A hybrid genetic–firefly algorithm for engineering design problems

Abstract Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational design and engineering Jg. 9; H. 2; S. 706 - 730
Hauptverfasser: El-Shorbagy, M A, El-Refaey, Adel M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Oxford University Press 01.04.2022
한국CDE학회
Schlagworte:
ISSN:2288-5048, 2288-4300, 2288-5048
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Abstract Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs. Graphical Abstract Graphical Abstract
AbstractList Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs.
Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs. KCI Citation Count: 26
Abstract Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can cause early convergence and a large number of fitness comparisons that can add to the computational time complexity. This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm (GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7 constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs. Graphical Abstract Graphical Abstract
Author El-Shorbagy, M A
El-Refaey, Adel M
Author_xml – sequence: 1
  givenname: M A
  orcidid: 0000-0002-8115-0638
  surname: El-Shorbagy
  fullname: El-Shorbagy, M A
  email: mohammed_shorbagy@yahoo.com
– sequence: 2
  givenname: Adel M
  surname: El-Refaey
  fullname: El-Refaey, Adel M
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002832691$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kN9KwzAYxYNMcM7d-QAFLwSxmq9pm_RyzH-DgSDzOqRp0mXrki3tkN35Dr6hT2JndyGCXp3v4ncO5zunqGedVQidA74BnJHbhSzU7eZNSAzkCPWjiLEwwTHr_bhP0LCuFxhjoBHBkPXR3SiY73JviqBUVjVGfr5_aOOVrnaBqErnTTNfBdr5QNnSWKW8sWVQqNqUNlh7l1dqVZ-hYy2qWg0POkCvD_ez8VM4fX6cjEfTUMaYNmFCcyZFLqVmpKBMFxClWSE0YwJyLEgkCSQZLUCncZEwEimpUhrTnIDEWCgyQFddrvWaL6XhTphvLR1fej56mU04YICYQtbCFx3cttxsVd3whdt62_bjBDKIkzQC0lJRR0nv6rr9m0vTiMY423hhqjaO79fl-3X5Yd3WdP3LtPZmJfzuL_yyw912_T_5BVd3jc8
CitedBy_id crossref_primary_10_1007_s00500_025_10404_6
crossref_primary_10_1007_s40819_025_01925_7
crossref_primary_10_1109_JIOT_2023_3306353
crossref_primary_10_1016_j_compbiomed_2023_107727
crossref_primary_10_1007_s11518_024_5608_x
crossref_primary_10_3233_IDT_240211
crossref_primary_10_1038_s41598_025_09523_9
crossref_primary_10_1093_jcde_qwac135
crossref_primary_10_1093_jcde_qwaf007
crossref_primary_10_1007_s40745_024_00528_1
crossref_primary_10_1088_1742_6596_2858_1_012050
crossref_primary_10_1093_jcde_qwad047
crossref_primary_10_1093_jcde_qwad043
crossref_primary_10_1093_jcde_qwac099
crossref_primary_10_1109_ACCESS_2023_3267434
crossref_primary_10_1108_EC_10_2024_0904
crossref_primary_10_1093_jcde_qwad075
crossref_primary_10_1093_jcde_qwac085
crossref_primary_10_1016_j_eswa_2024_125029
crossref_primary_10_1093_jcde_qwac081
crossref_primary_10_1007_s10708_025_11339_z
crossref_primary_10_1093_jcde_qwad039
crossref_primary_10_1093_jcde_qwad058
crossref_primary_10_3934_GF_2024027
crossref_primary_10_1080_23302674_2025_2452365
crossref_primary_10_1093_jcde_qwae044
crossref_primary_10_1093_jcde_qwad110
crossref_primary_10_1093_jcde_qwae089
Cites_doi 10.1016/j.cma.2004.09.007
10.1016/j.asoc.2017.02.003
10.1007/s00180-019-00871-5
10.1016/j.eswa.2009.06.044
10.1016/j.swevo.2011.02.002
10.1111/1475-3995.d01-23
10.1016/j.asoc.2015.10.022
10.1109/TEVC.2003.814902
10.1016/j.asoc.2009.08.031
10.1016/j.enconman.2018.02.012
10.1007/s00366-011-0241-y
10.1016/j.cad.2010.12.015
10.4236/ojop.2016.52009
10.1016/j.asoc.2017.06.059
10.1007/s42044-018-0025-2
10.1016/j.eswa.2018.01.011
10.1002/9780470549124
10.3934/jimo.2014.10.777
10.1016/j.compstruc.2017.06.016
10.1016/j.eswa.2008.02.039
10.21629/JSEE.2018.02.19
10.1016/j.compstruc.2014.03.007
10.1155/2021/6672131
10.1016/j.cam.2010.08.030
10.1109/CEC.2006.1688286
10.9734/BJMCS/2015/16193
10.1016/j.asoc.2014.10.026
10.1016/j.asoc.2016.08.041
10.1016/j.eswa.2021.114864
10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
10.1016/j.eswa.2021.115079
10.1115/1.3438995
10.1016/j.ins.2009.03.004
10.1016/j.engappai.2020.103541
10.1016/j.asoc.2017.04.018
10.1016/j.engappai.2006.03.003
10.1016/S0166-3615(99)00046-9
10.1007/s12293-016-0212-3
10.2991/ijcis.d.200411.001
10.1007/s10845-010-0393-4
10.7551/mitpress/1290.001.0001
10.1016/j.knosys.2021.106937
10.1016/j.jocs.2017.12.012
10.1016/j.ins.2008.02.014
10.1023/A:1009626110229
10.1016/j.advengsoft.2016.01.008
10.1007/s00521-019-04510-4
10.1115/1.2919393
10.1016/j.ins.2009.12.010
10.1016/j.isatra.2014.03.018
10.1016/j.eswa.2015.10.012
10.1016/j.ins.2015.10.001
10.1016/j.aei.2005.09.001
10.1016/S1474-0346(02)00011-3
10.1080/03052150410001647966
10.1016/j.amc.2006.07.134
10.1016/j.asoc.2012.11.026
10.1016/j.procs.2015.08.018
10.1016/j.chaos.2016.01.007
10.1016/S0377-2217(02)00401-0
10.2991/ijcis.d.210203.008
10.1007/s12597-016-0291-4
10.1108/EC-07-2017-0264
10.1109/ACCESS.2020.3043029
10.1023/A:1015059928466
10.4236/am.2015.611165
10.1109/ICCSCE.2015.7482176
10.1016/j.chemolab.2018.12.003
10.1016/j.compstruc.2018.10.017
10.1016/j.amc.2009.09.051
10.1080/0305215X.2011.598520
10.4018/IJRSDA.2018040101
10.1016/j.future.2020.03.055
10.1016/j.advengsoft.2015.01.010
10.1016/j.jksuci.2018.06.007
10.1109/MCS.2002.1004010
10.1016/j.asoc.2007.07.002
10.1007/978-3-540-39930-8
10.3390/pr9020200
10.1080/03052159508941187
10.1016/j.asoc.2017.04.057
10.1016/j.advengsoft.2017.01.004
10.1016/j.advengsoft.2017.07.002
10.1007/s12597-019-00388-x
10.1109/ACCESS.2020.3039882
10.1007/s00158-008-0238-3
10.1016/j.asoc.2020.106367
10.1007/s00158-009-0454-5
10.18488/journal.79.2017.41.20.35
10.1016/j.asoc.2015.10.043
10.1016/j.eswa.2016.03.042
10.1016/j.knosys.2018.11.024
10.1016/j.future.2017.10.052
10.1016/j.asoc.2018.02.025
10.18488/journal.76.2017.41.11.29
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
7XB
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M0N
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ACYCR
DOI 10.1093/jcde/qwac013
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Computing Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Computing
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2288-5048
EndPage 730
ExternalDocumentID oai_kci_go_kr_ARTI_10114719
10_1093_jcde_qwac013
10.1093/jcde/qwac013
GroupedDBID .UV
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAPXW
AAVAP
AAXUO
ABMAC
ABPTD
ABXVV
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FRF
GROUPED_DOAJ
H13
IAO
IGS
IPNFZ
JDI
KQ8
KSI
M41
ML0
M~E
NCXOZ
O9-
OK1
RIG
ROL
ROX
SSZ
TOX
AAYXX
ABEJV
ABGNP
ABJCF
ADMLS
AFFHD
AFKRA
AMNDL
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
ITC
M7S
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
7XB
8FE
8FG
ABUWG
L6V
M0N
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
AAYWO
ACYCR
PMFND
ID FETCH-LOGICAL-c407t-57b8cabccf83d78fd1269daf88a1b0a32c31597d1f64d5832ece6747b31c00ae3
IEDL.DBID BENPR
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780334700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2288-5048
2288-4300
IngestDate Sat May 31 03:24:09 EDT 2025
Fri Sep 19 20:56:21 EDT 2025
Sat Nov 29 03:52:53 EST 2025
Tue Nov 18 20:20:15 EST 2025
Wed Aug 28 03:18:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords genetic algorithm
firefly algorithm
hybrid algorithms
engineering design problems
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-57b8cabccf83d78fd1269daf88a1b0a32c31597d1f64d5832ece6747b31c00ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8115-0638
OpenAccessLink https://www.proquest.com/docview/3191456213?pq-origsite=%requestingapplication%
PQID 3191456213
PQPubID 7217057
PageCount 25
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10114719
proquest_journals_3191456213
crossref_citationtrail_10_1093_jcde_qwac013
crossref_primary_10_1093_jcde_qwac013
oup_primary_10_1093_jcde_qwac013
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of computational design and engineering
PublicationYear 2022
Publisher Oxford University Press
한국CDE학회
Publisher_xml – name: Oxford University Press
– name: 한국CDE학회
References Abo-elnaga (2022041115580333600_bib2) 2020; 13
El-Shorbagy (2022041115580333600_bib42) 2016; 85
Bodaghi (2022041115580333600_bib13) 2019; 2
El-Shorbagy (2022041115580333600_bib37) 2017; 4
Parouha (2022041115580333600_bib85) 2016; 38
Alrefaei (2022041115580333600_bib8) 2009; 215
Wang (2022041115580333600_bib102) 2018; 10
El-Shorbagy (2022041115580333600_bib40) 2017; 4
Gandomi (2022041115580333600_bib45) 2013; 29
Yang (2022041115580333600_bib108) 2021; 177
Turanoğlu (2022041115580333600_bib100) 2018; 98
Coello (2022041115580333600_bib23) 2004; 36
Ahmadianfar (2022041115580333600_bib4) 2021; 181
El-Shorbagy (2022041115580333600_bib41) 2011
Wu (2022041115580333600_bib106) 1995; 24
Zhou (2022041115580333600_bib114) 2016; 38
Nama (2022041115580333600_bib82) 2021
Holland (2022041115580333600_bib55) 1975
Dhiman (2022041115580333600_bib27) 2019; 165
Cheng (2022041115580333600_bib19) 2021; 220
Chickermane (2022041115580333600_bib20) 1996; 39
Le (2022041115580333600_bib65) 2019; 212
Mirjalili (2022041115580333600_bib79) 2016; 95
Passino (2022041115580333600_bib87) 2002; 22
Alabool (2022041115580333600_bib7) 2021
Bolaji (2022041115580333600_bib14) 2016; 49
Saremi (2022041115580333600_bib94) 2017; 105
Garg (2022041115580333600_bib47) 2014; 10
Zhang (2022041115580333600_bib110) 2008; 178
Sharma (2022041115580333600_bib97) 2021; 33
Michalewicz (2022041115580333600_bib76) 1994; 1
Cheng (2022041115580333600_bib18) 2014; 139
He (2022041115580333600_bib54) 2007; 186
Ekinci (2022041115580333600_bib29) 2019
Abd-El-Wahed (2022041115580333600_bib1) 2011; 235
Gandomi (2022041115580333600_bib44) 2014; 53
Jadon (2022041115580333600_bib57) 2017; 58
Ayoub (2022041115580333600_bib11) 2020
Kaur (2022041115580333600_bib62) 2020; 90
Zhuoran (2022041115580333600_bib116) 2018; 29
Sedlaczek (2022041115580333600_bib96) 2005
El-Shorbagy (2022041115580333600_bib31) 2010
Lieu (2022041115580333600_bib68) 2018; 195
Deb (2022041115580333600_bib25) 1996; 26
Liu (2022041115580333600_bib69) 2010; 10
Zhao (2022041115580333600_bib112) 2016; 329
El-Shorbagy (2022041115580333600_bib39) 2019; 56
El-Shorbagy (2022041115580333600_bib32) 2021; 14
Shi (2022041115580333600_bib98) 2011
Beyer (2022041115580333600_bib12) 2002; 1
El-Shorbagy (2022041115580333600_bib33) 2019; 34
García (2022041115580333600_bib46) 2010; 180
Hwang (2022041115580333600_bib56) 2006; 20
Akay (2022041115580333600_bib5) 2012; 23
Karaboga (2022041115580333600_bib61) 2005
Rashedi (2022041115580333600_bib91) 2009; 179
Coelho (2022041115580333600_bib21) 2010; 37
Sadollah (2022041115580333600_bib93) 2013; 13
Ragsdell (2022041115580333600_bib88) 1976; 98
Jordehi (2022041115580333600_bib58) 2015; 26
Verma (2022041115580333600_bib101) 2016; 19
Singh (2022041115580333600_bib99) 2017; 54
El-Shorbagy (2022041115580333600_bib36) 2018; 5
Aydilek (2022041115580333600_bib10) 2018; 66
Gupta (2022041115580333600_bib52) 2020; 93
Rao (2022041115580333600_bib89) 2011; 43
Lee (2022041115580333600_bib66) 2005; 194
Mezura-Montes (2022041115580333600_bib73) 2005
Kumar (2022041115580333600_bib64) 2018; 81
Coello (2022041115580333600_bib22) 2000; 41
Wang (2022041115580333600_bib105) 2009; 37
Zhao (2022041115580333600_bib111) 2020; 32
Chen (2022041115580333600_bib17) 2017; 58
Yang (2022041115580333600_bib107) 2008
Mehta (2022041115580333600_bib72) 2012; 44
Wang (2022041115580333600_bib104) 2010; 41
Goldberg (2022041115580333600_bib51) 1989
Goel (2022041115580333600_bib50) 2018; 25
El-Desoky (2022041115580333600_bib30) 2016
Kao (2022041115580333600_bib60) 2008; 8
Mirjalili (2022041115580333600_bib78) 2017; 114
Wang (2022041115580333600_bib103) 2018; 163
Farag (2022041115580333600_bib43) 2015; 6
Chelouah (2022041115580333600_bib16) 2003; 148
El-Shorbagy (2022041115580333600_bib34) 2020; 8
Zahara (2022041115580333600_bib109) 2009; 36
Al Malki (2022041115580333600_bib6) 2016; 5
Mousa (2022041115580333600_bib81) 2021; 9
Zhou (2022041115580333600_bib113) 2005; 3498
Mirjalili (2022041115580333600_bib77) 2015; 83
Michael (2022041115580333600_bib75) 2008
Marinaki (2022041115580333600_bib71) 2016; 46
Al-Thanoon (2022041115580333600_bib9) 2019; 184
Rao (2022041115580333600_bib90) 2009
Ray (2022041115580333600_bib92) 2003; 7
Li (2022041115580333600_bib67) 2020; 111
Marichelvam (2022041115580333600_bib70) 2017; 55
Saurabh (2022041115580333600_bib95) 2016; 60
Parsopoulos (2022041115580333600_bib86) 2005; 3612
He (2022041115580333600_bib53) 2006; 20
Mezura-Montes (2022041115580333600_bib74) 2006
Chelouah (2022041115580333600_bib15) 2000; 6
Kaushik (2022041115580333600_bib63) 2015; 58
Abualigah (2022041115580333600_bib3) 2017; 60
Dorigo (2022041115580333600_bib28) 2004
El-Shorbagy (2022041115580333600_bib35) 2020
Onwubolu (2022041115580333600_bib84) 2004
Mousa (2022041115580333600_bib80) 2020; 8
El-Shorbagy (2022041115580333600_bib38) 2021; 2021
Zhou (2022041115580333600_bib115) 2018; 35
Derrac (2022041115580333600_bib26) 2011; 1
Nasr (2022041115580333600_bib83) 2015; 7
Ghetas (2022041115580333600_bib48) 2015
Kannan (2022041115580333600_bib59) 1994; 116
Coello (2022041115580333600_bib24) 2002; 16
References_xml – volume: 194
  start-page: 3902
  year: 2005
  ident: 2022041115580333600_bib66
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2004.09.007
– start-page: 1
  volume-title: Neural computing and applications
  year: 2021
  ident: 2022041115580333600_bib7
  article-title: Harris hawks optimization: A comprehensive review of recent variants and applications
– volume: 55
  start-page: 82
  year: 2017
  ident: 2022041115580333600_bib70
  article-title: Hybrid monkey search algorithm for flow shop scheduling problem under makespan and total flow time
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.02.003
– volume: 34
  start-page: 1355
  year: 2019
  ident: 2022041115580333600_bib33
  article-title: An enhanced genetic algorithm with new mutation for cluster analysis
  publication-title: Computational Statistics
  doi: 10.1007/s00180-019-00871-5
– volume: 37
  start-page: 1676
  year: 2010
  ident: 2022041115580333600_bib21
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.06.044
– volume: 1
  start-page: 3
  year: 2011
  ident: 2022041115580333600_bib26
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume-title: Hybrid particle swarm algorithm for multi-objective optimization, Master of Engineering Thesis
  year: 2010
  ident: 2022041115580333600_bib31
– volume: 1
  start-page: 223
  year: 1994
  ident: 2022041115580333600_bib76
  article-title: Evolutionary computation techniques for nonlinear programming problems
  publication-title: International Transactions in Operational Research
  doi: 10.1111/1475-3995.d01-23
– volume: 38
  start-page: 501
  year: 2016
  ident: 2022041115580333600_bib85
  article-title: A memory-based differential evolution algorithm for unconstrained optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.022
– volume: 7
  start-page: 386
  year: 2003
  ident: 2022041115580333600_bib92
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.814902
– volume-title: Hybrid particle swarm algorithm for multiobjective optimization: Integrating particle swarm optimization with genetic algorithms for multiobjective optimization
  year: 2011
  ident: 2022041115580333600_bib41
– volume: 10
  start-page: 629
  year: 2010
  ident: 2022041115580333600_bib69
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.08.031
– start-page: 1
  year: 2021
  ident: 2022041115580333600_bib82
  article-title: A quantum mutation-based backtracking search algorithm
  publication-title: Artificial Intelligence Review
– volume: 163
  start-page: 134
  year: 2018
  ident: 2022041115580333600_bib103
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.02.012
– volume: 29
  start-page: 17
  year: 2013
  ident: 2022041115580333600_bib45
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-011-0241-y
– volume: 43
  start-page: 303
  year: 2011
  ident: 2022041115580333600_bib89
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– volume: 5
  start-page: 71
  year: 2016
  ident: 2022041115580333600_bib6
  article-title: Hybrid genetic algorithm with K-means for clustering problems
  publication-title: Open Journal of Optimization
  doi: 10.4236/ojop.2016.52009
– volume: 60
  start-page: 423
  year: 2017
  ident: 2022041115580333600_bib3
  article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.06.059
– volume-title: Nonlinear optimization with engineering applications (Springer Optimization and Its Applications Book Series)
  year: 2008
  ident: 2022041115580333600_bib75
– volume: 2
  start-page: 23
  year: 2019
  ident: 2022041115580333600_bib13
  article-title: Meta-heuristic bus transportation algorithm
  publication-title: Iran Journal of Computer Science
  doi: 10.1007/s42044-018-0025-2
– volume: 98
  start-page: 93
  year: 2018
  ident: 2022041115580333600_bib100
  article-title: A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.011
– volume-title: Engineering optimization: Theory and practice
  year: 2009
  ident: 2022041115580333600_bib90
  doi: 10.1002/9780470549124
– start-page: 6
  volume-title: International Journal of Advancement in Engineering, Technology and Computer Sciences (IJAETCS)
  year: 2016
  ident: 2022041115580333600_bib30
  article-title: A hybrid genetic algorithm for job shop scheduling problems
– volume: 10
  start-page: 777
  year: 2014
  ident: 2022041115580333600_bib47
  article-title: Solving structural engineering design optimization problems using an artificial bee colony algorithm
  publication-title: Journal of Industrial & Management Optimization
  doi: 10.3934/jimo.2014.10.777
– volume: 195
  start-page: 99
  year: 2018
  ident: 2022041115580333600_bib68
  article-title: An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2017.06.016
– volume: 26
  start-page: 30
  year: 1996
  ident: 2022041115580333600_bib25
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Computer Science and Informatics
– volume: 36
  start-page: 3880
  year: 2009
  ident: 2022041115580333600_bib109
  article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.039
– volume: 29
  start-page: 386
  year: 2018
  ident: 2022041115580333600_bib116
  article-title: An optimization method: Hummingbirds optimization algorithm
  publication-title: Journal of Systems Engineering and Electronics
  doi: 10.21629/JSEE.2018.02.19
– start-page: 652
  volume-title: MICAI 2005: Advances in Artificial Intelligence, 4th Mexican International Conference on Artificial Intelligence
  year: 2005
  ident: 2022041115580333600_bib73
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
– volume: 139
  start-page: 98
  year: 2014
  ident: 2022041115580333600_bib18
  article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 2021
  start-page: 6672131
  year: 2021
  ident: 2022041115580333600_bib38
  article-title: Constrained multiobjective equilibrium optimizer algorithm for solving combined economic emission dispatch problem
  publication-title: Complexity
  doi: 10.1155/2021/6672131
– volume: 235
  start-page: 1446
  year: 2011
  ident: 2022041115580333600_bib1
  article-title: Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2010.08.030
– start-page: 564
  volume-title: Joint European–US Workshop on Applications of Invariance in Computer Vision
  year: 2020
  ident: 2022041115580333600_bib11
  article-title: Cell blood image segmentation based on genetic algorithm
– start-page: 25
  year: 2006
  ident: 2022041115580333600_bib74
  article-title: Modified differential evolution for constrained optimization
  publication-title: 2006 IEEE International Conference on Evolutionary Computation
  doi: 10.1109/CEC.2006.1688286
– volume: 7
  start-page: 466
  year: 2015
  ident: 2022041115580333600_bib83
  article-title: Hybrid genetic algorithm for constrained nonlinear optimization problems
  publication-title: British Journal of Mathematics & Computer Science
  doi: 10.9734/BJMCS/2015/16193
– volume: 26
  start-page: 401
  year: 2015
  ident: 2022041115580333600_bib58
  article-title: Enhanced leader PSO (ELPSO), a new PSO variant for solving global optimization problems
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2014.10.026
– volume: 49
  start-page: 437
  year: 2016
  ident: 2022041115580333600_bib14
  article-title: A comprehensive review: Krill herd algorithm (KH) and its applications
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.08.041
– volume: 3612
  start-page: 582
  year: 2005
  ident: 2022041115580333600_bib86
  article-title: Unified particle swarm optimization for solving constrained engineering optimization problems
  publication-title: Advances in Natural Computation, First International Conference, ICNC 2005
– volume: 177
  start-page: 114864
  year: 2021
  ident: 2022041115580333600_bib108
  article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114864
– volume: 39
  start-page: 829
  year: 1996
  ident: 2022041115580333600_bib20
  article-title: Structural optimization using a new local approximation method
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
– volume: 181
  start-page: 115079
  year: 2021
  ident: 2022041115580333600_bib4
  article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge–Kutta method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115079
– volume: 98
  start-page: 1021
  year: 1976
  ident: 2022041115580333600_bib88
  article-title: Optimal design of a class of welded structures using geometric programming
  publication-title: Journal of Engineering for Industry
  doi: 10.1115/1.3438995
– volume: 179
  start-page: 2232
  year: 2009
  ident: 2022041115580333600_bib91
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 90
  start-page: 103541
  year: 2020
  ident: 2022041115580333600_bib62
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103541
– volume: 58
  start-page: 11
  year: 2017
  ident: 2022041115580333600_bib57
  article-title: Hybrid artificial bee colony algorithm with differential evolution
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.04.018
– volume-title: An idea based on honey bee swarm for numerical optimization, Technical report-TR06
  year: 2005
  ident: 2022041115580333600_bib61
– volume: 20
  start-page: 89
  year: 2006
  ident: 2022041115580333600_bib53
  article-title: An effective co-evolutionary particle swarm optimization for engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.03.003
– volume: 41
  start-page: 113
  year: 2000
  ident: 2022041115580333600_bib22
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Computers in Industry
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 10
  start-page: 151
  year: 2018
  ident: 2022041115580333600_bib102
  article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
  doi: 10.1007/s12293-016-0212-3
– volume: 13
  start-page: 421
  year: 2020
  ident: 2022041115580333600_bib2
  article-title: Multi-sine cosine algorithm for solving nonlinear bilevel programming problems
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.2991/ijcis.d.200411.001
– volume: 23
  start-page: 1001
  year: 2012
  ident: 2022041115580333600_bib5
  article-title: Artificial bee colony algorithm for large-scale problems and engineering design optimization
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-010-0393-4
– volume-title: Ant colony optimization, ISBN: 978-0-262-04219-2
  year: 2004
  ident: 2022041115580333600_bib28
  doi: 10.7551/mitpress/1290.001.0001
– volume-title: Adaptation in natural and artificial systems
  year: 1975
  ident: 2022041115580333600_bib55
– volume: 220
  start-page: 106937
  year: 2021
  ident: 2022041115580333600_bib19
  article-title: Hybrid firefly algorithm with grouping attraction for constrained optimization problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106937
– volume: 25
  start-page: 28
  year: 2018
  ident: 2022041115580333600_bib50
  article-title: A hybrid of ant colony and firefly algorithms (HAFA) for solving vehicle routing problems
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2017.12.012
– volume: 178
  start-page: 3043
  year: 2008
  ident: 2022041115580333600_bib110
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2008.02.014
– volume: 6
  start-page: 191
  year: 2000
  ident: 2022041115580333600_bib15
  article-title: A continuous genetic algorithm designed for theglobal optimization of multimodal functions
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009626110229
– volume: 95
  start-page: 51
  year: 2016
  ident: 2022041115580333600_bib79
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 32
  start-page: 9777
  year: 2020
  ident: 2022041115580333600_bib111
  article-title: Spherical search optimizer: A simple yet efficient meta-heuristic approach
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04510-4
– volume: 116
  start-page: 405
  year: 1994
  ident: 2022041115580333600_bib59
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
  doi: 10.1115/1.2919393
– volume: 180
  start-page: 2044
  year: 2010
  ident: 2022041115580333600_bib46
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.12.010
– volume: 53
  start-page: 1168
  year: 2014
  ident: 2022041115580333600_bib44
  article-title: Interior search algorithm (ISA): A novel approach for global optimization
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2014.03.018
– volume: 46
  start-page: 145
  year: 2016
  ident: 2022041115580333600_bib71
  article-title: A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.012
– volume: 329
  start-page: 719
  year: 2016
  ident: 2022041115580333600_bib112
  article-title: An effective bacterial foraging optimizer for global optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.10.001
– volume: 20
  start-page: 7
  year: 2006
  ident: 2022041115580333600_bib56
  article-title: A hybrid real-parameter genetic algorithm for function optimization
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2005.09.001
– volume: 16
  start-page: 193
  year: 2002
  ident: 2022041115580333600_bib24
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/S1474-0346(02)00011-3
– volume: 36
  start-page: 219
  year: 2004
  ident: 2022041115580333600_bib23
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Engineering Optimization
  doi: 10.1080/03052150410001647966
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 2022041115580333600_bib51
– volume: 186
  start-page: 1407
  year: 2007
  ident: 2022041115580333600_bib54
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.134
– volume: 13
  start-page: 2592
  year: 2013
  ident: 2022041115580333600_bib93
  article-title: Mine blast algorithm: A new population-based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.11.026
– volume: 58
  start-page: 249
  year: 2015
  ident: 2022041115580333600_bib63
  article-title: A hybrid data clustering using firefly algorithm based improved genetic algorithm
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.08.018
– volume: 85
  start-page: 8
  year: 2016
  ident: 2022041115580333600_bib42
  article-title: A chaos-based evolutionary algorithm for general nonlinear programming problems
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2016.01.007
– volume: 148
  start-page: 335
  year: 2003
  ident: 2022041115580333600_bib16
  article-title: Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(02)00401-0
– volume: 14
  start-page: 783
  year: 2021
  ident: 2022041115580333600_bib32
  article-title: Integrating grasshopper optimization algorithm with local search for solving data clustering problems
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.2991/ijcis.d.210203.008
– volume-title: 6th World Congresses of Structural and Multidisciplinary Optimization
  year: 2005
  ident: 2022041115580333600_bib96
  article-title: Constrained particle swarm optimization of mechanical systems
– volume: 54
  start-page: 505
  year: 2017
  ident: 2022041115580333600_bib99
  article-title: Hybridizing gravitational search algorithm with real coded genetic algorithms for structural engineering design problem
  publication-title: OPSEARCH
  doi: 10.1007/s12597-016-0291-4
– volume: 35
  start-page: 2406
  year: 2018
  ident: 2022041115580333600_bib115
  article-title: Lévy flight trajectory-based whale optimization algorithm for engineering optimization
  publication-title: Engineering Computations
  doi: 10.1108/EC-07-2017-0264
– volume: 8
  start-page: 220944
  year: 2020
  ident: 2022041115580333600_bib34
  article-title: Hybridization of grasshopper optimization algorithm with genetic algorithm for solving system of non-linear equations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3043029
– volume: 1
  start-page: 3
  year: 2002
  ident: 2022041115580333600_bib12
  article-title: Evolution strategies – A comprehensive introduction
  publication-title: Natural Computing
  doi: 10.1023/A:1015059928466
– volume: 6
  start-page: 1873
  year: 2015
  ident: 2022041115580333600_bib43
  article-title: Binary–real coded genetic algorithm-based k-means clustering for unit commitment problem
  publication-title: Applied Mathematics
  doi: 10.4236/am.2015.611165
– start-page: 156
  volume-title: 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)
  year: 2015
  ident: 2022041115580333600_bib48
  article-title: Harmony-based monarch butterfly optimization algorithm
  doi: 10.1109/ICCSCE.2015.7482176
– volume: 184
  start-page: 142
  year: 2019
  ident: 2022041115580333600_bib9
  article-title: A new hybrid firefly algorithm and particle swarm optimization for tuning parameter estimation in penalized support vector machine with application in chemometrics
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2018.12.003
– volume: 212
  start-page: 20
  year: 2019
  ident: 2022041115580333600_bib65
  article-title: A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2018.10.017
– volume: 215
  start-page: 3029
  year: 2009
  ident: 2022041115580333600_bib8
  article-title: A simulated annealing technique for multi-objective simulation optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.09.051
– volume: 44
  start-page: 537
  year: 2012
  ident: 2022041115580333600_bib72
  article-title: A constrained optimization algorithm based on the simplex search method
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2011.598520
– volume: 5
  start-page: 1
  year: 2018
  ident: 2022041115580333600_bib36
  article-title: Particle swarm optimization from theory to applications
  publication-title: International Journal of Rough Sets and Data Analysis
  doi: 10.4018/IJRSDA.2018040101
– volume: 111
  start-page: 300
  year: 2020
  ident: 2022041115580333600_bib67
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.03.055
– volume: 83
  start-page: 80
  year: 2015
  ident: 2022041115580333600_bib77
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 33
  start-page: 798
  year: 2021
  ident: 2022041115580333600_bib97
  article-title: Clinical decision support system query optimizer using hybrid firefly and controlled genetic algorithm
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2018.06.007
– volume: 22
  start-page: 52
  year: 2002
  ident: 2022041115580333600_bib87
  article-title: Biomimicry of bacteria foraging for distributed optimization and control
  publication-title: IEEE Control Systems Magazine
  doi: 10.1109/MCS.2002.1004010
– volume: 8
  start-page: 849
  year: 2008
  ident: 2022041115580333600_bib60
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.07.002
– volume-title: New optimization techniques in engineering
  year: 2004
  ident: 2022041115580333600_bib84
  doi: 10.1007/978-3-540-39930-8
– volume: 9
  start-page: 200
  year: 2021
  ident: 2022041115580333600_bib81
  article-title: Chaotic search-based equilibrium optimizer for dealing with nonlinear programming and petrochemical application
  publication-title: Processes
  doi: 10.3390/pr9020200
– volume: 24
  start-page: 137
  year: 1995
  ident: 2022041115580333600_bib106
  article-title: Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization
  publication-title: Engineering Optimization
  doi: 10.1080/03052159508941187
– volume: 58
  start-page: 104
  year: 2017
  ident: 2022041115580333600_bib17
  article-title: A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.04.057
– volume: 105
  start-page: 30
  year: 2017
  ident: 2022041115580333600_bib94
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 114
  start-page: 163
  year: 2017
  ident: 2022041115580333600_bib78
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– start-page: 1
  volume-title: Proceedings of The International Conference on Advanced Machine Learning Technologies and Applications
  year: 2020
  ident: 2022041115580333600_bib35
  article-title: A hybridization of sine cosine algorithm with steady state genetic algorithm for engineering design problems
– start-page: 1
  volume-title: 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)
  year: 2019
  ident: 2022041115580333600_bib29
  article-title: Hybrid firefly and particle swarm optimization algorithm for PID controller design of buck converter
– volume: 56
  start-page: 911
  year: 2019
  ident: 2022041115580333600_bib39
  article-title: An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem
  publication-title: OPSEARCH
  doi: 10.1007/s12597-019-00388-x
– volume: 8
  start-page: 212036
  year: 2020
  ident: 2022041115580333600_bib80
  article-title: Steady-state sine cosine genetic algorithm-based chaotic search for nonlinear programming and engineering applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039882
– volume: 37
  start-page: 395
  year: 2009
  ident: 2022041115580333600_bib105
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint handling technique
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-008-0238-3
– volume: 93
  start-page: 106367
  year: 2020
  ident: 2022041115580333600_bib52
  article-title: A memory-based Grey wolf optimizer for global optimization tasks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106367
– volume: 41
  start-page: 947
  year: 2010
  ident: 2022041115580333600_bib104
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-009-0454-5
– volume: 4
  start-page: 20
  year: 2017
  ident: 2022041115580333600_bib37
  article-title: Chaotic particle swarm optimization for imprecise combined economic and emission dispatch problem
  publication-title: Review of Information Engineering and Applications
  doi: 10.18488/journal.79.2017.41.20.35
– volume: 19
  start-page: 1254
  year: 2016
  ident: 2022041115580333600_bib101
  article-title: Firefly algorithm for congestion management in deregulated environment
  publication-title: Engineering Science and Technology
– volume: 38
  start-page: 817
  year: 2016
  ident: 2022041115580333600_bib114
  article-title: An improved monkey algorithm for a 0–1 knapsack problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.043
– volume: 60
  start-page: 311
  year: 2016
  ident: 2022041115580333600_bib95
  article-title: An efficient proactive artificial immune system-based anomaly detection and prevention system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.042
– start-page: 303
  volume-title: Advances in swarm intelligence, ICSI 2011, Lecture Notes in Computer Science
  year: 2011
  ident: 2022041115580333600_bib98
  article-title: Brain storm optimization algorithm
– volume: 165
  start-page: 169
  year: 2019
  ident: 2022041115580333600_bib27
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.11.024
– volume: 81
  start-page: 252
  year: 2018
  ident: 2022041115580333600_bib64
  article-title: Socio evolution & learning optimization algorithm: A socioinspired optimization methodology
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.10.052
– volume: 66
  start-page: 232
  year: 2018
  ident: 2022041115580333600_bib10
  article-title: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.02.025
– volume-title: Nature-inspired metaheuristic algorithms, ISBN 1-905986-10-6
  year: 2008
  ident: 2022041115580333600_bib107
– volume: 3498
  start-page: 965
  year: 2005
  ident: 2022041115580333600_bib113
  article-title: A genetic-algorithm-based neural network approach for short-term traffic flow forecasting
  publication-title: Advances in Neural Networks
– volume: 4
  start-page: 11
  year: 2017
  ident: 2022041115580333600_bib40
  article-title: Solving nonlinear single-unit commitment problem by genetic algorithm based clustering technique
  publication-title: Review of Computer Engineering Research
  doi: 10.18488/journal.76.2017.41.11.29
SSID ssj0001723019
ssib053376903
Score 2.378905
Snippet Abstract Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing...
Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the mutual attraction of flashing fireflies. The...
SourceID nrf
proquest
crossref
oup
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 706
SubjectTerms Algorithms
Computing time
Design engineering
Genetic algorithms
Heuristic methods
Hybrid systems
Optimization
Search methods
기계공학
Title A hybrid genetic–firefly algorithm for engineering design problems
URI https://www.proquest.com/docview/3191456213
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002832691
Volume 9
WOSCitedRecordID wos000780334700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computational Design and Engineering , 2022, 9(2), , pp.706-730
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: TOX
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M7S
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: BENPR
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: PIMPY
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDlzYEWWpLAEnFDWJ4zg9IVbBgVKxSOVkeWUrLTQFxI1_4A_5EsapSwUScEA5REksy8qMZ_PMPITWhAyZMJoFjKRpkKQmCWRVmEAZygy1zGSxLMAmWK2WNRrVug-45T6tsi8TC0Gt28rFyCvENSIDZR2RzfuHwKFGudNVD6ExjEZdpzLg89HtvVr9ZBBlYWBiF-gecQwsQYFfffY7ePKVG6VN5eFZqDAiX_TScKtjv1W89UV0oXf2J_-74ik04S1OvNVjkWk0ZFozaNJbn9jv7XwW7W7hqxdXv4WBp1xp4_vrmwWBaJsvWDQvYebu1R0GGxebQQ9DrIsMEOxxafI5dL6_d7ZzEHiMhUCBK9cNKJOZElIpmxHNMqujOK1qYbNMRDIUJFYEDB6mI5smmsL2N8qk4IJIEqkwFIbMo5FWu2UWEE5YIsG8ijKtQBIIKrQhlsIVS0ZVSktoo_-HufINyB0ORpP3DsIJd_Tgnh4ltP45-r7XeOOHcatALH6rrrnrlO3ul21-2-HgDxy6BLYI1G-1hDAQ84-Jlvtk5H4f53xAw8XfPy-h8dgVRhQ5PctopNt5NCtoTD11r_NO2bNlufD4yy6_9BTe1Q-P6hfwdHbc-AAYrfMb
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61WyS4UH7FQgFL0BOKNrHjODkgVFGqrtqu9lCkcjL-bUuX3XazUO2Nd-A9eCiehHHWYQUScOoB5ZBDLEvOfDPz2Z4fgOdKp0I5KxLBiiLJC5cnulIuMY4Lx71wJdVNswkxGJRHR9VwBb61uTAhrLK1iY2hthMTzsh7LBQiQ2edsVfnF0noGhVuV9sWGgtY7Ln5JW7Z6pf9bZTvJqU7bw5f7yaxq0BicPMyS7jQpVHaGF8yK0pvM1pUVvmyVJlOFaOGoYsXNvNFbjkC3hlXIOnWLDNpqhzDeVdhLUewpx1YG_YPhu-WpzoCKX3TTYRShCBH_YjR9mnFeh-Mdb2LS2XSjP3iB1fHU_9bhl3rEho_t7P-v_2hW3AzMmqytVCB27DixndgPbJrEm1XfRe2t8jJPOSnEdSZkLr5_ctXjwbfj-ZEjY5xJbOTjwQ5PHHLGo3ENhEuJPbdqe_B2ytZy33ojCdj9wBILnKN9DErrUFLp7iyjnmOD9WCm4J34UUrUWligfXQ52MkFxf9TAb5yyj_Lmz-HH2-KCzyh3HPEBzyzJzKUAk8vI8n8mwqcb_TDwF6GdKLqgsEwfOPiTZa2Mhop2q5xMzDv39-Ctd3Dw_25X5_sPcIbtCQBNLEL21AZzb95B7DNfN5dlpPn0SVIPD-qjH2A9N-TNs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+genetic%E2%80%93firefly+algorithm+for+engineering+design+problems&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=El-Shorbagy%2C+M+A&rft.au=El-Refaey%2C+Adel+M&rft.date=2022-04-01&rft.pub=Oxford+University+Press&rft.issn=2288-5048&rft.eissn=2288-5048&rft.volume=9&rft.issue=2&rft.spage=706&rft.epage=730&rft_id=info:doi/10.1093%2Fjcde%2Fqwac013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon