turboTDDFT 2.0—Hybrid functionals and new algorithms within time-dependent density-functional perturbation theory

We present a new release of the turboTDDFT  code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville–Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute sele...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer physics communications Ročník 185; číslo 7; s. 2080 - 2089
Hlavní autoři: Ge, Xiaochuan, Binnie, Simon J., Rocca, Dario, Gebauer, Ralph, Baroni, Stefano
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2014
Elsevier
Témata:
ISSN:0010-4655, 1879-2944
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a new release of the turboTDDFT  code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville–Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C21O11H21) molecule using the Gaussian 09 and turboTDDFT  1.0 codes. Program title: turboTDDFT 2.0 Catalogue identifier: AEIX_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIX_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 5995995 No. of bytes in distributed program, including test data, etc.: 122184812 Distribution format: tar.gz Programming language: Fortran 95, MPI. Computer: Any computer architecture. Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS’s. Classification: 16.2, 16.6, 7.7. External routines: turboTDDFT 2.0 is a tightly integrated component of the Quantum ESPRESSO distribution and requires the standard libraries linked by it: BLAS, LAPACK, FFTW, MPI. Does the new version supercede the previous version?: Yes Nature of problem: Calculation of the optical absorption spectra of molecular systems. Solution method: Electronic excited states are addressed by linearized time-dependent density-functional theory within the plane-wave pseudo-potential method. The dynamical polarizability can be computed in terms of the resolvent of the Liouvillian super-operator, using a pseudo-Hermitian variant of the Lanczos recursion scheme. As an alternative, individual eigenvalues of the Liouvillian can be computed via a newly introduced variant of the Davidson method. In both cases, hybrid functionals can now be used. Reasons for new version: To implement new features. Summary of revisions: New features implemented: 1.Hybrid functionals.2.Pseudo-Hermitian Lanczos recursion algorithm.3.All-new Davidson-like solver for the Liouvillian eigenvalue equation (“Casida equation”). Restrictions: Spin-restricted formalism. Linear-response regime. Adiabatic XC kernels only. Hybrid functionals are only accessible using norm-conserving pseudo-potentials. Unusual features: No virtual orbitals are used, nor even calculated. Within the Lanczos method a single recursion gives access to the whole optical spectrum; when computing individual excitations using the Davidson method, interior eigenvalues can be easily targeted. Additional comments: !!! The distribution file for this program is over 121 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: From a few minutes for small molecules on serial machines up to many hours on multiple processors for complex nanosystems with hundreds of atoms.
AbstractList We present a new release of the turboTDDFT  code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville–Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C21O11H21) molecule using the Gaussian 09 and turboTDDFT  1.0 codes. Program title: turboTDDFT 2.0 Catalogue identifier: AEIX_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIX_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 5995995 No. of bytes in distributed program, including test data, etc.: 122184812 Distribution format: tar.gz Programming language: Fortran 95, MPI. Computer: Any computer architecture. Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS’s. Classification: 16.2, 16.6, 7.7. External routines: turboTDDFT 2.0 is a tightly integrated component of the Quantum ESPRESSO distribution and requires the standard libraries linked by it: BLAS, LAPACK, FFTW, MPI. Does the new version supercede the previous version?: Yes Nature of problem: Calculation of the optical absorption spectra of molecular systems. Solution method: Electronic excited states are addressed by linearized time-dependent density-functional theory within the plane-wave pseudo-potential method. The dynamical polarizability can be computed in terms of the resolvent of the Liouvillian super-operator, using a pseudo-Hermitian variant of the Lanczos recursion scheme. As an alternative, individual eigenvalues of the Liouvillian can be computed via a newly introduced variant of the Davidson method. In both cases, hybrid functionals can now be used. Reasons for new version: To implement new features. Summary of revisions: New features implemented: 1.Hybrid functionals.2.Pseudo-Hermitian Lanczos recursion algorithm.3.All-new Davidson-like solver for the Liouvillian eigenvalue equation (“Casida equation”). Restrictions: Spin-restricted formalism. Linear-response regime. Adiabatic XC kernels only. Hybrid functionals are only accessible using norm-conserving pseudo-potentials. Unusual features: No virtual orbitals are used, nor even calculated. Within the Lanczos method a single recursion gives access to the whole optical spectrum; when computing individual excitations using the Davidson method, interior eigenvalues can be easily targeted. Additional comments: !!! The distribution file for this program is over 121 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: From a few minutes for small molecules on serial machines up to many hours on multiple processors for complex nanosystems with hundreds of atoms.
We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville-Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C21O11H21) molecule using the Gaussian 09 and turboTDDFT 1.0 codes...
We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville-Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C21O11H21) molecule using the Gaussian 09 and turboTDDFT 1.0 codes. Program summary Program title: turboTDDFT 2.0 Catalogue identifier: AEIX_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEIX_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 5995995 No. of bytes in distributed program, including test data, etc.: 122184812 Distribution format: tar.gz Programming language: Fortran 95, MPI. Computer: Any computer architecture. Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS's. Classification: 16.2, 16.6, 7.7. External routines: turboTDDFT 2.0 is a tightly integrated component of the Quantum ESPRESSO distribution and requires the standard libraries linked by it: BLAS, LAPACK, FFTW, MPI. Does the new version supercede the previous version?: Yes Nature of problem: Calculation of the optical absorption spectra of molecular systems. Solution method: Electronic excited states are addressed by linearized time-dependent density-functional theory within the plane-wave pseudo-potential method. The dynamical polarizability can be computed in terms of the resolvent of the Liouvillian super-operator, using a pseudo-Hermitian variant of the Lanczos recursion scheme. As an alternative, individual eigenvalues of the Liouvillian can be computed via a newly introduced variant of the Davidson method. In both cases, hybrid functionals can now be used. Reasons for new version: To implement new features. Summary of revisions: New features implemented: Hybrid functionals. Pseudo-Hermitian Lanczos recursion algorithm. All-new Davidson-like solver for the Liouvillian eigenvalue equation ("Casida equation"). Restrictions: Spin-restricted formalism. Linear-response regime. Adiabatic XC kernels only. Hybrid functionals are only accessible using norm-conserving pseudo-potentials. Unusual features: No virtual orbitals are used, nor even calculated. Within the Lanczos method a single recursion gives access to the whole optical spectrum; when computing individual excitations using the Davidson method, interior eigenvalues can be easily targeted. Additional comments: !!! The distribution file for this program is over 121 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: From a few minutes for small molecules on serial machines up to many hours on multiple processors for complex nanosystems with hundreds of atoms.
Author Baroni, Stefano
Ge, Xiaochuan
Rocca, Dario
Binnie, Simon J.
Gebauer, Ralph
Author_xml – sequence: 1
  givenname: Xiaochuan
  surname: Ge
  fullname: Ge, Xiaochuan
  organization: SISSA–Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
– sequence: 2
  givenname: Simon J.
  surname: Binnie
  fullname: Binnie, Simon J.
  organization: SISSA–Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
– sequence: 3
  givenname: Dario
  surname: Rocca
  fullname: Rocca, Dario
  organization: Université de Lorraine, CRM2, UMR 7036, Institut Jean Barriol, 54506 Vandoeuvre-lès-Nancy, France
– sequence: 4
  givenname: Ralph
  surname: Gebauer
  fullname: Gebauer, Ralph
  organization: ICTP–The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
– sequence: 5
  givenname: Stefano
  surname: Baroni
  fullname: Baroni, Stefano
  email: baroni@sissa.it
  organization: SISSA–Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
BackLink https://hal.univ-lorraine.fr/hal-01521317$$DView record in HAL
BookMark eNp9kc9uEzEQhy1UJNLCA3DzEQ67Hf_ZrFecqpYSpEhcwtnyemeJo4292E6r3HgInpAnwWlASBx68cjW983Y_l2SCx88EvKWQc2ALa93tZ1tzYHJGkQN0LwgC6baruKdlBdkAcCgksumeUUuU9oBQNt2YkFSPsQ-bO7u7jeU1_Drx8_VsY9uoOPB2-yCN1Oixg_U4yM107cQXd7uE30sxXma3R6rAWf0A_pMy5JcPlb_ZDpjPI0wpy3NWwzx-Jq8HEtbfPOnXpGv9x83t6tq_eXT59ubdWUltLlqoVMG2GAFdmoUTAE2alS8F1wO_dKwUam-lwOXxgLYnhembyV0DA0HZcQVeX_uuzWTnqPbm3jUwTi9ulnr0xmwhjPB2gdW2Hdndo7h-wFT1nuXLE6T8RgOSbOl5JwpIZqCtmfUxpBSxFFbl5_el6Nxk2agT5HonS6R6FMkGoQukRST_Wf-vdVzzoezg-WnHhxGnaxDb3FwEW3WQ3DP2L8B78Gn7A
CitedBy_id crossref_primary_10_1038_s41598_022_23658_z
crossref_primary_10_1002_ejic_201701392
crossref_primary_10_1016_j_jpcs_2019_109244
crossref_primary_10_3390_cryst13040600
crossref_primary_10_3390_molecules29112625
crossref_primary_10_1088_1361_648X_aa8f79
crossref_primary_10_1103_PhysRevX_6_041002
crossref_primary_10_1080_10584587_2018_1445351
crossref_primary_10_1039_D1SC00503K
crossref_primary_10_1103_y1dn_m6pc
crossref_primary_10_1002_cphc_201900824
crossref_primary_10_1016_j_ppnp_2024_104144
crossref_primary_10_1038_srep40230
crossref_primary_10_3390_photonics7030078
crossref_primary_10_1007_s10853_024_10455_4
crossref_primary_10_1039_C6CP00367B
crossref_primary_10_1088_2516_1075_accb23
crossref_primary_10_1002_cssc_202401977
crossref_primary_10_1016_j_physb_2024_416230
crossref_primary_10_1016_j_physe_2020_114602
crossref_primary_10_1016_j_physe_2020_114306
crossref_primary_10_1073_pnas_1800234115
crossref_primary_10_1016_j_cplett_2014_09_025
crossref_primary_10_1021_acs_jctc_5c00818
crossref_primary_10_1140_epjb_e2018_90247_9
crossref_primary_10_1088_2516_1075_abfd1f
crossref_primary_10_1007_s00339_024_07959_w
crossref_primary_10_1063_5_0263947
crossref_primary_10_1016_j_cpc_2022_108500
crossref_primary_10_1063_5_0077415
crossref_primary_10_1021_acs_jctc_5c00452
crossref_primary_10_1016_j_cpc_2015_05_021
Cites_doi 10.1063/1.3494540
10.1103/PhysRevLett.77.3865
10.1016/0029-5582(60)90048-1
10.1103/PhysRevB.85.045116
10.1063/1.3068658
10.1016/S0009-2614(99)01149-5
10.1063/1.2786999
10.1063/1.464304
10.1063/1.3326226
10.1103/PhysRevLett.96.113001
10.1016/j.cpc.2011.04.020
10.1103/RevModPhys.74.601
10.1063/1.1540109
10.1016/0021-9991(75)90065-0
10.1063/1.1489072
10.1063/1.1590951
10.1103/PhysRevB.87.205110
10.1103/PhysRevLett.52.997
10.1016/j.commatsci.2011.02.021
10.1063/1.2899649
10.1021/cr200107z
10.1063/1.1418246
10.1016/0021-9991(82)90104-8
10.1103/RevModPhys.73.515
10.1103/PhysRevLett.58.1861
10.1103/RevModPhys.36.844
10.1063/1.477483
10.1063/1.478522
ContentType Journal Article
Copyright 2014 Elsevier B.V.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.cpc.2014.03.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 2089
ExternalDocumentID oai:HAL:hal-01521317v1
10_1016_j_cpc_2014_03_005
S001046551400085X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c407t-7098a01dc3e98f3180e58f82b324db6a1f88bb4d24ac00cb2f31b74091ea208a3
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337768700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Wed Nov 05 07:18:44 EST 2025
Sat Sep 27 23:45:02 EDT 2025
Sat Nov 29 03:58:08 EST 2025
Tue Nov 18 21:44:06 EST 2025
Fri Feb 23 02:30:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Davidson diagonalization
Hybrid functionals
Lanczos recursion
Pseudo-Hermitian matrix
TDDFT
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-7098a01dc3e98f3180e58f82b324db6a1f88bb4d24ac00cb2f31b74091ea208a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2122-6933
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/106377
PQID 1642218335
PQPubID 23500
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_01521317v1
proquest_miscellaneous_1642218335
crossref_citationtrail_10_1016_j_cpc_2014_03_005
crossref_primary_10_1016_j_cpc_2014_03_005
elsevier_sciencedirect_doi_10_1016_j_cpc_2014_03_005
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Giannozzi, Baroni (br000040) 2009; 21
Grüning, Marini, Gonze (br000085) 2011; 50
Baroni, de Gironcoli, Dal Corso, Giannozzi (br000100) 2001; 73
Hutter (br000140) 2003; 118
Hirata, Head-Gordon (br000150) 1999; 314
Becke (br000070) 1993; 98
Baroni, Giannozzi, Testa (br000095) 1987; 58
The pseudopotentials adopted in these benchmarks are
Walker, Saitta, Gebauer, Baroni (br000015) 2006; 128
Tretiak, Isborn, Niklasson, Challacombe (br000145) 2009; 130
and
Walker, Gebauer (br000165) 2007; 127
Baroni, Gebauer, Malcıoğlu, Saad, Umari, Xian (br000025) 2010; 22
S. Baroni, R. Gebauer, Ref.
Dreuw, Weisman, Head-Gordon (br000050) 2003; 119
Rocca, Lu, Galli (br000055) 2010; 133
McLachlan, Ball (br000075) 1964; 36
Adamo, Barone (br000115) 1999; 110
Thouless (br000125) 1960; 21
Cohen, Mori-Sánchez, Yang (br000045) 2012; 112
Onida, Reining, Rubio (br000065) 2002; 74
Stratmann, Scuseria, Frisch (br000175) 1998; 109
Perdew, Burke, Ernzerhof (br000160) 1996; 77
(br000010) 2012; vol. 837
Mostafazadeh (br000130) 2002; 43
)
Malcıoğlu, Gebauer, Rocca, Baroni (br000035) 2011; 182
,
Rocca, Ping, Gebauer, Galli (br000080) 2012; 85
Marsili, Umari (br000110) 2013; 87
Ghosh, Gebauer (br000060) 2010; 132
for H, C, and O atoms using the PBE (PBE0) functional.
Golub, Loan (br000105) 1996
Mostafazadeh (br000135) 2002; 43
Perdew, Burke, Ernzerhof (br000120) 1996; 77
Rettrup (br000155) 1982; 45
Davidson (br000090) 1975; 17
Runge, Gross (br000005) 1984; 52
Rocca, Gebauer, Saad, Baroni (br000020) 2008; 128
pp. 375–390 (Chapter 19).
Hirata (10.1016/j.cpc.2014.03.005_br000150) 1999; 314
Dreuw (10.1016/j.cpc.2014.03.005_br000050) 2003; 119
Ghosh (10.1016/j.cpc.2014.03.005_br000060) 2010; 132
Becke (10.1016/j.cpc.2014.03.005_br000070) 1993; 98
Adamo (10.1016/j.cpc.2014.03.005_br000115) 1999; 110
Perdew (10.1016/j.cpc.2014.03.005_br000120) 1996; 77
Baroni (10.1016/j.cpc.2014.03.005_br000025) 2010; 22
Walker (10.1016/j.cpc.2014.03.005_br000015) 2006; 128
Onida (10.1016/j.cpc.2014.03.005_br000065) 2002; 74
Baroni (10.1016/j.cpc.2014.03.005_br000100) 2001; 73
(10.1016/j.cpc.2014.03.005_br000010) 2012; vol. 837
Rocca (10.1016/j.cpc.2014.03.005_br000080) 2012; 85
Rettrup (10.1016/j.cpc.2014.03.005_br000155) 1982; 45
Malcıoğlu (10.1016/j.cpc.2014.03.005_br000035) 2011; 182
Davidson (10.1016/j.cpc.2014.03.005_br000090) 1975; 17
Hutter (10.1016/j.cpc.2014.03.005_br000140) 2003; 118
Perdew (10.1016/j.cpc.2014.03.005_br000160) 1996; 77
Rocca (10.1016/j.cpc.2014.03.005_br000020) 2008; 128
Rocca (10.1016/j.cpc.2014.03.005_br000055) 2010; 133
Cohen (10.1016/j.cpc.2014.03.005_br000045) 2012; 112
Mostafazadeh (10.1016/j.cpc.2014.03.005_br000130) 2002; 43
Grüning (10.1016/j.cpc.2014.03.005_br000085) 2011; 50
Mostafazadeh (10.1016/j.cpc.2014.03.005_br000135) 2002; 43
Walker (10.1016/j.cpc.2014.03.005_br000165) 2007; 127
Baroni (10.1016/j.cpc.2014.03.005_br000095) 1987; 58
Golub (10.1016/j.cpc.2014.03.005_br000105) 1996
Stratmann (10.1016/j.cpc.2014.03.005_br000175) 1998; 109
10.1016/j.cpc.2014.03.005_br000030
Giannozzi (10.1016/j.cpc.2014.03.005_br000040) 2009; 21
10.1016/j.cpc.2014.03.005_br000170
Runge (10.1016/j.cpc.2014.03.005_br000005) 1984; 52
Marsili (10.1016/j.cpc.2014.03.005_br000110) 2013; 87
McLachlan (10.1016/j.cpc.2014.03.005_br000075) 1964; 36
Thouless (10.1016/j.cpc.2014.03.005_br000125) 1960; 21
Tretiak (10.1016/j.cpc.2014.03.005_br000145) 2009; 130
References_xml – volume: 58
  start-page: 1861
  year: 1987
  ident: br000095
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: br000160
  publication-title: Phys. Ref. Lett.
– volume: 36
  start-page: 844
  year: 1964
  end-page: 855
  ident: br000075
  publication-title: Rev. Modern Phys.
– volume: 43
  start-page: 205
  year: 2002
  ident: br000130
  publication-title: J. Math. Phys.
– start-page: 503
  year: 1996
  ident: br000105
  article-title: Matrix Computations
– reference: ),
– volume: 21
  start-page: 395502
  year: 2009
  ident: br000040
  publication-title: J. Phys.: Condens. Matter.
– volume: vol. 837
  year: 2012
  ident: br000010
  publication-title: Fundamentals of Time-Dependent Density Functional Theory
– volume: 50
  start-page: 2148
  year: 2011
  end-page: 2156
  ident: br000085
  publication-title: Comput. Math. Sci.
– volume: 87
  start-page: 205110
  year: 2013
  ident: br000110
  publication-title: Phys. Rev. B
– reference: . The pseudopotentials adopted in these benchmarks are
– reference: (
– volume: 43
  start-page: 3944
  year: 2002
  ident: br000135
  publication-title: J. Math. Phys.
– volume: 118
  start-page: 3928
  year: 2003
  end-page: 3934
  ident: br000140
  publication-title: J. Chem. Phys.
– volume: 182
  start-page: 1744
  year: 2011
  end-page: 1754
  ident: br000035
  publication-title: Comput. Phys. Commun.
– volume: 98
  start-page: 1372
  year: 1993
  end-page: 1377
  ident: br000070
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 289
  year: 2012
  end-page: 320
  ident: br000045
  publication-title: Chem. Rev.
– volume: 17
  start-page: 87
  year: 1975
  end-page: 94
  ident: br000090
  publication-title: J. Comput. Phys.
– reference: S. Baroni, R. Gebauer, Ref. 
– volume: 22
  start-page: 074204
  year: 2010
  ident: br000025
  publication-title: J. Phys.: Condens. Matter.
– reference: ), for H, C, and O atoms using the PBE (PBE0) functional.
– volume: 109
  start-page: 8218
  year: 1998
  ident: br000175
  publication-title: J. Chem. Phys.
– volume: 132
  start-page: 104102
  year: 2010
  ident: br000060
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 6158
  year: 1999
  ident: br000115
  publication-title: J. Chem. Phys.
– volume: 85
  start-page: 045116
  year: 2012
  ident: br000080
  publication-title: Phys. Rev. B
– volume: 128
  start-page: 113001
  year: 2006
  ident: br000015
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  ident: br000120
  publication-title: Phys. Rev. Lett.
– reference: ), and
– volume: 127
  start-page: 164106
  year: 2007
  ident: br000165
  publication-title: J. Chem. Phys.
– volume: 133
  start-page: 164109
  year: 2010
  ident: br000055
  publication-title: J. Chem. Phys.
– volume: 52
  start-page: 997
  year: 1984
  ident: br000005
  publication-title: Phys. Rev. Lett.
– volume: 314
  start-page: 291
  year: 1999
  ident: br000150
  publication-title: Chem. Phys. Lett.
– volume: 130
  start-page: 54111
  year: 2009
  ident: br000145
  publication-title: J. Chem. Phys.
– volume: 73
  start-page: 515
  year: 2001
  ident: br000100
  publication-title: Rev. Modern Phys.
– volume: 45
  start-page: 100
  year: 1982
  ident: br000155
  publication-title: J. Comput. Phys.
– volume: 21
  start-page: 225
  year: 1960
  end-page: 232
  ident: br000125
  publication-title: Nuclear Phys.
– volume: 119
  start-page: 2943
  year: 2003
  ident: br000050
  publication-title: J. Chem. Phys.
– volume: 128
  start-page: 154105
  year: 2008
  ident: br000020
  publication-title: J. Chem. Phys.
– volume: 74
  start-page: 601
  year: 2002
  end-page: 659
  ident: br000065
  publication-title: Rev. Modern Phys.
– reference: , pp. 375–390 (Chapter 19).
– reference: , (
– volume: 133
  start-page: 164109
  issue: 16
  year: 2010
  ident: 10.1016/j.cpc.2014.03.005_br000055
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3494540
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.cpc.2014.03.005_br000120
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.cpc.2014.03.005_br000160
  publication-title: Phys. Ref. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 22
  start-page: 074204
  year: 2010
  ident: 10.1016/j.cpc.2014.03.005_br000025
  publication-title: J. Phys.: Condens. Matter.
– volume: 21
  start-page: 225
  year: 1960
  ident: 10.1016/j.cpc.2014.03.005_br000125
  publication-title: Nuclear Phys.
  doi: 10.1016/0029-5582(60)90048-1
– volume: 85
  start-page: 045116
  year: 2012
  ident: 10.1016/j.cpc.2014.03.005_br000080
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.045116
– volume: 130
  start-page: 54111
  year: 2009
  ident: 10.1016/j.cpc.2014.03.005_br000145
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3068658
– volume: 314
  start-page: 291
  year: 1999
  ident: 10.1016/j.cpc.2014.03.005_br000150
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01149-5
– volume: 127
  start-page: 164106
  year: 2007
  ident: 10.1016/j.cpc.2014.03.005_br000165
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2786999
– volume: 98
  start-page: 1372
  issue: 2
  year: 1993
  ident: 10.1016/j.cpc.2014.03.005_br000070
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464304
– volume: 21
  start-page: 395502
  issue: 39
  year: 2009
  ident: 10.1016/j.cpc.2014.03.005_br000040
  publication-title: J. Phys.: Condens. Matter.
– volume: 132
  start-page: 104102
  year: 2010
  ident: 10.1016/j.cpc.2014.03.005_br000060
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3326226
– volume: 128
  start-page: 113001
  year: 2006
  ident: 10.1016/j.cpc.2014.03.005_br000015
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.113001
– volume: 182
  start-page: 1744
  issue: 8
  year: 2011
  ident: 10.1016/j.cpc.2014.03.005_br000035
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.04.020
– volume: 74
  start-page: 601
  year: 2002
  ident: 10.1016/j.cpc.2014.03.005_br000065
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.74.601
– volume: 118
  start-page: 3928
  year: 2003
  ident: 10.1016/j.cpc.2014.03.005_br000140
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1540109
– volume: 17
  start-page: 87
  year: 1975
  ident: 10.1016/j.cpc.2014.03.005_br000090
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(75)90065-0
– volume: 43
  start-page: 3944
  year: 2002
  ident: 10.1016/j.cpc.2014.03.005_br000135
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1489072
– volume: 119
  start-page: 2943
  year: 2003
  ident: 10.1016/j.cpc.2014.03.005_br000050
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1590951
– volume: 87
  start-page: 205110
  year: 2013
  ident: 10.1016/j.cpc.2014.03.005_br000110
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.205110
– volume: 52
  start-page: 997
  year: 1984
  ident: 10.1016/j.cpc.2014.03.005_br000005
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.997
– volume: 50
  start-page: 2148
  year: 2011
  ident: 10.1016/j.cpc.2014.03.005_br000085
  publication-title: Comput. Math. Sci.
  doi: 10.1016/j.commatsci.2011.02.021
– volume: 128
  start-page: 154105
  issue: 15
  year: 2008
  ident: 10.1016/j.cpc.2014.03.005_br000020
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2899649
– volume: vol. 837
  year: 2012
  ident: 10.1016/j.cpc.2014.03.005_br000010
– ident: 10.1016/j.cpc.2014.03.005_br000030
– volume: 112
  start-page: 289
  year: 2012
  ident: 10.1016/j.cpc.2014.03.005_br000045
  publication-title: Chem. Rev.
  doi: 10.1021/cr200107z
– volume: 43
  start-page: 205
  year: 2002
  ident: 10.1016/j.cpc.2014.03.005_br000130
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1418246
– volume: 45
  start-page: 100
  year: 1982
  ident: 10.1016/j.cpc.2014.03.005_br000155
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90104-8
– volume: 73
  start-page: 515
  year: 2001
  ident: 10.1016/j.cpc.2014.03.005_br000100
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.73.515
– volume: 58
  start-page: 1861
  year: 1987
  ident: 10.1016/j.cpc.2014.03.005_br000095
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.1861
– start-page: 503
  year: 1996
  ident: 10.1016/j.cpc.2014.03.005_br000105
– volume: 36
  start-page: 844
  year: 1964
  ident: 10.1016/j.cpc.2014.03.005_br000075
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.36.844
– volume: 109
  start-page: 8218
  year: 1998
  ident: 10.1016/j.cpc.2014.03.005_br000175
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477483
– volume: 110
  start-page: 6158
  year: 1999
  ident: 10.1016/j.cpc.2014.03.005_br000115
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– ident: 10.1016/j.cpc.2014.03.005_br000170
SSID ssj0007793
Score 2.411688
Snippet We present a new release of the turboTDDFT  code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the...
We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2080
SubjectTerms Algorithms
Chemical Sciences
Computation
Cristallography
Davidson diagonalization
Eigenvalues
Functionals
Hybrid functionals
Lanczos recursion
Mathematical analysis
Perturbation theory
Pseudo-Hermitian matrix
Recursion
Summaries
TDDFT
Title turboTDDFT 2.0—Hybrid functionals and new algorithms within time-dependent density-functional perturbation theory
URI https://dx.doi.org/10.1016/j.cpc.2014.03.005
https://www.proquest.com/docview/1642218335
https://hal.univ-lorraine.fr/hal-01521317
Volume 185
WOSCitedRecordID wos000337768700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbKBhI3E7-iDJBBXBGlchIndi4L2ygTmiZRpN5ZceLQTl1atWm13fEQPAsPxJNwXDs_K2xiF9xErWWfpD1ffD7b5wehtyqOFKchc32Zpy5lUeLynEo3pYorlkXa5m6KTbCTEz4axaedzs8qFmY9ZUXBLy7i-X9VNbSBsnXo7C3UXQuFBvgMSocrqB2u_6R4sCFyNjw4OBo6fo9Uzgx0cKljsxxtx8z2n0nODKzaSabfZotJOT43oW7a83FyrtyqPm7pZNrLvbx0m8E63bG-kYFPWQX4N0kPbLEIu3Oy1K7rTSBKzeM_brZTR5Nklo5XDU7fT4rCnJt8ASgVznGvORcCLBhf_IXxIDNiZLKyRZx18HB7K8OjtdtrPT2DUdAJ3a5Oz2ELh6w92RJTBMoabvga_9UomP2Js1461zkrPWqy2oaNBaxO_bcMY-2uWHnCnQkQIbQIQQKxSZ2767MwBoOw2_90ODquOQBjNt2z_UHVefrGs3DrOa5jRHfG2jV3iyFsaM_wAdqz6xXcNzh7iDqqeITunRqtPkbLBm0Y0Pbr-w-DM9zCGQacYcAZbnCGDc7wVZzhP3GG2zjDBmdP0Nejw-GHgWvreMAbT1jpMhLzhHhZGqiY52BEiAp5zn0JZD6TUeLlnEtJM58mKSGp9KGPZBSYrEpAqUnwFO0Us0I9Q5hnsMIPeB6FeU5TL-MgMfSZgp5MBoHfRaT6L0Vqk9zrWitTca0Ou-hdPWRuMrzc1JlWChKWohrqKQBsNw17A8qsxeuU7oP-Z6HbiCbQQOLXXhe9rnQtYI7XB3dJoWarpfAi6uulTBA-v83D7qP7zVv2Au2Ui5V6ie6m63KyXLyykP0NpWLMTA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=turboTDDFT+2.0%E2%80%94Hybrid+functionals+and+new+algorithms+within+time-dependent+density-functional+perturbation+theory&rft.jtitle=Computer+physics+communications&rft.au=Ge%2C+Xiaochuan&rft.au=Binnie%2C+Simon+J.&rft.au=Rocca%2C+Dario&rft.au=Gebauer%2C+Ralph&rft.date=2014-07-01&rft.issn=0010-4655&rft.volume=185&rft.issue=7&rft.spage=2080&rft.epage=2089&rft_id=info:doi/10.1016%2Fj.cpc.2014.03.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2014_03_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon