aa8f79 crossref_primary_10_1103_PhysRevX_6_041002 crossref_primary_10_1080_10584587_2018_1445351 crossref_primary_10_1039_D1SC00503K crossref_primary_10_1103_y1dn_m6pc crossref_primary_10_1002_cphc_201900824 crossref_primary_10_1016_j_ppnp_2024_104144 crossref_primary_10_1038_srep40230 crossref_primary_10_3390_photonics7030078 crossref_primary_10_1007_s10853_024_10455_4 crossref_primary_10_1039_C6CP00367B crossref_primary_10_1088_2516_1075_accb23 crossref_primary_10_1002_cssc_202401977 crossref_primary_10_1016_j_physb_2024_416230 crossref_primary_10_1016_j_physe_2020_114602 crossref_primary_10_1016_j_physe_2020_114306 crossref_primary_10_1073_pnas_1800234115 crossref_primary_10_1016_j_cplett_2014_09_025 crossref_primary_10_1021_acs_jctc_5c00818 crossref_primary_10_1140_epjb_e2018_90247_9 crossref_primary_10_1088_2516_1075_abfd1f crossref_primary_10_1007_s00339_024_07959_w crossref_primary_10_1063_5_0263947 crossref_primary_10_1016_j_cpc_2022_108500 crossref_primary_10_1063_5_0077415 crossref_primary_10_1021_acs_jctc_5c00452 crossref_primary_10_1016_j_cpc_2015_05_021 |
| Cites_doi | 10.1063/1.3494540 10.1103/PhysRevLett.77.3865 10.1016/0029-5582(60)90048-1 10.1103/PhysRevB.85.045116 10.1063/1.3068658 10.1016/S0009-2614(99)01149-5 10.1063/1.2786999 10.1063/1.464304 10.1063/1.3326226 10.1103/PhysRevLett.96.113001 10.1016/j.cpc.2011.04.020 10.1103/RevModPhys.74.601 10.1063/1.1540109 10.1016/0021-9991(75)90065-0 10.1063/1.1489072 10.1063/1.1590951 10.1103/PhysRevB.87.205110 10.1103/PhysRevLett.52.997 10.1016/j.commatsci.2011.02.021 10.1063/1.2899649 10.1021/cr200107z 10.1063/1.1418246 10.1016/0021-9991(82)90104-8 10.1103/RevModPhys.73.515 10.1103/PhysRevLett.58.1861 10.1103/RevModPhys.36.844 10.1063/1.477483 10.1063/1.478522 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D 1XC |
| DOI | 10.1016/j.cpc.2014.03.005 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 2089 |
| ExternalDocumentID | oai:HAL:hal-01521317v1 10_1016_j_cpc_2014_03_005 S001046551400085X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7U5 8FD H8D JQ2 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c407t-7098a01dc3e98f3180e58f82b324db6a1f88bb4d24ac00cb2f31b74091ea208a3 |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337768700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 |
| IngestDate | Wed Nov 05 07:18:44 EST 2025 Sat Sep 27 23:45:02 EDT 2025 Sat Nov 29 03:58:08 EST 2025 Tue Nov 18 21:44:06 EST 2025 Fri Feb 23 02:30:56 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Davidson diagonalization Hybrid functionals Lanczos recursion Pseudo-Hermitian matrix TDDFT |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c407t-7098a01dc3e98f3180e58f82b324db6a1f88bb4d24ac00cb2f31b74091ea208a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2122-6933 |
| OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/106377 |
| PQID | 1642218335 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01521317v1 proquest_miscellaneous_1642218335 crossref_citationtrail_10_1016_j_cpc_2014_03_005 crossref_primary_10_1016_j_cpc_2014_03_005 elsevier_sciencedirect_doi_10_1016_j_cpc_2014_03_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-01 |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Giannozzi, Baroni (br000040) 2009; 21 Grüning, Marini, Gonze (br000085) 2011; 50 Baroni, de Gironcoli, Dal Corso, Giannozzi (br000100) 2001; 73 Hutter (br000140) 2003; 118 Hirata, Head-Gordon (br000150) 1999; 314 Becke (br000070) 1993; 98 Baroni, Giannozzi, Testa (br000095) 1987; 58 The pseudopotentials adopted in these benchmarks are Walker, Saitta, Gebauer, Baroni (br000015) 2006; 128 Tretiak, Isborn, Niklasson, Challacombe (br000145) 2009; 130 and Walker, Gebauer (br000165) 2007; 127 Baroni, Gebauer, Malcıoğlu, Saad, Umari, Xian (br000025) 2010; 22 S. Baroni, R. Gebauer, Ref. Dreuw, Weisman, Head-Gordon (br000050) 2003; 119 Rocca, Lu, Galli (br000055) 2010; 133 McLachlan, Ball (br000075) 1964; 36 Adamo, Barone (br000115) 1999; 110 Thouless (br000125) 1960; 21 Cohen, Mori-Sánchez, Yang (br000045) 2012; 112 Onida, Reining, Rubio (br000065) 2002; 74 Stratmann, Scuseria, Frisch (br000175) 1998; 109 Perdew, Burke, Ernzerhof (br000160) 1996; 77 (br000010) 2012; vol. 837 Mostafazadeh (br000130) 2002; 43 ) Malcıoğlu, Gebauer, Rocca, Baroni (br000035) 2011; 182 , Rocca, Ping, Gebauer, Galli (br000080) 2012; 85 Marsili, Umari (br000110) 2013; 87 Ghosh, Gebauer (br000060) 2010; 132 for H, C, and O atoms using the PBE (PBE0) functional. Golub, Loan (br000105) 1996 Mostafazadeh (br000135) 2002; 43 Perdew, Burke, Ernzerhof (br000120) 1996; 77 Rettrup (br000155) 1982; 45 Davidson (br000090) 1975; 17 Runge, Gross (br000005) 1984; 52 Rocca, Gebauer, Saad, Baroni (br000020) 2008; 128 pp. 375–390 (Chapter 19). Hirata (10.1016/j.cpc.2014.03.005_br000150) 1999; 314 Dreuw (10.1016/j.cpc.2014.03.005_br000050) 2003; 119 Ghosh (10.1016/j.cpc.2014.03.005_br000060) 2010; 132 Becke (10.1016/j.cpc.2014.03.005_br000070) 1993; 98 Adamo (10.1016/j.cpc.2014.03.005_br000115) 1999; 110 Perdew (10.1016/j.cpc.2014.03.005_br000120) 1996; 77 Baroni (10.1016/j.cpc.2014.03.005_br000025) 2010; 22 Walker (10.1016/j.cpc.2014.03.005_br000015) 2006; 128 Onida (10.1016/j.cpc.2014.03.005_br000065) 2002; 74 Baroni (10.1016/j.cpc.2014.03.005_br000100) 2001; 73 (10.1016/j.cpc.2014.03.005_br000010) 2012; vol. 837 Rocca (10.1016/j.cpc.2014.03.005_br000080) 2012; 85 Rettrup (10.1016/j.cpc.2014.03.005_br000155) 1982; 45 Malcıoğlu (10.1016/j.cpc.2014.03.005_br000035) 2011; 182 Davidson (10.1016/j.cpc.2014.03.005_br000090) 1975; 17 Hutter (10.1016/j.cpc.2014.03.005_br000140) 2003; 118 Perdew (10.1016/j.cpc.2014.03.005_br000160) 1996; 77 Rocca (10.1016/j.cpc.2014.03.005_br000020) 2008; 128 Rocca (10.1016/j.cpc.2014.03.005_br000055) 2010; 133 Cohen (10.1016/j.cpc.2014.03.005_br000045) 2012; 112 Mostafazadeh (10.1016/j.cpc.2014.03.005_br000130) 2002; 43 Grüning (10.1016/j.cpc.2014.03.005_br000085) 2011; 50 Mostafazadeh (10.1016/j.cpc.2014.03.005_br000135) 2002; 43 Walker (10.1016/j.cpc.2014.03.005_br000165) 2007; 127 Baroni (10.1016/j.cpc.2014.03.005_br000095) 1987; 58 Golub (10.1016/j.cpc.2014.03.005_br000105) 1996 Stratmann (10.1016/j.cpc.2014.03.005_br000175) 1998; 109 10.1016/j.cpc.2014.03.005_br000030 Giannozzi (10.1016/j.cpc.2014.03.005_br000040) 2009; 21 10.1016/j.cpc.2014.03.005_br000170 Runge (10.1016/j.cpc.2014.03.005_br000005) 1984; 52 Marsili (10.1016/j.cpc.2014.03.005_br000110) 2013; 87 McLachlan (10.1016/j.cpc.2014.03.005_br000075) 1964; 36 Thouless (10.1016/j.cpc.2014.03.005_br000125) 1960; 21 Tretiak (10.1016/j.cpc.2014.03.005_br000145) 2009; 130 |
| References_xml | – volume: 58 start-page: 1861 year: 1987 ident: br000095 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: br000160 publication-title: Phys. Ref. Lett. – volume: 36 start-page: 844 year: 1964 end-page: 855 ident: br000075 publication-title: Rev. Modern Phys. – volume: 43 start-page: 205 year: 2002 ident: br000130 publication-title: J. Math. Phys. – start-page: 503 year: 1996 ident: br000105 article-title: Matrix Computations – reference: ), – volume: 21 start-page: 395502 year: 2009 ident: br000040 publication-title: J. Phys.: Condens. Matter. – volume: vol. 837 year: 2012 ident: br000010 publication-title: Fundamentals of Time-Dependent Density Functional Theory – volume: 50 start-page: 2148 year: 2011 end-page: 2156 ident: br000085 publication-title: Comput. Math. Sci. – volume: 87 start-page: 205110 year: 2013 ident: br000110 publication-title: Phys. Rev. B – reference: . The pseudopotentials adopted in these benchmarks are – reference: ( – volume: 43 start-page: 3944 year: 2002 ident: br000135 publication-title: J. Math. Phys. – volume: 118 start-page: 3928 year: 2003 end-page: 3934 ident: br000140 publication-title: J. Chem. Phys. – volume: 182 start-page: 1744 year: 2011 end-page: 1754 ident: br000035 publication-title: Comput. Phys. Commun. – volume: 98 start-page: 1372 year: 1993 end-page: 1377 ident: br000070 publication-title: J. Chem. Phys. – volume: 112 start-page: 289 year: 2012 end-page: 320 ident: br000045 publication-title: Chem. Rev. – volume: 17 start-page: 87 year: 1975 end-page: 94 ident: br000090 publication-title: J. Comput. Phys. – reference: S. Baroni, R. Gebauer, Ref. – volume: 22 start-page: 074204 year: 2010 ident: br000025 publication-title: J. Phys.: Condens. Matter. – reference: ), for H, C, and O atoms using the PBE (PBE0) functional. – volume: 109 start-page: 8218 year: 1998 ident: br000175 publication-title: J. Chem. Phys. – volume: 132 start-page: 104102 year: 2010 ident: br000060 publication-title: J. Chem. Phys. – volume: 110 start-page: 6158 year: 1999 ident: br000115 publication-title: J. Chem. Phys. – volume: 85 start-page: 045116 year: 2012 ident: br000080 publication-title: Phys. Rev. B – volume: 128 start-page: 113001 year: 2006 ident: br000015 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 3865 year: 1996 ident: br000120 publication-title: Phys. Rev. Lett. – reference: ), and – volume: 127 start-page: 164106 year: 2007 ident: br000165 publication-title: J. Chem. Phys. – volume: 133 start-page: 164109 year: 2010 ident: br000055 publication-title: J. Chem. Phys. – volume: 52 start-page: 997 year: 1984 ident: br000005 publication-title: Phys. Rev. Lett. – volume: 314 start-page: 291 year: 1999 ident: br000150 publication-title: Chem. Phys. Lett. – volume: 130 start-page: 54111 year: 2009 ident: br000145 publication-title: J. Chem. Phys. – volume: 73 start-page: 515 year: 2001 ident: br000100 publication-title: Rev. Modern Phys. – volume: 45 start-page: 100 year: 1982 ident: br000155 publication-title: J. Comput. Phys. – volume: 21 start-page: 225 year: 1960 end-page: 232 ident: br000125 publication-title: Nuclear Phys. – volume: 119 start-page: 2943 year: 2003 ident: br000050 publication-title: J. Chem. Phys. – volume: 128 start-page: 154105 year: 2008 ident: br000020 publication-title: J. Chem. Phys. – volume: 74 start-page: 601 year: 2002 end-page: 659 ident: br000065 publication-title: Rev. Modern Phys. – reference: , pp. 375–390 (Chapter 19). – reference: , ( – volume: 133 start-page: 164109 issue: 16 year: 2010 ident: 10.1016/j.cpc.2014.03.005_br000055 publication-title: J. Chem. Phys. doi: 10.1063/1.3494540 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.cpc.2014.03.005_br000120 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.cpc.2014.03.005_br000160 publication-title: Phys. Ref. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 22 start-page: 074204 year: 2010 ident: 10.1016/j.cpc.2014.03.005_br000025 publication-title: J. Phys.: Condens. Matter. – volume: 21 start-page: 225 year: 1960 ident: 10.1016/j.cpc.2014.03.005_br000125 publication-title: Nuclear Phys. doi: 10.1016/0029-5582(60)90048-1 – volume: 85 start-page: 045116 year: 2012 ident: 10.1016/j.cpc.2014.03.005_br000080 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.045116 – volume: 130 start-page: 54111 year: 2009 ident: 10.1016/j.cpc.2014.03.005_br000145 publication-title: J. Chem. Phys. doi: 10.1063/1.3068658 – volume: 314 start-page: 291 year: 1999 ident: 10.1016/j.cpc.2014.03.005_br000150 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01149-5 – volume: 127 start-page: 164106 year: 2007 ident: 10.1016/j.cpc.2014.03.005_br000165 publication-title: J. Chem. Phys. doi: 10.1063/1.2786999 – volume: 98 start-page: 1372 issue: 2 year: 1993 ident: 10.1016/j.cpc.2014.03.005_br000070 publication-title: J. Chem. Phys. doi: 10.1063/1.464304 – volume: 21 start-page: 395502 issue: 39 year: 2009 ident: 10.1016/j.cpc.2014.03.005_br000040 publication-title: J. Phys.: Condens. Matter. – volume: 132 start-page: 104102 year: 2010 ident: 10.1016/j.cpc.2014.03.005_br000060 publication-title: J. Chem. Phys. doi: 10.1063/1.3326226 – volume: 128 start-page: 113001 year: 2006 ident: 10.1016/j.cpc.2014.03.005_br000015 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.113001 – volume: 182 start-page: 1744 issue: 8 year: 2011 ident: 10.1016/j.cpc.2014.03.005_br000035 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2011.04.020 – volume: 74 start-page: 601 year: 2002 ident: 10.1016/j.cpc.2014.03.005_br000065 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.74.601 – volume: 118 start-page: 3928 year: 2003 ident: 10.1016/j.cpc.2014.03.005_br000140 publication-title: J. Chem. Phys. doi: 10.1063/1.1540109 – volume: 17 start-page: 87 year: 1975 ident: 10.1016/j.cpc.2014.03.005_br000090 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(75)90065-0 – volume: 43 start-page: 3944 year: 2002 ident: 10.1016/j.cpc.2014.03.005_br000135 publication-title: J. Math. Phys. doi: 10.1063/1.1489072 – volume: 119 start-page: 2943 year: 2003 ident: 10.1016/j.cpc.2014.03.005_br000050 publication-title: J. Chem. Phys. doi: 10.1063/1.1590951 – volume: 87 start-page: 205110 year: 2013 ident: 10.1016/j.cpc.2014.03.005_br000110 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.205110 – volume: 52 start-page: 997 year: 1984 ident: 10.1016/j.cpc.2014.03.005_br000005 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.997 – volume: 50 start-page: 2148 year: 2011 ident: 10.1016/j.cpc.2014.03.005_br000085 publication-title: Comput. Math. Sci. doi: 10.1016/j.commatsci.2011.02.021 – volume: 128 start-page: 154105 issue: 15 year: 2008 ident: 10.1016/j.cpc.2014.03.005_br000020 publication-title: J. Chem. Phys. doi: 10.1063/1.2899649 – volume: vol. 837 year: 2012 ident: 10.1016/j.cpc.2014.03.005_br000010 – ident: 10.1016/j.cpc.2014.03.005_br000030 – volume: 112 start-page: 289 year: 2012 ident: 10.1016/j.cpc.2014.03.005_br000045 publication-title: Chem. Rev. doi: 10.1021/cr200107z – volume: 43 start-page: 205 year: 2002 ident: 10.1016/j.cpc.2014.03.005_br000130 publication-title: J. Math. Phys. doi: 10.1063/1.1418246 – volume: 45 start-page: 100 year: 1982 ident: 10.1016/j.cpc.2014.03.005_br000155 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(82)90104-8 – volume: 73 start-page: 515 year: 2001 ident: 10.1016/j.cpc.2014.03.005_br000100 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.73.515 – volume: 58 start-page: 1861 year: 1987 ident: 10.1016/j.cpc.2014.03.005_br000095 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.1861 – start-page: 503 year: 1996 ident: 10.1016/j.cpc.2014.03.005_br000105 – volume: 36 start-page: 844 year: 1964 ident: 10.1016/j.cpc.2014.03.005_br000075 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.36.844 – volume: 109 start-page: 8218 year: 1998 ident: 10.1016/j.cpc.2014.03.005_br000175 publication-title: J. Chem. Phys. doi: 10.1063/1.477483 – volume: 110 start-page: 6158 year: 1999 ident: 10.1016/j.cpc.2014.03.005_br000115 publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – ident: 10.1016/j.cpc.2014.03.005_br000170 |
| SSID | ssj0007793 |
| Score | 2.411688 |
| Snippet | We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the... We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2080 |
| SubjectTerms | Algorithms Chemical Sciences Computation Cristallography Davidson diagonalization Eigenvalues Functionals Hybrid functionals Lanczos recursion Mathematical analysis Perturbation theory Pseudo-Hermitian matrix Recursion Summaries TDDFT |
| Title | turboTDDFT 2.0—Hybrid functionals and new algorithms within time-dependent density-functional perturbation theory |
| URI | https://dx.doi.org/10.1016/j.cpc.2014.03.005 https://www.proquest.com/docview/1642218335 https://hal.univ-lorraine.fr/hal-01521317 |
| Volume | 185 |
| WOSCitedRecordID | wos000337768700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLZYu0l7mXbV2E3etKehoCQ4sfPIRhntEEIqk3iz7MQpVDQwCKj9rfszO8bOpd1WdQ97icDEhvh8-Hw-PheEPjKWCJkE-mjQTx0Sh6EjJVWO1yGB8tM0FWQfKDykoxGbTqNxo_GziIXZLWiWscvLaPVfRQ1tIGwdOvsP4i4HhQZ4DUKHK4gdrncSPOgQuZz0ev1Jy2-7rcGVjslqaf1lzH4mKTOw6ZZYnC3X83x2YULctMfj_EI5RV3cvJVo7_b8yqk66zTH-gsMbPIisL9KdmCLRFiLyUa7rFcBKCV__7o3o07nYhnPthU-P8-zzJyXnAKEstZJuzoPAgwYH_y18Rwzw0ixtcWbddBw3YThkdLd1drVLAmor9OgHXRmN6OlzNLMaOT4kckWWa3dQQ2ktL4Su6ZClNXq8Db6o8YwxovzdrzSCS09YlLeBpV6LFwCBt1TPu71-fB49O36pzWXxkF3CNeZWMDzATECcraDrfmhT4MItMZh9_hoelISBUptTmj7sMWh-9798Mbv-RttujfT_rs3aMSeG00eo0d2U4O7BoxPUENlT9GDsYHAM_SjgiQGSGIDSVyDJAZIYoAkriCJDSTxdUji3yGJ65DEBpLP0ff-0eTLwLGlPpyYuDR3qBsx4XpJ3FERS0HPuCpgKfMl8P1EhsJLGZOSJD4RsevG0od7JCVAdpUA0YrOC3SQLTP1EuHQjdJYED-JgOqngjEVyzCSNJC-YjTxmsgtZpLHNg--Lsey4IXD4zmHyed68rnb4TD5TfSp7LIySWBuu5kU4uGWxRp2ygFyt3X7AKIsh9dZ3wFMXLdVUGqi94WkOagBfbYnMrXcbrgXEl_vdjrBq7sM9Bo9rP6Ib9BBvt6qt-h-vMvnm_U7C9RfpQbWFA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=turboTDDFT+2.0+Hybrid+functionals+and+new+algorithms+within+time-dependent+density-functional+perturbation+theory&rft.jtitle=Computer+physics+communications&rft.au=Ge%2C+Xiaochuan&rft.au=Binnie%2C+Simon+J.&rft.au=Rocca%2C+Dario&rft.au=Gebauer%2C+Ralph&rft.date=2014-07-01&rft.pub=Elsevier&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=185&rft.issue=7&rft.spage=2080&rft.epage=2089&rft_id=info:doi/10.1016%2Fj.cpc.2014.03.005&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01521317v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |