Multi-omics integration method based on attention deep learning network for biomedical data classification

•Proposed a novel end-to-end Multi-omics attention deep learning network (MOADLN) for biomedical data classification.•MOADLN jointly explores the correlation between patients in intra-omics and the correlation of cross-omics in the label space.•Construct the patient correlation via self-attention in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine Jg. 231; S. 107377
Hauptverfasser: Gong, Ping, Cheng, Lei, Zhang, Zhiyuan, Meng, Ao, Li, Enshuo, Chen, Jie, Zhang, Longzhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ireland Elsevier B.V 01.04.2023
Schlagworte:
ISSN:0169-2607, 1872-7565, 1872-7565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Proposed a novel end-to-end Multi-omics attention deep learning network (MOADLN) for biomedical data classification.•MOADLN jointly explores the correlation between patients in intra-omics and the correlation of cross-omics in the label space.•Construct the patient correlation via self-attention in the latent feature space for omics-specific feature learning. Integrating multi-omics data for the comprehensive analysis of the biological processes in human diseases has become one of the most challenging tasks of bioinformatics. Deep learning (DL) algorithms have recently become one of the most promising multi-omics data integration analysis methods. However, existing DL-based studies almost integrate the multi-omics data by concatenation in the input data space or the learned feature space, ignoring the correlations between patients and omics. We propose a novel multi-omics integration method, called Multi-omics Attention Deep Learning Network (MOADLN), which is used for biomedical data classification. Firstly, for each type of omics data, we use three fully-connected layers and the self-attention mechanism to reduce dimensionality, and construct the correlations between patients, respectively. Then, we apply the feature vector learned from self-attention to generate the initial category labels. Secondly, for the initial label predicted of each omics data, we use an effective Multi-Omics Correlation Discovery Network (MOCDN) to learn the cross-omic correlations in the label space. Finally, we use the softmax classifier for label prediction. We demonstrate that our method outperforms several state-of-the-art methods on two datasets with mRNA expression data, DNA methylation data, and miRNA expression data. In addition, we identified essential biomarkers of relevant diseases by MOADLN, and the generality of MOADLN is also demonstrated in the KIRP and KIRC datasets. MOADLN jointly explores correlations between patients in intra-omics and correlations of cross-omics in label space, which is an effective DL-based classification of biomedical data.
AbstractList Integrating multi-omics data for the comprehensive analysis of the biological processes in human diseases has become one of the most challenging tasks of bioinformatics. Deep learning (DL) algorithms have recently become one of the most promising multi-omics data integration analysis methods. However, existing DL-based studies almost integrate the multi-omics data by concatenation in the input data space or the learned feature space, ignoring the correlations between patients and omics.BACKGROUND AND OBJECTIVEIntegrating multi-omics data for the comprehensive analysis of the biological processes in human diseases has become one of the most challenging tasks of bioinformatics. Deep learning (DL) algorithms have recently become one of the most promising multi-omics data integration analysis methods. However, existing DL-based studies almost integrate the multi-omics data by concatenation in the input data space or the learned feature space, ignoring the correlations between patients and omics.We propose a novel multi-omics integration method, called Multi-omics Attention Deep Learning Network (MOADLN), which is used for biomedical data classification. Firstly, for each type of omics data, we use three fully-connected layers and the self-attention mechanism to reduce dimensionality, and construct the correlations between patients, respectively. Then, we apply the feature vector learned from self-attention to generate the initial category labels. Secondly, for the initial label predicted of each omics data, we use an effective Multi-Omics Correlation Discovery Network (MOCDN) to learn the cross-omic correlations in the label space. Finally, we use the softmax classifier for label prediction.METHODSWe propose a novel multi-omics integration method, called Multi-omics Attention Deep Learning Network (MOADLN), which is used for biomedical data classification. Firstly, for each type of omics data, we use three fully-connected layers and the self-attention mechanism to reduce dimensionality, and construct the correlations between patients, respectively. Then, we apply the feature vector learned from self-attention to generate the initial category labels. Secondly, for the initial label predicted of each omics data, we use an effective Multi-Omics Correlation Discovery Network (MOCDN) to learn the cross-omic correlations in the label space. Finally, we use the softmax classifier for label prediction.We demonstrate that our method outperforms several state-of-the-art methods on two datasets with mRNA expression data, DNA methylation data, and miRNA expression data. In addition, we identified essential biomarkers of relevant diseases by MOADLN, and the generality of MOADLN is also demonstrated in the KIRP and KIRC datasets.RESULTSWe demonstrate that our method outperforms several state-of-the-art methods on two datasets with mRNA expression data, DNA methylation data, and miRNA expression data. In addition, we identified essential biomarkers of relevant diseases by MOADLN, and the generality of MOADLN is also demonstrated in the KIRP and KIRC datasets.MOADLN jointly explores correlations between patients in intra-omics and correlations of cross-omics in label space, which is an effective DL-based classification of biomedical data.CONCLUSIONSMOADLN jointly explores correlations between patients in intra-omics and correlations of cross-omics in label space, which is an effective DL-based classification of biomedical data.
•Proposed a novel end-to-end Multi-omics attention deep learning network (MOADLN) for biomedical data classification.•MOADLN jointly explores the correlation between patients in intra-omics and the correlation of cross-omics in the label space.•Construct the patient correlation via self-attention in the latent feature space for omics-specific feature learning. Integrating multi-omics data for the comprehensive analysis of the biological processes in human diseases has become one of the most challenging tasks of bioinformatics. Deep learning (DL) algorithms have recently become one of the most promising multi-omics data integration analysis methods. However, existing DL-based studies almost integrate the multi-omics data by concatenation in the input data space or the learned feature space, ignoring the correlations between patients and omics. We propose a novel multi-omics integration method, called Multi-omics Attention Deep Learning Network (MOADLN), which is used for biomedical data classification. Firstly, for each type of omics data, we use three fully-connected layers and the self-attention mechanism to reduce dimensionality, and construct the correlations between patients, respectively. Then, we apply the feature vector learned from self-attention to generate the initial category labels. Secondly, for the initial label predicted of each omics data, we use an effective Multi-Omics Correlation Discovery Network (MOCDN) to learn the cross-omic correlations in the label space. Finally, we use the softmax classifier for label prediction. We demonstrate that our method outperforms several state-of-the-art methods on two datasets with mRNA expression data, DNA methylation data, and miRNA expression data. In addition, we identified essential biomarkers of relevant diseases by MOADLN, and the generality of MOADLN is also demonstrated in the KIRP and KIRC datasets. MOADLN jointly explores correlations between patients in intra-omics and correlations of cross-omics in label space, which is an effective DL-based classification of biomedical data.
Integrating multi-omics data for the comprehensive analysis of the biological processes in human diseases has become one of the most challenging tasks of bioinformatics. Deep learning (DL) algorithms have recently become one of the most promising multi-omics data integration analysis methods. However, existing DL-based studies almost integrate the multi-omics data by concatenation in the input data space or the learned feature space, ignoring the correlations between patients and omics. We propose a novel multi-omics integration method, called Multi-omics Attention Deep Learning Network (MOADLN), which is used for biomedical data classification. Firstly, for each type of omics data, we use three fully-connected layers and the self-attention mechanism to reduce dimensionality, and construct the correlations between patients, respectively. Then, we apply the feature vector learned from self-attention to generate the initial category labels. Secondly, for the initial label predicted of each omics data, we use an effective Multi-Omics Correlation Discovery Network (MOCDN) to learn the cross-omic correlations in the label space. Finally, we use the softmax classifier for label prediction. We demonstrate that our method outperforms several state-of-the-art methods on two datasets with mRNA expression data, DNA methylation data, and miRNA expression data. In addition, we identified essential biomarkers of relevant diseases by MOADLN, and the generality of MOADLN is also demonstrated in the KIRP and KIRC datasets. MOADLN jointly explores correlations between patients in intra-omics and correlations of cross-omics in label space, which is an effective DL-based classification of biomedical data.
ArticleNumber 107377
Author Zhang, Zhiyuan
Li, Enshuo
Meng, Ao
Cheng, Lei
Gong, Ping
Zhang, Longzhen
Chen, Jie
Author_xml – sequence: 1
  givenname: Ping
  surname: Gong
  fullname: Gong, Ping
  email: gongping@xzhmu.edu.cn
  organization: School of Medical Imaging, Xuzhou Medical University, Xuzhou, CN, China
– sequence: 2
  givenname: Lei
  surname: Cheng
  fullname: Cheng, Lei
  organization: School of Medical Imaging, Xuzhou Medical University, Xuzhou, CN, China
– sequence: 3
  givenname: Zhiyuan
  surname: Zhang
  fullname: Zhang, Zhiyuan
  organization: School of Medical Imaging, Xuzhou Medical University, Xuzhou, CN, China
– sequence: 4
  givenname: Ao
  surname: Meng
  fullname: Meng, Ao
  organization: School of Medical Imaging, Xuzhou Medical University, Xuzhou, CN, China
– sequence: 5
  givenname: Enshuo
  surname: Li
  fullname: Li, Enshuo
  organization: School of Medical Imaging, Xuzhou Medical University, Xuzhou, CN, China
– sequence: 6
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, CN, China
– sequence: 7
  givenname: Longzhen
  surname: Zhang
  fullname: Zhang, Longzhen
  organization: Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, CN, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36739624$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOHDEQRa0IFAaSH8gi8jKbnvgxbXdH2UQoL4mIDawtP6qJB7c9sT1E_H3cDGxYkFWpyveUyveeoqOYIiD0jpI1JVR83K7tvDNrRhhvA8mlfIVWdJCsk73oj9CqicaOCSJP0GkpW0II63vxGp1wIfko2GaFtr_2ofouzd4W7GOFm6yrTxHPUH8nh40u4HDrda0QH14cwA4H0Dn6eIMj1L8p3-IpZWx8msF5qwN2umpsgy7FT22wgG_Q8aRDgbeP9Qxdf_t6df6ju7j8_vP8y0VnN0TWTgx8lNQZKsw0ESd73ZsNtaMGSoAb1lvbWykngFFbAoOESQrDNQPrBjoRfoY-HPbucvqzh1LV7IuFEHSEtC-KyWYV7TkXTfr-Ubo37XK1y37W-V49-dMEw0Fgcyolw6Ssrw-_qVn7oChRSxRqq5Yo1BKFOkTRUPYMfdr-IvT5AEEz6M5DVsV6iLa5msFW5ZJ_Gf_0DLfBxyWQW7j_H_wPse634w
CitedBy_id crossref_primary_10_1038_s41598_025_09869_0
crossref_primary_10_1002_adbi_202400034
crossref_primary_10_1080_17501911_2025_2554571
crossref_primary_10_1002_wcms_70042
crossref_primary_10_1093_bib_bbae185
crossref_primary_10_3390_informatics12030068
crossref_primary_10_1016_j_cmpb_2024_108400
crossref_primary_10_1049_cit2_12395
crossref_primary_10_1080_87559129_2024_2432924
crossref_primary_10_1016_j_compbiolchem_2024_108254
crossref_primary_10_1016_j_neunet_2025_107343
crossref_primary_10_1093_bib_bbae658
crossref_primary_10_3390_biology12071033
crossref_primary_10_3389_fendo_2023_1180254
crossref_primary_10_3389_fgene_2024_1488683
crossref_primary_10_20935_AcadBiol7325
crossref_primary_10_1016_j_cmpb_2024_108291
crossref_primary_10_1093_bioinformatics_btaf313
crossref_primary_10_7717_peerj_17006
crossref_primary_10_1016_j_cmpb_2025_109024
crossref_primary_10_1007_s11222_025_10668_w
crossref_primary_10_1016_j_cmpb_2024_108159
crossref_primary_10_1080_10408398_2023_2248633
crossref_primary_10_1109_RBME_2024_3503761
crossref_primary_10_1186_s13040_024_00406_9
crossref_primary_10_1080_0954898X_2024_2348726
crossref_primary_10_1016_j_ins_2024_121864
crossref_primary_10_1016_j_ipm_2024_103804
crossref_primary_10_3389_fgene_2023_1199087
crossref_primary_10_1109_TNB_2024_3456797
Cites_doi 10.1080/15384047.2020.1863120
10.1016/j.inffus.2020.09.006
10.2147/OTT.S189265
10.1093/nar/gkv1507
10.31768/2312-8852.2017.39(2):145-150
10.1016/j.cell.2019.10.038
10.1002/sim.6732
10.2174/156720512801322573
10.3389/fgene.2019.00166
10.1093/bfgp/ely030
10.3390/biom11111591
10.1186/1756-0381-6-23
10.1016/j.csbj.2021.04.060
10.1016/j.cmpb.2021.106252
10.1186/1471-2105-13-326
10.3390/cancers14194763
10.1016/j.future.2020.11.001
10.1017/S1041610209990068
10.3389/fgene.2018.00477
10.1093/bioinformatics/btab551
10.1038/nature11412
10.1186/s12911-020-01225-8
10.1038/sdata.2018.142
10.3389/fnagi.2022.955461
10.1016/j.inffus.2021.07.010
10.1016/j.future.2019.09.047
10.3233/JAD-2010-101348
10.1016/j.cmpb.2022.107109
10.1200/JCO.2008.18.1370
10.1093/bib/bbab454
10.3233/JAD-161179
10.1093/bioinformatics/btab109
10.1093/bioinformatics/btz318
10.3390/genes11121436
10.1016/j.compbiomed.2020.103761
10.1093/bioinformatics/bty1054
10.3233/JAD-180940
10.1016/j.cmpb.2020.105337
10.1186/s13045-019-0700-2
10.1007/s10238-021-00757-1
10.1074/jbc.RA119.010710
10.3390/genes10030200
10.1158/1078-0432.CCR-17-0853
10.4103/jcrt.jcrt_280_21
10.1016/j.csbj.2021.06.030
10.1186/s12911-020-1114-3
10.1517/14728222.2016.1135132
10.1093/bioinformatics/btab608
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2023.107377
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 36739624
10_1016_j_cmpb_2023_107377
S0169260723000445
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-683971db16bff0d75a5b41c9ae10e3b25cc5c77fee9ac0e87ef76b3a2ecd81f03
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000931672800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 02:33:38 EDT 2025
Wed Feb 19 02:24:20 EST 2025
Sat Nov 29 07:22:19 EST 2025
Tue Nov 18 22:23:37 EST 2025
Fri Feb 23 02:37:36 EST 2024
Tue Oct 14 19:36:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Biomedical data classification
Deep learning
Attention mechanism
Multi-omics integration
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-683971db16bff0d75a5b41c9ae10e3b25cc5c77fee9ac0e87ef76b3a2ecd81f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36739624
PQID 2773715336
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2773715336
pubmed_primary_36739624
crossref_citationtrail_10_1016_j_cmpb_2023_107377
crossref_primary_10_1016_j_cmpb_2023_107377
elsevier_sciencedirect_doi_10_1016_j_cmpb_2023_107377
elsevier_clinicalkey_doi_10_1016_j_cmpb_2023_107377
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
2023-Apr
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Srivastava (bib0030) 2021; 11
Van De Wiel, Lien, V erlaat, van Wieringen, Wilting (bib0007) 2016; 35
Usama (bib0029) 2019; 190
Huang (bib0003) 2019; 10
Adossa (bib0023) 2021; 19
Singh (bib0005) 2019; 35
Chaudhary (bib0018) 2018; 24
Colaprico (bib0043) 2016; 44
Zhang (bib0036) 2020
Shi (bib0059) 2019; 12
Ma (bib0044) 2020; 121
Qiu, Zheng, Zhu, Huang (bib0006) 2021
Picard (bib0022) 22 Jun. 2021; 19
Wang, Ding, Tao, Liu, Fu (bib0037) 2019
Ma (bib0047) 2009; 21
Parker (bib0041) 2009; 27
Mustafa Abualsaud (bib0031) 2019
Hassan (bib0016) 2022; 77
Wang (bib0060) 2022; 22
Ahmed (bib0015) 2022; 38
Wang, Shao, Huang (bib0026) 2020
Li (bib0053) 2019; 12
Zhang (bib0048) 2022
Qiu, Cheng, Wang (bib0028) 2022
Zhang (bib0020) 2018; 9
Kim, Li, Dudek, Ritchie (bib0004) 2013; 6
Li, Ma, Leng (bib0027) 2022
Boscher (bib0049) 2019; 68
Martinez-Garcia (bib0046) 2010; 22
Zhang (bib0032) 2022; 14
Fisher, Rudin, Dominici (bib0045) 2019; 20
Han, Du, Zhang (bib0054) 2017; 21
Zhu (bib0035) 2015
Deryusheva (bib0052) 2017
Bennett, Schneider, Arvanitakis, S Wilson (bib0038) 2012; 9
Yang, Chen, Li, Wang (bib0025) 2021
Ghiam (bib0051) 2022; 14
Günther (bib0002) 2012; 13
Kumar (bib0013) 2022; 226
Tan, Huang, Hu (bib0001) 2020; 20
Piccialli, Di Somma (bib0011) 2021
Tong, Mitchel, Chatlin, Wang (bib0024) 2020; 20
Riancho (bib0050) 2017; 57
Koboldt (bib0042) 2012; 490
Kang (bib0017) 2022
Li (bib0058) 2021; 17
Wong, Fortino, Abbott (bib0012) 2020; 110
Kan (bib0057) 2020; 11
Sharifi-Noghabi (bib0021) 2019; 35
Qiu, Cheng, Wang (bib0019) 2021; 208
Zhang (bib0014) 2019; 18
Lv, Dong, Gao (bib0056) 2021; 22
Tao, Song, Du (bib0009) 2019; 10
Yang, Wang, Liu, Zhao, Li (bib0034) 2021; 37
De Jager (bib0039) 2018; 5
Gao, Zhu, Dong, Shi, Chen, Song, Huang, Li, Dong, Zhou, Liu, Ma, Wang, Zhou, Liu, Boja, Robles, Ma, Wang, Li, Ding, Wen, Zhang, Rodriguez, Gao, Zhou, Fan (bib0010) 2019; 179
Xu, Peng, Xiatian Zhu, and David A Clifton., Multimodal learning with transformers: a survey, arXiv preprint arXiv:2206.06488 (2022).
Hodes, Buckholtz (bib0040) 2016; 20
Gasparyan (bib0055) 2020; 295
Li (bib0008) 2020; 189
Qiu (10.1016/j.cmpb.2023.107377_bib0028) 2022
Fisher (10.1016/j.cmpb.2023.107377_bib0045) 2019; 20
Han (10.1016/j.cmpb.2023.107377_bib0054) 2017; 21
Van De Wiel (10.1016/j.cmpb.2023.107377_bib0007) 2016; 35
Günther (10.1016/j.cmpb.2023.107377_bib0002) 2012; 13
Wang (10.1016/j.cmpb.2023.107377_bib0026) 2020
Kang (10.1016/j.cmpb.2023.107377_bib0017) 2022
Zhang (10.1016/j.cmpb.2023.107377_bib0014) 2019; 18
Yang (10.1016/j.cmpb.2023.107377_bib0034) 2021; 37
Qiu (10.1016/j.cmpb.2023.107377_bib0019) 2021; 208
Lv (10.1016/j.cmpb.2023.107377_bib0056) 2021; 22
Wang (10.1016/j.cmpb.2023.107377_bib0060) 2022; 22
Deryusheva (10.1016/j.cmpb.2023.107377_bib0052) 2017
Gasparyan (10.1016/j.cmpb.2023.107377_bib0055) 2020; 295
Mustafa Abualsaud (10.1016/j.cmpb.2023.107377_bib0031) 2019
10.1016/j.cmpb.2023.107377_bib0033
Colaprico (10.1016/j.cmpb.2023.107377_bib0043) 2016; 44
Sharifi-Noghabi (10.1016/j.cmpb.2023.107377_bib0021) 2019; 35
Shi (10.1016/j.cmpb.2023.107377_bib0059) 2019; 12
Singh (10.1016/j.cmpb.2023.107377_bib0005) 2019; 35
Picard (10.1016/j.cmpb.2023.107377_bib0022) 2021; 19
Kim (10.1016/j.cmpb.2023.107377_bib0004) 2013; 6
Li (10.1016/j.cmpb.2023.107377_bib0008) 2020; 189
Piccialli (10.1016/j.cmpb.2023.107377_bib0011) 2021
Adossa (10.1016/j.cmpb.2023.107377_bib0023) 2021; 19
Hassan (10.1016/j.cmpb.2023.107377_bib0016) 2022; 77
Huang (10.1016/j.cmpb.2023.107377_bib0003) 2019; 10
Tong (10.1016/j.cmpb.2023.107377_bib0024) 2020; 20
Tan (10.1016/j.cmpb.2023.107377_bib0001) 2020; 20
Tao (10.1016/j.cmpb.2023.107377_bib0009) 2019; 10
Zhu (10.1016/j.cmpb.2023.107377_bib0035) 2015
Li (10.1016/j.cmpb.2023.107377_bib0027) 2022
Hodes (10.1016/j.cmpb.2023.107377_bib0040) 2016; 20
Wang (10.1016/j.cmpb.2023.107377_bib0037) 2019
Li (10.1016/j.cmpb.2023.107377_bib0053) 2019; 12
Srivastava (10.1016/j.cmpb.2023.107377_bib0030) 2021; 11
Ma (10.1016/j.cmpb.2023.107377_bib0044) 2020; 121
Zhang (10.1016/j.cmpb.2023.107377_bib0048) 2022
Qiu (10.1016/j.cmpb.2023.107377_bib0006) 2021
Ghiam (10.1016/j.cmpb.2023.107377_bib0051) 2022; 14
Zhang (10.1016/j.cmpb.2023.107377_bib0020) 2018; 9
Riancho (10.1016/j.cmpb.2023.107377_bib0050) 2017; 57
Ma (10.1016/j.cmpb.2023.107377_bib0047) 2009; 21
Boscher (10.1016/j.cmpb.2023.107377_bib0049) 2019; 68
Zhang (10.1016/j.cmpb.2023.107377_bib0032) 2022; 14
Wong (10.1016/j.cmpb.2023.107377_bib0012) 2020; 110
Usama (10.1016/j.cmpb.2023.107377_bib0029) 2019; 190
Ahmed (10.1016/j.cmpb.2023.107377_bib0015) 2022; 38
Martinez-Garcia (10.1016/j.cmpb.2023.107377_bib0046) 2010; 22
Kan (10.1016/j.cmpb.2023.107377_bib0057) 2020; 11
Kumar (10.1016/j.cmpb.2023.107377_bib0013) 2022; 226
Gao (10.1016/j.cmpb.2023.107377_bib0010) 2019; 179
Li (10.1016/j.cmpb.2023.107377_bib0058) 2021; 17
Koboldt (10.1016/j.cmpb.2023.107377_bib0042) 2012; 490
Parker (10.1016/j.cmpb.2023.107377_bib0041) 2009; 27
Chaudhary (10.1016/j.cmpb.2023.107377_bib0018) 2018; 24
De Jager (10.1016/j.cmpb.2023.107377_bib0039) 2018; 5
Yang (10.1016/j.cmpb.2023.107377_bib0025) 2021
Zhang (10.1016/j.cmpb.2023.107377_bib0036) 2020
Bennett (10.1016/j.cmpb.2023.107377_bib0038) 2012; 9
References_xml – year: 2017
  ident: bib0052
  article-title: Genome-wide association study of loss of heterozygosity and metastasis-free survival in breast cancer patients
  publication-title: Exp. Oncol.
– volume: 19
  start-page: 2588
  year: 2021
  end-page: 2596
  ident: bib0023
  article-title: Computational strategies for single-cell multi-omics integration
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 20
  start-page: 129
  year: 2020
  ident: bib0001
  article-title: A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 24
  start-page: 1248
  year: 2018
  end-page: 1259
  ident: bib0018
  article-title: Deep learning–based multi-omics integration robustly predicts survival in liver cancerusing deep learning to predict liver cancer prognosis
  publication-title: Clin. Cancer Res.
– volume: 189
  year: 2020
  ident: bib0008
  article-title: Bregmannian consensus clustering for cancer subtypes analysis
  publication-title: Comput. Methods Programs Biomed.
– year: 2022
  ident: bib0027
  article-title: MoGCN: a multi-omics integration method based on graph convolutional network for cancer subtype analysis
  publication-title: Front. Genet.
– start-page: 111
  year: 2021
  end-page: 137
  ident: bib0011
  article-title: A survey on deep learning in medicine: why, how and when?
  publication-title: Inf. Fusion
– volume: 22
  start-page: 1181
  year: 2010
  end-page: 1187
  ident: bib0046
  article-title: PLA2G3, a gene involved in oxidative stress induced death, is associated with Alzheimer's disease
  publication-title: J.Alzheimer's Dis.
– reference: Xu, Peng, Xiatian Zhu, and David A Clifton., Multimodal learning with transformers: a survey, arXiv preprint arXiv:2206.06488 (2022).
– year: 2022
  ident: bib0028
  article-title: Residual dense attention networks for COVID-19 computed tomography images super-resolution
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 37
  start-page: 4668
  year: 2021
  end-page: 4676
  ident: bib0034
  article-title: Phosidn: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information
  publication-title: Bioinformatics
– volume: 21
  start-page: 977
  year: 2009
  end-page: 986
  ident: bib0047
  article-title: Polymorphisms of the estrogen receptor α (ESR1) gene and the risk of Alzheimer's disease in a southern Chinese community
  publication-title: Int. Psychogeriat.
– start-page: 1402
  year: 2022
  ident: bib0048
  article-title: Integrated network pharmacology and comprehensive bioinformatics identifying the mechanisms and molecular targets of YiZhiQingXin Formula for treatment of comorbidity with Alzheimer's disease and depression
  publication-title: Front. Pharmacol.
– start-page: 6212
  year: 2019
  end-page: 6221
  ident: bib0037
  article-title: Generative multi-view human action recognition
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 22
  start-page: 385
  year: 2022
  end-page: 392
  ident: bib0060
  article-title: miR-522 regulates cell proliferation, migration, invasion capacities and acts as a potential biomarker to predict prognosis in triple-negative breast cancer
  publication-title: Clin. Exp. Med.
– volume: 35
  start-page: 3055
  year: 2019
  end-page: 3062
  ident: bib0005
  article-title: Diablo: an integrative approach for identifying key molecular drivers from multi-omics assays
  publication-title: Bioinformatics
– volume: 295
  start-page: 12188
  year: 2020
  end-page: 12202
  ident: bib0055
  article-title: Combined p53-and PTEN-deficiency activates expression of mesenchyme homeobox 1 (MEOX1) required for growth of triple-negative breast cancer
  publication-title: J. Biol. Chem.
– volume: 14
  year: 2022
  ident: bib0051
  article-title: Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer's disease
  publication-title: Front. Aging Neurosci.
– volume: 226
  year: 2022
  ident: bib0013
  article-title: A novel multimodal fusion framework for early diagnosis and accurate classification of COVID-19 patients using X-ray images and speech signal processing techniques
  publication-title: Comput. Methods Programs Biomed.
– volume: 14
  start-page: 4763
  year: 2022
  ident: bib0032
  article-title: Transformer for Gene Expression Modeling (T-GEM): an Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions
  publication-title: Cancers (Basel)
– year: 2021
  ident: bib0025
  article-title: Subtype-gan: a deep learning approach for integrative cancer subtyping of multi-omics data
  publication-title: Bioinformatics
– volume: 10
  start-page: 200
  year: 2019
  ident: bib0009
  article-title: Classifying breast cancer subtypes using multiple kernel learning based on omics data
  publication-title: Genes (Basel)
– start-page: 200
  year: 2021
  end-page: 208
  ident: bib0006
  article-title: Multiple improved residual networks for medical image super-resolution
  publication-title: Future Gener. Comput. Syst.
– volume: 10
  start-page: 166
  year: 2019
  ident: bib0003
  article-title: Salmon: survival analysis learning with multi-omics neural networks on breast cancer
  publication-title: Front. Genet.
– volume: 13
  start-page: 1
  year: 2012
  end-page: 18
  ident: bib0002
  article-title: A computational pipeline for the development of multi-marker bio-signature panels and ensemble classifiers
  publication-title: BMC Bioinformatics
– volume: 121
  year: 2020
  ident: bib0044
  article-title: Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 749
  year: 2021
  ident: bib0058
  article-title: Detection significance of miR-3662, miR-146a, and miR-1290 in serum exosomes of breast cancer patients
  publication-title: J. Cancer Res. Ther.
– volume: 35
  start-page: 368
  year: 2016
  end-page: 381
  ident: bib0007
  article-title: Better prediction by use of co-data: adaptive group-regularized ridge regression
  publication-title: Stat. Med.
– volume: 38
  start-page: 179
  year: 2022
  end-page: 186
  ident: bib0015
  article-title: Multi-omics data integration by generative adversarial network
  publication-title: Bioinformatics
– volume: 208
  year: 2021
  ident: bib0019
  article-title: Gradual back-projection residual attention network for magnetic resonance image super-resolution
  publication-title: Comput. Methods Programs Biomed.
– volume: 57
  start-page: 483
  year: 2017
  end-page: 491
  ident: bib0050
  article-title: MicroRNA profile in patients with Alzheimer's disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples
  publication-title: J. Alzheimer's Dis.
– volume: 179
  start-page: 1240
  year: 2019
  ident: bib0010
  article-title: Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma
  publication-title: Cell
– volume: 20
  start-page: 225
  year: 2020
  ident: bib0024
  article-title: Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 12
  start-page: 1
  year: 2019
  end-page: 18
  ident: bib0053
  article-title: SPAG5 upregulation contributes to enhanced c-MYC transcriptional activity via interaction with c-MYC binding protein in triple-negative breast cancer
  publication-title: J. Hematol. Oncol.
– start-page: 255
  year: 2015
  end-page: 262
  ident: bib0035
  article-title: Multi-view classification for identification of Alzheimer's disease
  publication-title: International Workshop on Machine Learning in Medical Imaging
– volume: 22
  start-page: 248
  year: 2021
  end-page: 256
  ident: bib0056
  article-title: Long non-coding RNA TDRG1 facilitates cell proliferation, migration and invasion in breast cancer via targeting miR-214-5p/CLIC4 axis
  publication-title: Cancer Biol. Ther.
– volume: 190
  year: 2019
  ident: bib0029
  article-title: Self-attention based recurrent convolutional neural network for disease prediction using healthcare data
  publication-title: Comput. Methods Programs Biomed.
– volume: 27
  start-page: 1160
  year: 2009
  end-page: 1167
  ident: bib0041
  article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes
  publication-title: J. Clin. Oncol.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 81
  ident: bib0045
  article-title: All Models are Wrong, but Many are Useful: learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously
  publication-title: J. Mach. Learn. Res.
– volume: 490
  start-page: 61
  year: 2012
  ident: bib0042
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
– volume: 20
  start-page: 389
  year: 2016
  end-page: 391
  ident: bib0040
  article-title: Accelerating medicines partnership: alzheimer's disease (amp-ad) knowledge portal aids alzheimer's drug discovery through open data sharing
  publication-title: Expert Opin. Ther. Targets
– volume: 44
  year: 2016
  ident: bib0043
  article-title: Tcgabiolinks: an r/bioconductor package for integrative analysis of tcga data
  publication-title: Nucleic Acids Res.
– year: 2020
  ident: bib0036
  article-title: CMC: a consensus multi-view clustering model for predicting Alzheimer's disease progression
  publication-title: Comput. Methods Programs Biomed.
– volume: 5
  year: 2018
  ident: bib0039
  article-title: A multi-omic atlas of the human frontal cortex for aging and alzheimer's disease research
  publication-title: Sci. Data
– start-page: bbab454
  year: 2022
  ident: bib0017
  article-title: A roadmap for multi-omics data integration using deep learning
  publication-title: Brief. Bioinformatics
– volume: 18
  start-page: 41
  year: 2019
  end-page: 57
  ident: bib0014
  article-title: Deep learning in omics: a survey and guideline
  publication-title: Brief. Funct. Genomics
– year: 2019
  ident: bib0031
  article-title: Proceedings of the 28th acm international conference on information and knowledge management
  publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management
– volume: 9
  start-page: 628
  year: 2012
  end-page: 645
  ident: bib0038
  article-title: Overview and findings from the religious orders study
  publication-title: Curr. Alzheimer Re.s
– volume: 6
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib0004
  article-title: Athena: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
  publication-title: BioData Min.
– volume: 21
  start-page: 2405
  year: 2017
  end-page: 2412
  ident: bib0054
  article-title: Bioinformatic analysis of prognostic value of ARAP3 in breast cancer and the associated signaling pathways
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 12
  start-page: 1979
  year: 2019
  ident: bib0059
  article-title: Construction of prognostic microRNA signature for human invasive breast cancer by integrated analysis
  publication-title: Onco Targets Ther.
– volume: 35
  start-page: i501
  year: 2019
  end-page: i509
  ident: bib0021
  article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction
  publication-title: Bioinformatics
– volume: 110
  start-page: 802
  year: 2020
  end-page: 811
  ident: bib0012
  article-title: Deep learning-based cardiovascular image diagnosis: a promising challenge
  publication-title: Future Gener. Comput. Syst.
– volume: 9
  start-page: 477
  year: 2018
  ident: bib0020
  article-title: Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma
  publication-title: Front. Genet.
– volume: 11
  start-page: 1436
  year: 2020
  ident: bib0057
  article-title: Comprehensive transcriptomic analysis identifies ST8SIA1 as a survival-related Sialyltransferase gene in breast cancer
  publication-title: Genes (Basel)
– volume: 68
  start-page: 1243
  year: 2019
  end-page: 1255
  ident: bib0049
  article-title: Copy number variants in miR-138 as a potential risk factor for early-onset Alzheimer's disease
  publication-title: J. Alzheimer's Dis.
– year: 2020
  ident: bib0026
  article-title: MORONET: Multi-omics Integration Via Graph Convolutional Networks for Biomedical Data Classification
– volume: 77
  start-page: 70
  year: 2022
  end-page: 80
  ident: bib0016
  article-title: Early detection of cardiovascular autonomic neuropathy: a multi-class classification model based on feature selection and deep learning feature fusion
  publication-title: Inf. Fusion
– volume: 19
  start-page: 3735
  year: 22 Jun. 2021
  end-page: 3746
  ident: bib0022
  article-title: Integration strategies of multi-omics data for machine learning analysis
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 11
  start-page: 1591
  year: 2021
  ident: bib0030
  article-title: Self-attention-based models for the extraction of molecular interactions from biological texts
  publication-title: Biomolecules
– year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0031
  article-title: Proceedings of the 28th acm international conference on information and knowledge management
– volume: 22
  start-page: 248
  issue: 3
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0056
  article-title: Long non-coding RNA TDRG1 facilitates cell proliferation, migration and invasion in breast cancer via targeting miR-214-5p/CLIC4 axis
  publication-title: Cancer Biol. Ther.
  doi: 10.1080/15384047.2020.1863120
– start-page: 111
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0011
  article-title: A survey on deep learning in medicine: why, how and when?
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.09.006
– volume: 12
  start-page: 1979
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0059
  article-title: Construction of prognostic microRNA signature for human invasive breast cancer by integrated analysis
  publication-title: Onco Targets Ther.
  doi: 10.2147/OTT.S189265
– volume: 44
  issue: 8
  year: 2016
  ident: 10.1016/j.cmpb.2023.107377_bib0043
  article-title: Tcgabiolinks: an r/bioconductor package for integrative analysis of tcga data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1507
– year: 2017
  ident: 10.1016/j.cmpb.2023.107377_bib0052
  article-title: Genome-wide association study of loss of heterozygosity and metastasis-free survival in breast cancer patients
  publication-title: Exp. Oncol.
  doi: 10.31768/2312-8852.2017.39(2):145-150
– volume: 179
  start-page: 1240
  issue: 5
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0010
  article-title: Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.038
– ident: 10.1016/j.cmpb.2023.107377_bib0033
– start-page: 1402
  year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0048
  article-title: Integrated network pharmacology and comprehensive bioinformatics identifying the mechanisms and molecular targets of YiZhiQingXin Formula for treatment of comorbidity with Alzheimer's disease and depression
  publication-title: Front. Pharmacol.
– volume: 21
  start-page: 2405
  issue: 10
  year: 2017
  ident: 10.1016/j.cmpb.2023.107377_bib0054
  article-title: Bioinformatic analysis of prognostic value of ARAP3 in breast cancer and the associated signaling pathways
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 35
  start-page: 368
  year: 2016
  ident: 10.1016/j.cmpb.2023.107377_bib0007
  article-title: Better prediction by use of co-data: adaptive group-regularized ridge regression
  publication-title: Stat. Med.
  doi: 10.1002/sim.6732
– volume: 9
  start-page: 628
  year: 2012
  ident: 10.1016/j.cmpb.2023.107377_bib0038
  article-title: Overview and findings from the religious orders study
  publication-title: Curr. Alzheimer Re.s
  doi: 10.2174/156720512801322573
– volume: 10
  start-page: 166
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0003
  article-title: Salmon: survival analysis learning with multi-omics neural networks on breast cancer
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00166
– volume: 18
  start-page: 41
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0014
  article-title: Deep learning in omics: a survey and guideline
  publication-title: Brief. Funct. Genomics
  doi: 10.1093/bfgp/ely030
– volume: 11
  start-page: 1591
  issue: 11
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0030
  article-title: Self-attention-based models for the extraction of molecular interactions from biological texts
  publication-title: Biomolecules
  doi: 10.3390/biom11111591
– start-page: 255
  year: 2015
  ident: 10.1016/j.cmpb.2023.107377_bib0035
  article-title: Multi-view classification for identification of Alzheimer's disease
– volume: 6
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.cmpb.2023.107377_bib0004
  article-title: Athena: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
  publication-title: BioData Min.
  doi: 10.1186/1756-0381-6-23
– volume: 19
  start-page: 2588
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0023
  article-title: Computational strategies for single-cell multi-omics integration
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.04.060
– volume: 208
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0019
  article-title: Gradual back-projection residual attention network for magnetic resonance image super-resolution
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106252
– year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0028
  article-title: Residual dense attention networks for COVID-19 computed tomography images super-resolution
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 13
  start-page: 1
  year: 2012
  ident: 10.1016/j.cmpb.2023.107377_bib0002
  article-title: A computational pipeline for the development of multi-marker bio-signature panels and ensemble classifiers
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-326
– volume: 14
  start-page: 4763
  issue: 19
  year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0032
  article-title: Transformer for Gene Expression Modeling (T-GEM): an Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14194763
– year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0026
– start-page: 200
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0006
  article-title: Multiple improved residual networks for medical image super-resolution
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.11.001
– volume: 21
  start-page: 977
  issue: 5
  year: 2009
  ident: 10.1016/j.cmpb.2023.107377_bib0047
  article-title: Polymorphisms of the estrogen receptor α (ESR1) gene and the risk of Alzheimer's disease in a southern Chinese community
  publication-title: Int. Psychogeriat.
  doi: 10.1017/S1041610209990068
– volume: 9
  start-page: 477
  year: 2018
  ident: 10.1016/j.cmpb.2023.107377_bib0020
  article-title: Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00477
– volume: 37
  start-page: 4668
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0034
  article-title: Phosidn: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab551
– volume: 490
  start-page: 61
  year: 2012
  ident: 10.1016/j.cmpb.2023.107377_bib0042
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/nature11412
– start-page: 6212
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0037
  article-title: Generative multi-view human action recognition
– volume: 20
  start-page: 225
  year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0024
  article-title: Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-01225-8
– volume: 5
  year: 2018
  ident: 10.1016/j.cmpb.2023.107377_bib0039
  article-title: A multi-omic atlas of the human frontal cortex for aging and alzheimer's disease research
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.142
– volume: 14
  year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0051
  article-title: Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer's disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.955461
– volume: 77
  start-page: 70
  year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0016
  article-title: Early detection of cardiovascular autonomic neuropathy: a multi-class classification model based on feature selection and deep learning feature fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.07.010
– volume: 110
  start-page: 802
  year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0012
  article-title: Deep learning-based cardiovascular image diagnosis: a promising challenge
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.047
– volume: 22
  start-page: 1181
  issue: 4
  year: 2010
  ident: 10.1016/j.cmpb.2023.107377_bib0046
  article-title: PLA2G3, a gene involved in oxidative stress induced death, is associated with Alzheimer's disease
  publication-title: J.Alzheimer's Dis.
  doi: 10.3233/JAD-2010-101348
– volume: 226
  year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0013
  article-title: A novel multimodal fusion framework for early diagnosis and accurate classification of COVID-19 patients using X-ray images and speech signal processing techniques
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.107109
– volume: 27
  start-page: 1160
  issue: 8
  year: 2009
  ident: 10.1016/j.cmpb.2023.107377_bib0041
  article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2008.18.1370
– start-page: bbab454
  year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0017
  article-title: A roadmap for multi-omics data integration using deep learning
  publication-title: Brief. Bioinformatics
  doi: 10.1093/bib/bbab454
– volume: 57
  start-page: 483
  issue: 2
  year: 2017
  ident: 10.1016/j.cmpb.2023.107377_bib0050
  article-title: MicroRNA profile in patients with Alzheimer's disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples
  publication-title: J. Alzheimer's Dis.
  doi: 10.3233/JAD-161179
– year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0025
  article-title: Subtype-gan: a deep learning approach for integrative cancer subtyping of multi-omics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab109
– year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0027
  article-title: MoGCN: a multi-omics integration method based on graph convolutional network for cancer subtype analysis
  publication-title: Front. Genet.
– volume: 35
  start-page: i501
  issue: 14
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0021
  article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz318
– volume: 11
  start-page: 1436
  issue: 12
  year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0057
  article-title: Comprehensive transcriptomic analysis identifies ST8SIA1 as a survival-related Sialyltransferase gene in breast cancer
  publication-title: Genes (Basel)
  doi: 10.3390/genes11121436
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0045
  article-title: All Models are Wrong, but Many are Useful: learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously
  publication-title: J. Mach. Learn. Res.
– volume: 121
  year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0044
  article-title: Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103761
– volume: 35
  start-page: 3055
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0005
  article-title: Diablo: an integrative approach for identifying key molecular drivers from multi-omics assays
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1054
– volume: 68
  start-page: 1243
  issue: 3
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0049
  article-title: Copy number variants in miR-138 as a potential risk factor for early-onset Alzheimer's disease
  publication-title: J. Alzheimer's Dis.
  doi: 10.3233/JAD-180940
– volume: 189
  year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0008
  article-title: Bregmannian consensus clustering for cancer subtypes analysis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105337
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0053
  article-title: SPAG5 upregulation contributes to enhanced c-MYC transcriptional activity via interaction with c-MYC binding protein in triple-negative breast cancer
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0700-2
– year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0036
  article-title: CMC: a consensus multi-view clustering model for predicting Alzheimer's disease progression
  publication-title: Comput. Methods Programs Biomed.
– volume: 22
  start-page: 385
  issue: 3
  year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0060
  article-title: miR-522 regulates cell proliferation, migration, invasion capacities and acts as a potential biomarker to predict prognosis in triple-negative breast cancer
  publication-title: Clin. Exp. Med.
  doi: 10.1007/s10238-021-00757-1
– volume: 190
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0029
  article-title: Self-attention based recurrent convolutional neural network for disease prediction using healthcare data
  publication-title: Comput. Methods Programs Biomed.
– volume: 295
  start-page: 12188
  issue: 34
  year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0055
  article-title: Combined p53-and PTEN-deficiency activates expression of mesenchyme homeobox 1 (MEOX1) required for growth of triple-negative breast cancer
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.010710
– volume: 10
  start-page: 200
  issue: 3
  year: 2019
  ident: 10.1016/j.cmpb.2023.107377_bib0009
  article-title: Classifying breast cancer subtypes using multiple kernel learning based on omics data
  publication-title: Genes (Basel)
  doi: 10.3390/genes10030200
– volume: 24
  start-page: 1248
  issue: 6
  year: 2018
  ident: 10.1016/j.cmpb.2023.107377_bib0018
  article-title: Deep learning–based multi-omics integration robustly predicts survival in liver cancerusing deep learning to predict liver cancer prognosis
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0853
– volume: 17
  start-page: 749
  issue: 3
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0058
  article-title: Detection significance of miR-3662, miR-146a, and miR-1290 in serum exosomes of breast cancer patients
  publication-title: J. Cancer Res. Ther.
  doi: 10.4103/jcrt.jcrt_280_21
– volume: 19
  start-page: 3735
  year: 2021
  ident: 10.1016/j.cmpb.2023.107377_bib0022
  article-title: Integration strategies of multi-omics data for machine learning analysis
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.06.030
– volume: 20
  start-page: 129
  issue: S3
  year: 2020
  ident: 10.1016/j.cmpb.2023.107377_bib0001
  article-title: A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-1114-3
– volume: 20
  start-page: 389
  year: 2016
  ident: 10.1016/j.cmpb.2023.107377_bib0040
  article-title: Accelerating medicines partnership: alzheimer's disease (amp-ad) knowledge portal aids alzheimer's drug discovery through open data sharing
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728222.2016.1135132
– volume: 38
  start-page: 179
  issue: 1
  year: 2022
  ident: 10.1016/j.cmpb.2023.107377_bib0015
  article-title: Multi-omics data integration by generative adversarial network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab608
SSID ssj0002556
Score 2.5132203
Snippet •Proposed a novel end-to-end Multi-omics attention deep learning network (MOADLN) for biomedical data classification.•MOADLN jointly explores the correlation...
Integrating multi-omics data for the comprehensive analysis of the biological processes in human diseases has become one of the most challenging tasks of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107377
SubjectTerms Algorithms
Attention mechanism
Biomedical data classification
Computational Biology - methods
Deep Learning
Humans
MicroRNAs
Multi-omics integration
Multiomics
Title Multi-omics integration method based on attention deep learning network for biomedical data classification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260723000445
https://dx.doi.org/10.1016/j.cmpb.2023.107377
https://www.ncbi.nlm.nih.gov/pubmed/36739624
https://www.proquest.com/docview/2773715336
Volume 231
WOSCitedRecordID wos000931672800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbSdBh2GfZe9ig0YLfAgS0_ZB2DoXuhLXrogGAXQ5apNUHnBE1SdP9iP3mUJdlpi3TrYRcjUSxaCb-IlPSRJOQ9mtRKA4sDoSsdJKmZB1kOAdOSRTIFmammaskBPzrKJxNx3Ov99rEwF2e8rvPLS7H4r6rGNlS2CZ29g7pbodiAr1HpeEW14_WfFN-E1AYm2HjZJoMwOra1oofGbFXmiMAk1rRUxwpg4ctH_BjWlhhueZxNcL49yZErE0eJvrYhF3X69FkOXHUI95ilS0DQkL8ayq0XtXGO_8nRgY-9-WxoBmAbD2B6Y1P7--n017qD86G7dTzf3LtARHSUF7edmYkAV1R8cz5mzizYGRWXp7Et9HJjsrf7DrOR-rkoR0b8qLv5ambtaxav5SF6itusMDIKI6OwMnbILuOpyPtkd_xlf_K1te4mZZvNF29H7gKxLGfw-ki2OTvbFjONU3PyiDx0qxE6tih6THpQPyH3D52enpLZBpjoBpio1TJtwETxfQsmasBEPZioAxNFMNEOTNSAiV4F0zPy7eP-yYfPgavOEagk5KsgQ9eaR1UZZaXWYcVTmZZJpISEKIS4ZKlSqeJcAwipQsg5aJ6VsWSgqjzSYfyc9Ot5DS8JBbNO53mUSc0SrlKRQBRJEBm693GoqwGJ_M9YKJe63lRQOSu2K3BAhm2fhU3ccuvdsddO4UOS0YgWCLVbe6VtL-ewWkf0r_3eeQAUOJubIzpZw3y9LBjHz80SLBuQFxYZ7ejjjMciY8mrO32z1-RB9897Q_qr8zW8JffUxWq6PN8jO3yS7zmM_wE7dM90
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omics+integration+method+based+on+attention+deep+learning+network+for+biomedical+data+classification&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Gong%2C+Ping&rft.au=Cheng%2C+Lei&rft.au=Zhang%2C+Zhiyuan&rft.au=Meng%2C+Ao&rft.date=2023-04-01&rft.issn=0169-2607&rft.volume=231&rft.spage=107377&rft_id=info:doi/10.1016%2Fj.cmpb.2023.107377&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2023_107377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon