A hybrid genetic–firefly algorithm for engineering design problems
Abstract Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can...
Gespeichert in:
| Veröffentlicht in: | Journal of computational design and engineering Jg. 9; H. 2; S. 706 - 730 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Oxford University Press
01.04.2022
한국CDE학회 |
| Schlagworte: | |
| ISSN: | 2288-5048, 2288-4300, 2288-5048 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Abstract
Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs.
Graphical Abstract
Graphical Abstract |
|---|---|
| AbstractList | Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs. Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs. KCI Citation Count: 26 Abstract Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs. Graphical Abstract Graphical Abstract |
| Author | El-Shorbagy, M A El-Refaey, Adel M |
| Author_xml | – sequence: 1 givenname: M A orcidid: 0000-0002-8115-0638 surname: El-Shorbagy fullname: El-Shorbagy, M A email: mohammed_shorbagy@yahoo.com – sequence: 2 givenname: Adel M surname: El-Refaey fullname: El-Refaey, Adel M |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002832691$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kN9KwzAYxYNMcM7d-QAFLwSxmq9pm_RyzH-DgSDzOqRp0mXrki3tkN35Dr6hT2JndyGCXp3v4ncO5zunqGedVQidA74BnJHbhSzU7eZNSAzkCPWjiLEwwTHr_bhP0LCuFxhjoBHBkPXR3SiY73JviqBUVjVGfr5_aOOVrnaBqErnTTNfBdr5QNnSWKW8sWVQqNqUNlh7l1dqVZ-hYy2qWg0POkCvD_ez8VM4fX6cjEfTUMaYNmFCcyZFLqVmpKBMFxClWSE0YwJyLEgkCSQZLUCncZEwEimpUhrTnIDEWCgyQFddrvWaL6XhTphvLR1fej56mU04YICYQtbCFx3cttxsVd3whdt62_bjBDKIkzQC0lJRR0nv6rr9m0vTiMY423hhqjaO79fl-3X5Yd3WdP3LtPZmJfzuL_yyw912_T_5BVd3jc8 |
| CitedBy_id | crossref_primary_10_1007_s00500_025_10404_6 crossref_primary_10_1007_s40819_025_01925_7 crossref_primary_10_1109_JIOT_2023_3306353 crossref_primary_10_1016_j_compbiomed_2023_107727 crossref_primary_10_1007_s11518_024_5608_x crossref_primary_10_3233_IDT_240211 crossref_primary_10_1038_s41598_025_09523_9 crossref_primary_10_1093_jcde_qwac135 crossref_primary_10_1093_jcde_qwaf007 crossref_primary_10_1007_s40745_024_00528_1 crossref_primary_10_1088_1742_6596_2858_1_012050 crossref_primary_10_1093_jcde_qwad047 crossref_primary_10_1093_jcde_qwad043 crossref_primary_10_1093_jcde_qwac099 crossref_primary_10_1109_ACCESS_2023_3267434 crossref_primary_10_1108_EC_10_2024_0904 crossref_primary_10_1093_jcde_qwad075 crossref_primary_10_1093_jcde_qwac085 crossref_primary_10_1016_j_eswa_2024_125029 crossref_primary_10_1093_jcde_qwac081 crossref_primary_10_1007_s10708_025_11339_z crossref_primary_10_1093_jcde_qwad039 crossref_primary_10_1093_jcde_qwad058 crossref_primary_10_3934_GF_2024027 crossref_primary_10_1080_23302674_2025_2452365 crossref_primary_10_1093_jcde_qwae044 crossref_primary_10_1093_jcde_qwad110 crossref_primary_10_1093_jcde_qwae089 |
| Cites_doi | 10.1016/j.cma.2004.09.007 10.1016/j.asoc.2017.02.003 10.1007/s00180-019-00871-5 10.1016/j.eswa.2009.06.044 10.1016/j.swevo.2011.02.002 10.1111/1475-3995.d01-23 10.1016/j.asoc.2015.10.022 10.1109/TEVC.2003.814902 10.1016/j.asoc.2009.08.031 10.1016/j.enconman.2018.02.012 10.1007/s00366-011-0241-y 10.1016/j.cad.2010.12.015 10.4236/ojop.2016.52009 10.1016/j.asoc.2017.06.059 10.1007/s42044-018-0025-2 10.1016/j.eswa.2018.01.011 10.1002/9780470549124 10.3934/jimo.2014.10.777 10.1016/j.compstruc.2017.06.016 10.1016/j.eswa.2008.02.039 10.21629/JSEE.2018.02.19 10.1016/j.compstruc.2014.03.007 10.1155/2021/6672131 10.1016/j.cam.2010.08.030 10.1109/CEC.2006.1688286 10.9734/BJMCS/2015/16193 10.1016/j.asoc.2014.10.026 10.1016/j.asoc.2016.08.041 10.1016/j.eswa.2021.114864 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U 10.1016/j.eswa.2021.115079 10.1115/1.3438995 10.1016/j.ins.2009.03.004 10.1016/j.engappai.2020.103541 10.1016/j.asoc.2017.04.018 10.1016/j.engappai.2006.03.003 10.1016/S0166-3615(99)00046-9 10.1007/s12293-016-0212-3 10.2991/ijcis.d.200411.001 10.1007/s10845-010-0393-4 10.7551/mitpress/1290.001.0001 10.1016/j.knosys.2021.106937 10.1016/j.jocs.2017.12.012 10.1016/j.ins.2008.02.014 10.1023/A:1009626110229 10.1016/j.advengsoft.2016.01.008 10.1007/s00521-019-04510-4 10.1115/1.2919393 10.1016/j.ins.2009.12.010 10.1016/j.isatra.2014.03.018 10.1016/j.eswa.2015.10.012 10.1016/j.ins.2015.10.001 10.1016/j.aei.2005.09.001 10.1016/S1474-0346(02)00011-3 10.1080/03052150410001647966 10.1016/j.amc.2006.07.134 10.1016/j.asoc.2012.11.026 10.1016/j.procs.2015.08.018 10.1016/j.chaos.2016.01.007 10.1016/S0377-2217(02)00401-0 10.2991/ijcis.d.210203.008 10.1007/s12597-016-0291-4 10.1108/EC-07-2017-0264 10.1109/ACCESS.2020.3043029 10.1023/A:1015059928466 10.4236/am.2015.611165 10.1109/ICCSCE.2015.7482176 10.1016/j.chemolab.2018.12.003 10.1016/j.compstruc.2018.10.017 10.1016/j.amc.2009.09.051 10.1080/0305215X.2011.598520 10.4018/IJRSDA.2018040101 10.1016/j.future.2020.03.055 10.1016/j.advengsoft.2015.01.010 10.1016/j.jksuci.2018.06.007 10.1109/MCS.2002.1004010 10.1016/j.asoc.2007.07.002 10.1007/978-3-540-39930-8 10.3390/pr9020200 10.1080/03052159508941187 10.1016/j.asoc.2017.04.057 10.1016/j.advengsoft.2017.01.004 10.1016/j.advengsoft.2017.07.002 10.1007/s12597-019-00388-x 10.1109/ACCESS.2020.3039882 10.1007/s00158-008-0238-3 10.1016/j.asoc.2020.106367 10.1007/s00158-009-0454-5 10.18488/journal.79.2017.41.20.35 10.1016/j.asoc.2015.10.043 10.1016/j.eswa.2016.03.042 10.1016/j.knosys.2018.11.024 10.1016/j.future.2017.10.052 10.1016/j.asoc.2018.02.025 10.18488/journal.76.2017.41.11.29 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | TOX AAYXX CITATION 7XB 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M0N M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ACYCR |
| DOI | 10.1093/jcde/qwac013 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Computing Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Korean Citation Index |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Computing Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2288-5048 |
| EndPage | 730 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10114719 10_1093_jcde_qwac013 10.1093/jcde/qwac013 |
| GroupedDBID | .UV 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAPXW AAVAP AAXUO ABMAC ABPTD ABXVV ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB FRF GROUPED_DOAJ H13 IAO IGS IPNFZ JDI KQ8 KSI M41 ML0 M~E NCXOZ O9- OK1 RIG ROL ROX SSZ TOX AAYXX ABEJV ABGNP ABJCF ADMLS AFFHD AFKRA AMNDL AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ ITC M7S PHGZM PHGZT PIMPY PQGLB PTHSS 7XB 8FE 8FG ABUWG L6V M0N PKEHL PQEST PQQKQ PQUKI PRINS Q9U AAYWO ACYCR PMFND |
| ID | FETCH-LOGICAL-c407t-57b8cabccf83d78fd1269daf88a1b0a32c31597d1f64d5832ece6747b31c00ae3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780334700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2288-5048 2288-4300 |
| IngestDate | Sat May 31 03:24:09 EDT 2025 Fri Sep 19 20:56:21 EDT 2025 Sat Nov 29 03:52:53 EST 2025 Tue Nov 18 20:20:15 EST 2025 Wed Aug 28 03:18:59 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | genetic algorithm firefly algorithm hybrid algorithms engineering design problems |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-57b8cabccf83d78fd1269daf88a1b0a32c31597d1f64d5832ece6747b31c00ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8115-0638 |
| OpenAccessLink | https://www.proquest.com/docview/3191456213?pq-origsite=%requestingapplication% |
| PQID | 3191456213 |
| PQPubID | 7217057 |
| PageCount | 25 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10114719 proquest_journals_3191456213 crossref_citationtrail_10_1093_jcde_qwac013 crossref_primary_10_1093_jcde_qwac013 oup_primary_10_1093_jcde_qwac013 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Journal of computational design and engineering |
| PublicationYear | 2022 |
| Publisher | Oxford University Press 한국CDE학회 |
| Publisher_xml | – name: Oxford University Press – name: 한국CDE학회 |
| References | Abo-elnaga (2022041115580333600_bib2) 2020; 13 El-Shorbagy (2022041115580333600_bib42) 2016; 85 Bodaghi (2022041115580333600_bib13) 2019; 2 El-Shorbagy (2022041115580333600_bib37) 2017; 4 Parouha (2022041115580333600_bib85) 2016; 38 Alrefaei (2022041115580333600_bib8) 2009; 215 Wang (2022041115580333600_bib102) 2018; 10 El-Shorbagy (2022041115580333600_bib40) 2017; 4 Gandomi (2022041115580333600_bib45) 2013; 29 Yang (2022041115580333600_bib108) 2021; 177 Turanoğlu (2022041115580333600_bib100) 2018; 98 Coello (2022041115580333600_bib23) 2004; 36 Ahmadianfar (2022041115580333600_bib4) 2021; 181 El-Shorbagy (2022041115580333600_bib41) 2011 Wu (2022041115580333600_bib106) 1995; 24 Zhou (2022041115580333600_bib114) 2016; 38 Nama (2022041115580333600_bib82) 2021 Holland (2022041115580333600_bib55) 1975 Dhiman (2022041115580333600_bib27) 2019; 165 Cheng (2022041115580333600_bib19) 2021; 220 Chickermane (2022041115580333600_bib20) 1996; 39 Le (2022041115580333600_bib65) 2019; 212 Mirjalili (2022041115580333600_bib79) 2016; 95 Passino (2022041115580333600_bib87) 2002; 22 Alabool (2022041115580333600_bib7) 2021 Bolaji (2022041115580333600_bib14) 2016; 49 Saremi (2022041115580333600_bib94) 2017; 105 Garg (2022041115580333600_bib47) 2014; 10 Zhang (2022041115580333600_bib110) 2008; 178 Sharma (2022041115580333600_bib97) 2021; 33 Michalewicz (2022041115580333600_bib76) 1994; 1 Cheng (2022041115580333600_bib18) 2014; 139 He (2022041115580333600_bib54) 2007; 186 Ekinci (2022041115580333600_bib29) 2019 Abd-El-Wahed (2022041115580333600_bib1) 2011; 235 Gandomi (2022041115580333600_bib44) 2014; 53 Jadon (2022041115580333600_bib57) 2017; 58 Ayoub (2022041115580333600_bib11) 2020 Kaur (2022041115580333600_bib62) 2020; 90 Zhuoran (2022041115580333600_bib116) 2018; 29 Sedlaczek (2022041115580333600_bib96) 2005 El-Shorbagy (2022041115580333600_bib31) 2010 Lieu (2022041115580333600_bib68) 2018; 195 Deb (2022041115580333600_bib25) 1996; 26 Liu (2022041115580333600_bib69) 2010; 10 Zhao (2022041115580333600_bib112) 2016; 329 El-Shorbagy (2022041115580333600_bib39) 2019; 56 El-Shorbagy (2022041115580333600_bib32) 2021; 14 Shi (2022041115580333600_bib98) 2011 Beyer (2022041115580333600_bib12) 2002; 1 El-Shorbagy (2022041115580333600_bib33) 2019; 34 García (2022041115580333600_bib46) 2010; 180 Hwang (2022041115580333600_bib56) 2006; 20 Akay (2022041115580333600_bib5) 2012; 23 Karaboga (2022041115580333600_bib61) 2005 Rashedi (2022041115580333600_bib91) 2009; 179 Coelho (2022041115580333600_bib21) 2010; 37 Sadollah (2022041115580333600_bib93) 2013; 13 Ragsdell (2022041115580333600_bib88) 1976; 98 Jordehi (2022041115580333600_bib58) 2015; 26 Verma (2022041115580333600_bib101) 2016; 19 Singh (2022041115580333600_bib99) 2017; 54 El-Shorbagy (2022041115580333600_bib36) 2018; 5 Aydilek (2022041115580333600_bib10) 2018; 66 Gupta (2022041115580333600_bib52) 2020; 93 Rao (2022041115580333600_bib89) 2011; 43 Lee (2022041115580333600_bib66) 2005; 194 Mezura-Montes (2022041115580333600_bib73) 2005 Kumar (2022041115580333600_bib64) 2018; 81 Coello (2022041115580333600_bib22) 2000; 41 Wang (2022041115580333600_bib105) 2009; 37 Zhao (2022041115580333600_bib111) 2020; 32 Chen (2022041115580333600_bib17) 2017; 58 Yang (2022041115580333600_bib107) 2008 Mehta (2022041115580333600_bib72) 2012; 44 Wang (2022041115580333600_bib104) 2010; 41 Goldberg (2022041115580333600_bib51) 1989 Goel (2022041115580333600_bib50) 2018; 25 El-Desoky (2022041115580333600_bib30) 2016 Kao (2022041115580333600_bib60) 2008; 8 Mirjalili (2022041115580333600_bib78) 2017; 114 Wang (2022041115580333600_bib103) 2018; 163 Farag (2022041115580333600_bib43) 2015; 6 Chelouah (2022041115580333600_bib16) 2003; 148 El-Shorbagy (2022041115580333600_bib34) 2020; 8 Zahara (2022041115580333600_bib109) 2009; 36 Al Malki (2022041115580333600_bib6) 2016; 5 Mousa (2022041115580333600_bib81) 2021; 9 Zhou (2022041115580333600_bib113) 2005; 3498 Mirjalili (2022041115580333600_bib77) 2015; 83 Michael (2022041115580333600_bib75) 2008 Marinaki (2022041115580333600_bib71) 2016; 46 Al-Thanoon (2022041115580333600_bib9) 2019; 184 Rao (2022041115580333600_bib90) 2009 Ray (2022041115580333600_bib92) 2003; 7 Li (2022041115580333600_bib67) 2020; 111 Marichelvam (2022041115580333600_bib70) 2017; 55 Saurabh (2022041115580333600_bib95) 2016; 60 Parsopoulos (2022041115580333600_bib86) 2005; 3612 He (2022041115580333600_bib53) 2006; 20 Mezura-Montes (2022041115580333600_bib74) 2006 Chelouah (2022041115580333600_bib15) 2000; 6 Kaushik (2022041115580333600_bib63) 2015; 58 Abualigah (2022041115580333600_bib3) 2017; 60 Dorigo (2022041115580333600_bib28) 2004 El-Shorbagy (2022041115580333600_bib35) 2020 Onwubolu (2022041115580333600_bib84) 2004 Mousa (2022041115580333600_bib80) 2020; 8 El-Shorbagy (2022041115580333600_bib38) 2021; 2021 Zhou (2022041115580333600_bib115) 2018; 35 Derrac (2022041115580333600_bib26) 2011; 1 Nasr (2022041115580333600_bib83) 2015; 7 Ghetas (2022041115580333600_bib48) 2015 Kannan (2022041115580333600_bib59) 1994; 116 Coello (2022041115580333600_bib24) 2002; 16 |
| References_xml | – volume: 194 start-page: 3902 year: 2005 ident: 2022041115580333600_bib66 article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2004.09.007 – start-page: 1 volume-title: Neural computing and applications year: 2021 ident: 2022041115580333600_bib7 article-title: Harris hawks optimization: A comprehensive review of recent variants and applications – volume: 55 start-page: 82 year: 2017 ident: 2022041115580333600_bib70 article-title: Hybrid monkey search algorithm for flow shop scheduling problem under makespan and total flow time publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.02.003 – volume: 34 start-page: 1355 year: 2019 ident: 2022041115580333600_bib33 article-title: An enhanced genetic algorithm with new mutation for cluster analysis publication-title: Computational Statistics doi: 10.1007/s00180-019-00871-5 – volume: 37 start-page: 1676 year: 2010 ident: 2022041115580333600_bib21 article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.06.044 – volume: 1 start-page: 3 year: 2011 ident: 2022041115580333600_bib26 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – volume-title: Hybrid particle swarm algorithm for multi-objective optimization, Master of Engineering Thesis year: 2010 ident: 2022041115580333600_bib31 – volume: 1 start-page: 223 year: 1994 ident: 2022041115580333600_bib76 article-title: Evolutionary computation techniques for nonlinear programming problems publication-title: International Transactions in Operational Research doi: 10.1111/1475-3995.d01-23 – volume: 38 start-page: 501 year: 2016 ident: 2022041115580333600_bib85 article-title: A memory-based differential evolution algorithm for unconstrained optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.022 – volume: 7 start-page: 386 year: 2003 ident: 2022041115580333600_bib92 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.814902 – volume-title: Hybrid particle swarm algorithm for multiobjective optimization: Integrating particle swarm optimization with genetic algorithms for multiobjective optimization year: 2011 ident: 2022041115580333600_bib41 – volume: 10 start-page: 629 year: 2010 ident: 2022041115580333600_bib69 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.08.031 – start-page: 1 year: 2021 ident: 2022041115580333600_bib82 article-title: A quantum mutation-based backtracking search algorithm publication-title: Artificial Intelligence Review – volume: 163 start-page: 134 year: 2018 ident: 2022041115580333600_bib103 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.02.012 – volume: 29 start-page: 17 year: 2013 ident: 2022041115580333600_bib45 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Engineering with Computers doi: 10.1007/s00366-011-0241-y – volume: 43 start-page: 303 year: 2011 ident: 2022041115580333600_bib89 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design doi: 10.1016/j.cad.2010.12.015 – volume: 5 start-page: 71 year: 2016 ident: 2022041115580333600_bib6 article-title: Hybrid genetic algorithm with K-means for clustering problems publication-title: Open Journal of Optimization doi: 10.4236/ojop.2016.52009 – volume: 60 start-page: 423 year: 2017 ident: 2022041115580333600_bib3 article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.06.059 – volume-title: Nonlinear optimization with engineering applications (Springer Optimization and Its Applications Book Series) year: 2008 ident: 2022041115580333600_bib75 – volume: 2 start-page: 23 year: 2019 ident: 2022041115580333600_bib13 article-title: Meta-heuristic bus transportation algorithm publication-title: Iran Journal of Computer Science doi: 10.1007/s42044-018-0025-2 – volume: 98 start-page: 93 year: 2018 ident: 2022041115580333600_bib100 article-title: A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.01.011 – volume-title: Engineering optimization: Theory and practice year: 2009 ident: 2022041115580333600_bib90 doi: 10.1002/9780470549124 – start-page: 6 volume-title: International Journal of Advancement in Engineering, Technology and Computer Sciences (IJAETCS) year: 2016 ident: 2022041115580333600_bib30 article-title: A hybrid genetic algorithm for job shop scheduling problems – volume: 10 start-page: 777 year: 2014 ident: 2022041115580333600_bib47 article-title: Solving structural engineering design optimization problems using an artificial bee colony algorithm publication-title: Journal of Industrial & Management Optimization doi: 10.3934/jimo.2014.10.777 – volume: 195 start-page: 99 year: 2018 ident: 2022041115580333600_bib68 article-title: An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints publication-title: Computers & Structures doi: 10.1016/j.compstruc.2017.06.016 – volume: 26 start-page: 30 year: 1996 ident: 2022041115580333600_bib25 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Computer Science and Informatics – volume: 36 start-page: 3880 year: 2009 ident: 2022041115580333600_bib109 article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.02.039 – volume: 29 start-page: 386 year: 2018 ident: 2022041115580333600_bib116 article-title: An optimization method: Hummingbirds optimization algorithm publication-title: Journal of Systems Engineering and Electronics doi: 10.21629/JSEE.2018.02.19 – start-page: 652 volume-title: MICAI 2005: Advances in Artificial Intelligence, 4th Mexican International Conference on Artificial Intelligence year: 2005 ident: 2022041115580333600_bib73 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms – volume: 139 start-page: 98 year: 2014 ident: 2022041115580333600_bib18 article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm publication-title: Computers and Structures doi: 10.1016/j.compstruc.2014.03.007 – volume: 2021 start-page: 6672131 year: 2021 ident: 2022041115580333600_bib38 article-title: Constrained multiobjective equilibrium optimizer algorithm for solving combined economic emission dispatch problem publication-title: Complexity doi: 10.1155/2021/6672131 – volume: 235 start-page: 1446 year: 2011 ident: 2022041115580333600_bib1 article-title: Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2010.08.030 – start-page: 564 volume-title: Joint European–US Workshop on Applications of Invariance in Computer Vision year: 2020 ident: 2022041115580333600_bib11 article-title: Cell blood image segmentation based on genetic algorithm – start-page: 25 year: 2006 ident: 2022041115580333600_bib74 article-title: Modified differential evolution for constrained optimization publication-title: 2006 IEEE International Conference on Evolutionary Computation doi: 10.1109/CEC.2006.1688286 – volume: 7 start-page: 466 year: 2015 ident: 2022041115580333600_bib83 article-title: Hybrid genetic algorithm for constrained nonlinear optimization problems publication-title: British Journal of Mathematics & Computer Science doi: 10.9734/BJMCS/2015/16193 – volume: 26 start-page: 401 year: 2015 ident: 2022041115580333600_bib58 article-title: Enhanced leader PSO (ELPSO), a new PSO variant for solving global optimization problems publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2014.10.026 – volume: 49 start-page: 437 year: 2016 ident: 2022041115580333600_bib14 article-title: A comprehensive review: Krill herd algorithm (KH) and its applications publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.08.041 – volume: 3612 start-page: 582 year: 2005 ident: 2022041115580333600_bib86 article-title: Unified particle swarm optimization for solving constrained engineering optimization problems publication-title: Advances in Natural Computation, First International Conference, ICNC 2005 – volume: 177 start-page: 114864 year: 2021 ident: 2022041115580333600_bib108 article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114864 – volume: 39 start-page: 829 year: 1996 ident: 2022041115580333600_bib20 article-title: Structural optimization using a new local approximation method publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U – volume: 181 start-page: 115079 year: 2021 ident: 2022041115580333600_bib4 article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge–Kutta method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115079 – volume: 98 start-page: 1021 year: 1976 ident: 2022041115580333600_bib88 article-title: Optimal design of a class of welded structures using geometric programming publication-title: Journal of Engineering for Industry doi: 10.1115/1.3438995 – volume: 179 start-page: 2232 year: 2009 ident: 2022041115580333600_bib91 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – volume: 90 start-page: 103541 year: 2020 ident: 2022041115580333600_bib62 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103541 – volume: 58 start-page: 11 year: 2017 ident: 2022041115580333600_bib57 article-title: Hybrid artificial bee colony algorithm with differential evolution publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.04.018 – volume-title: An idea based on honey bee swarm for numerical optimization, Technical report-TR06 year: 2005 ident: 2022041115580333600_bib61 – volume: 20 start-page: 89 year: 2006 ident: 2022041115580333600_bib53 article-title: An effective co-evolutionary particle swarm optimization for engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2006.03.003 – volume: 41 start-page: 113 year: 2000 ident: 2022041115580333600_bib22 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Computers in Industry doi: 10.1016/S0166-3615(99)00046-9 – volume: 10 start-page: 151 year: 2018 ident: 2022041115580333600_bib102 article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Computing doi: 10.1007/s12293-016-0212-3 – volume: 13 start-page: 421 year: 2020 ident: 2022041115580333600_bib2 article-title: Multi-sine cosine algorithm for solving nonlinear bilevel programming problems publication-title: International Journal of Computational Intelligence Systems doi: 10.2991/ijcis.d.200411.001 – volume: 23 start-page: 1001 year: 2012 ident: 2022041115580333600_bib5 article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-010-0393-4 – volume-title: Ant colony optimization, ISBN: 978-0-262-04219-2 year: 2004 ident: 2022041115580333600_bib28 doi: 10.7551/mitpress/1290.001.0001 – volume-title: Adaptation in natural and artificial systems year: 1975 ident: 2022041115580333600_bib55 – volume: 220 start-page: 106937 year: 2021 ident: 2022041115580333600_bib19 article-title: Hybrid firefly algorithm with grouping attraction for constrained optimization problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106937 – volume: 25 start-page: 28 year: 2018 ident: 2022041115580333600_bib50 article-title: A hybrid of ant colony and firefly algorithms (HAFA) for solving vehicle routing problems publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2017.12.012 – volume: 178 start-page: 3043 year: 2008 ident: 2022041115580333600_bib110 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Information Sciences doi: 10.1016/j.ins.2008.02.014 – volume: 6 start-page: 191 year: 2000 ident: 2022041115580333600_bib15 article-title: A continuous genetic algorithm designed for theglobal optimization of multimodal functions publication-title: Journal of Heuristics doi: 10.1023/A:1009626110229 – volume: 95 start-page: 51 year: 2016 ident: 2022041115580333600_bib79 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 32 start-page: 9777 year: 2020 ident: 2022041115580333600_bib111 article-title: Spherical search optimizer: A simple yet efficient meta-heuristic approach publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04510-4 – volume: 116 start-page: 405 year: 1994 ident: 2022041115580333600_bib59 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design doi: 10.1115/1.2919393 – volume: 180 start-page: 2044 year: 2010 ident: 2022041115580333600_bib46 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power publication-title: Information Sciences doi: 10.1016/j.ins.2009.12.010 – volume: 53 start-page: 1168 year: 2014 ident: 2022041115580333600_bib44 article-title: Interior search algorithm (ISA): A novel approach for global optimization publication-title: ISA Transactions doi: 10.1016/j.isatra.2014.03.018 – volume: 46 start-page: 145 year: 2016 ident: 2022041115580333600_bib71 article-title: A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.012 – volume: 329 start-page: 719 year: 2016 ident: 2022041115580333600_bib112 article-title: An effective bacterial foraging optimizer for global optimization publication-title: Information Sciences doi: 10.1016/j.ins.2015.10.001 – volume: 20 start-page: 7 year: 2006 ident: 2022041115580333600_bib56 article-title: A hybrid real-parameter genetic algorithm for function optimization publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2005.09.001 – volume: 16 start-page: 193 year: 2002 ident: 2022041115580333600_bib24 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Advanced Engineering Informatics doi: 10.1016/S1474-0346(02)00011-3 – volume: 36 start-page: 219 year: 2004 ident: 2022041115580333600_bib23 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Engineering Optimization doi: 10.1080/03052150410001647966 – volume-title: Genetic algorithms in search, optimization, and machine learning year: 1989 ident: 2022041115580333600_bib51 – volume: 186 start-page: 1407 year: 2007 ident: 2022041115580333600_bib54 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.134 – volume: 13 start-page: 2592 year: 2013 ident: 2022041115580333600_bib93 article-title: Mine blast algorithm: A new population-based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.11.026 – volume: 58 start-page: 249 year: 2015 ident: 2022041115580333600_bib63 article-title: A hybrid data clustering using firefly algorithm based improved genetic algorithm publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.08.018 – volume: 85 start-page: 8 year: 2016 ident: 2022041115580333600_bib42 article-title: A chaos-based evolutionary algorithm for general nonlinear programming problems publication-title: Chaos, Solitons and Fractals doi: 10.1016/j.chaos.2016.01.007 – volume: 148 start-page: 335 year: 2003 ident: 2022041115580333600_bib16 article-title: Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(02)00401-0 – volume: 14 start-page: 783 year: 2021 ident: 2022041115580333600_bib32 article-title: Integrating grasshopper optimization algorithm with local search for solving data clustering problems publication-title: International Journal of Computational Intelligence Systems doi: 10.2991/ijcis.d.210203.008 – volume-title: 6th World Congresses of Structural and Multidisciplinary Optimization year: 2005 ident: 2022041115580333600_bib96 article-title: Constrained particle swarm optimization of mechanical systems – volume: 54 start-page: 505 year: 2017 ident: 2022041115580333600_bib99 article-title: Hybridizing gravitational search algorithm with real coded genetic algorithms for structural engineering design problem publication-title: OPSEARCH doi: 10.1007/s12597-016-0291-4 – volume: 35 start-page: 2406 year: 2018 ident: 2022041115580333600_bib115 article-title: Lévy flight trajectory-based whale optimization algorithm for engineering optimization publication-title: Engineering Computations doi: 10.1108/EC-07-2017-0264 – volume: 8 start-page: 220944 year: 2020 ident: 2022041115580333600_bib34 article-title: Hybridization of grasshopper optimization algorithm with genetic algorithm for solving system of non-linear equations publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3043029 – volume: 1 start-page: 3 year: 2002 ident: 2022041115580333600_bib12 article-title: Evolution strategies – A comprehensive introduction publication-title: Natural Computing doi: 10.1023/A:1015059928466 – volume: 6 start-page: 1873 year: 2015 ident: 2022041115580333600_bib43 article-title: Binary–real coded genetic algorithm-based k-means clustering for unit commitment problem publication-title: Applied Mathematics doi: 10.4236/am.2015.611165 – start-page: 156 volume-title: 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE) year: 2015 ident: 2022041115580333600_bib48 article-title: Harmony-based monarch butterfly optimization algorithm doi: 10.1109/ICCSCE.2015.7482176 – volume: 184 start-page: 142 year: 2019 ident: 2022041115580333600_bib9 article-title: A new hybrid firefly algorithm and particle swarm optimization for tuning parameter estimation in penalized support vector machine with application in chemometrics publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2018.12.003 – volume: 212 start-page: 20 year: 2019 ident: 2022041115580333600_bib65 article-title: A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures publication-title: Computers & Structures doi: 10.1016/j.compstruc.2018.10.017 – volume: 215 start-page: 3029 year: 2009 ident: 2022041115580333600_bib8 article-title: A simulated annealing technique for multi-objective simulation optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2009.09.051 – volume: 44 start-page: 537 year: 2012 ident: 2022041115580333600_bib72 article-title: A constrained optimization algorithm based on the simplex search method publication-title: Engineering Optimization doi: 10.1080/0305215X.2011.598520 – volume: 5 start-page: 1 year: 2018 ident: 2022041115580333600_bib36 article-title: Particle swarm optimization from theory to applications publication-title: International Journal of Rough Sets and Data Analysis doi: 10.4018/IJRSDA.2018040101 – volume: 111 start-page: 300 year: 2020 ident: 2022041115580333600_bib67 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.03.055 – volume: 83 start-page: 80 year: 2015 ident: 2022041115580333600_bib77 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – volume: 33 start-page: 798 year: 2021 ident: 2022041115580333600_bib97 article-title: Clinical decision support system query optimizer using hybrid firefly and controlled genetic algorithm publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2018.06.007 – volume: 22 start-page: 52 year: 2002 ident: 2022041115580333600_bib87 article-title: Biomimicry of bacteria foraging for distributed optimization and control publication-title: IEEE Control Systems Magazine doi: 10.1109/MCS.2002.1004010 – volume: 8 start-page: 849 year: 2008 ident: 2022041115580333600_bib60 article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.07.002 – volume-title: New optimization techniques in engineering year: 2004 ident: 2022041115580333600_bib84 doi: 10.1007/978-3-540-39930-8 – volume: 9 start-page: 200 year: 2021 ident: 2022041115580333600_bib81 article-title: Chaotic search-based equilibrium optimizer for dealing with nonlinear programming and petrochemical application publication-title: Processes doi: 10.3390/pr9020200 – volume: 24 start-page: 137 year: 1995 ident: 2022041115580333600_bib106 article-title: Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization publication-title: Engineering Optimization doi: 10.1080/03052159508941187 – volume: 58 start-page: 104 year: 2017 ident: 2022041115580333600_bib17 article-title: A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.04.057 – volume: 105 start-page: 30 year: 2017 ident: 2022041115580333600_bib94 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.01.004 – volume: 114 start-page: 163 year: 2017 ident: 2022041115580333600_bib78 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – start-page: 1 volume-title: Proceedings of The International Conference on Advanced Machine Learning Technologies and Applications year: 2020 ident: 2022041115580333600_bib35 article-title: A hybridization of sine cosine algorithm with steady state genetic algorithm for engineering design problems – start-page: 1 volume-title: 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) year: 2019 ident: 2022041115580333600_bib29 article-title: Hybrid firefly and particle swarm optimization algorithm for PID controller design of buck converter – volume: 56 start-page: 911 year: 2019 ident: 2022041115580333600_bib39 article-title: An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem publication-title: OPSEARCH doi: 10.1007/s12597-019-00388-x – volume: 8 start-page: 212036 year: 2020 ident: 2022041115580333600_bib80 article-title: Steady-state sine cosine genetic algorithm-based chaotic search for nonlinear programming and engineering applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039882 – volume: 37 start-page: 395 year: 2009 ident: 2022041115580333600_bib105 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint handling technique publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-008-0238-3 – volume: 93 start-page: 106367 year: 2020 ident: 2022041115580333600_bib52 article-title: A memory-based Grey wolf optimizer for global optimization tasks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106367 – volume: 41 start-page: 947 year: 2010 ident: 2022041115580333600_bib104 article-title: An effective differential evolution with level comparison for constrained engineering design publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-009-0454-5 – volume: 4 start-page: 20 year: 2017 ident: 2022041115580333600_bib37 article-title: Chaotic particle swarm optimization for imprecise combined economic and emission dispatch problem publication-title: Review of Information Engineering and Applications doi: 10.18488/journal.79.2017.41.20.35 – volume: 19 start-page: 1254 year: 2016 ident: 2022041115580333600_bib101 article-title: Firefly algorithm for congestion management in deregulated environment publication-title: Engineering Science and Technology – volume: 38 start-page: 817 year: 2016 ident: 2022041115580333600_bib114 article-title: An improved monkey algorithm for a 0–1 knapsack problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.043 – volume: 60 start-page: 311 year: 2016 ident: 2022041115580333600_bib95 article-title: An efficient proactive artificial immune system-based anomaly detection and prevention system publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.042 – start-page: 303 volume-title: Advances in swarm intelligence, ICSI 2011, Lecture Notes in Computer Science year: 2011 ident: 2022041115580333600_bib98 article-title: Brain storm optimization algorithm – volume: 165 start-page: 169 year: 2019 ident: 2022041115580333600_bib27 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.11.024 – volume: 81 start-page: 252 year: 2018 ident: 2022041115580333600_bib64 article-title: Socio evolution & learning optimization algorithm: A socioinspired optimization methodology publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.10.052 – volume: 66 start-page: 232 year: 2018 ident: 2022041115580333600_bib10 article-title: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.02.025 – volume-title: Nature-inspired metaheuristic algorithms, ISBN 1-905986-10-6 year: 2008 ident: 2022041115580333600_bib107 – volume: 3498 start-page: 965 year: 2005 ident: 2022041115580333600_bib113 article-title: A genetic-algorithm-based neural network approach for short-term traffic flow forecasting publication-title: Advances in Neural Networks – volume: 4 start-page: 11 year: 2017 ident: 2022041115580333600_bib40 article-title: Solving nonlinear single-unit commitment problem by genetic algorithm based clustering technique publication-title: Review of Computer Engineering Research doi: 10.18488/journal.76.2017.41.11.29 |
| SSID | ssj0001723019 ssib053376903 |
| Score | 2.378905 |
| Snippet | Abstract
Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing... Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The... |
| SourceID | nrf proquest crossref oup |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 706 |
| SubjectTerms | Algorithms Computing time Design engineering Genetic algorithms Heuristic methods Hybrid systems Optimization Search methods 기계공학 |
| Title | A hybrid genetic–firefly algorithm for engineering design problems |
| URI | https://www.proquest.com/docview/3191456213 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002832691 |
| Volume | 9 |
| WOSCitedRecordID | wos000780334700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Computational Design and Engineering , 2022, 9(2), , pp.706-730 |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: TOX dateStart: 20140101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: M7S dateStart: 20211001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: BENPR dateStart: 20211001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: PIMPY dateStart: 20211001 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDlzYEWWpLAEnFDWJ4zg9IVbBgVKxSOVkeWUrLTQFxI1_4A_5EsapSwUScEA5REksy8qMZ_PMPITWhAyZMJoFjKRpkKQmCWRVmEAZygy1zGSxLMAmWK2WNRrVug-45T6tsi8TC0Gt28rFyCvENSIDZR2RzfuHwKFGudNVD6ExjEZdpzLg89HtvVr9ZBBlYWBiF-gecQwsQYFfffY7ePKVG6VN5eFZqDAiX_TScKtjv1W89UV0oXf2J_-74ik04S1OvNVjkWk0ZFozaNJbn9jv7XwW7W7hqxdXv4WBp1xp4_vrmwWBaJsvWDQvYebu1R0GGxebQQ9DrIsMEOxxafI5dL6_d7ZzEHiMhUCBK9cNKJOZElIpmxHNMqujOK1qYbNMRDIUJFYEDB6mI5smmsL2N8qk4IJIEqkwFIbMo5FWu2UWEE5YIsG8ijKtQBIIKrQhlsIVS0ZVSktoo_-HufINyB0ORpP3DsIJd_Tgnh4ltP45-r7XeOOHcatALH6rrrnrlO3ul21-2-HgDxy6BLYI1G-1hDAQ84-Jlvtk5H4f53xAw8XfPy-h8dgVRhQ5PctopNt5NCtoTD11r_NO2bNlufD4yy6_9BTe1Q-P6hfwdHbc-AAYrfMb |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61WyS4UH7FQgFL0BOKNrHjODkgVFGqrtqu9lCkcjL-bUuX3XazUO2Nd-A9eCiehHHWYQUScOoB5ZBDLEvOfDPz2Z4fgOdKp0I5KxLBiiLJC5cnulIuMY4Lx71wJdVNswkxGJRHR9VwBb61uTAhrLK1iY2hthMTzsh7LBQiQ2edsVfnF0noGhVuV9sWGgtY7Ln5JW7Z6pf9bZTvJqU7bw5f7yaxq0BicPMyS7jQpVHaGF8yK0pvM1pUVvmyVJlOFaOGoYsXNvNFbjkC3hlXIOnWLDNpqhzDeVdhLUewpx1YG_YPhu-WpzoCKX3TTYRShCBH_YjR9mnFeh-Mdb2LS2XSjP3iB1fHU_9bhl3rEho_t7P-v_2hW3AzMmqytVCB27DixndgPbJrEm1XfRe2t8jJPOSnEdSZkLr5_ctXjwbfj-ZEjY5xJbOTjwQ5PHHLGo3ENhEuJPbdqe_B2ytZy33ojCdj9wBILnKN9DErrUFLp7iyjnmOD9WCm4J34UUrUWligfXQ52MkFxf9TAb5yyj_Lmz-HH2-KCzyh3HPEBzyzJzKUAk8vI8n8mwqcb_TDwF6GdKLqgsEwfOPiTZa2Mhop2q5xMzDv39-Ctd3Dw_25X5_sPcIbtCQBNLEL21AZzb95B7DNfN5dlpPn0SVIPD-qjH2A9N-TNs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+genetic%E2%80%93firefly+algorithm+for+engineering+design+problems&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=El-Shorbagy%2C+M+A&rft.au=El-Refaey%2C+Adel+M&rft.date=2022-04-01&rft.pub=Oxford+University+Press&rft.issn=2288-5048&rft.eissn=2288-5048&rft.volume=9&rft.issue=2&rft.spage=706&rft.epage=730&rft_id=info:doi/10.1093%2Fjcde%2Fqwac013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon |