Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm – support vector regression model

•GA-SVR models for estimation of refractive index of oxygenated and deoxygenated hemoglobin is presented.•The proposed models are characterized by over 99.8% correlation coefficients.•The GA-SVR models exhibit a high degree of prediction accuracies. The refractive index of hemoglobin plays important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine Jg. 163; S. 135 - 142
Hauptverfasser: Alade, Ibrahim Olanrewaju, Bagudu, Aliyu, Oyehan, Tajudeen A., Rahman, Mohd Amiruddin Abd, Saleh, Tawfik A., Olatunji, Sunday Olusanya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ireland Elsevier B.V 01.09.2018
Schlagworte:
ISSN:0169-2607, 1872-7565, 1872-7565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •GA-SVR models for estimation of refractive index of oxygenated and deoxygenated hemoglobin is presented.•The proposed models are characterized by over 99.8% correlation coefficients.•The GA-SVR models exhibit a high degree of prediction accuracies. The refractive index of hemoglobin plays important role in hematology due to its strong correlation with the pathophysiology of different diseases. Measurement of the real part of the refractive index remains a challenge due to strong absorption of the hemoglobin especially at relevant high physiological concentrations. So far, only a few studies on direct measurement of refractive index have been reported and there are no firm agreements on the reported values of refractive index of hemoglobin due to measurement artifacts. In addition, it is time consuming, laborious and expensive to perform several experiments to obtain the refractive index of hemoglobin. In this work, we proposed a very rapid and accurate computational intelligent approach using Genetic Algorithm/Support Vector Regression models to estimate the real part of the refractive index for oxygenated and deoxygenated hemoglobin samples. These models utilized experimental data of wavelengths and hemoglobin concentrations in building highly accurate Genetic Algorithm/Support Vector Regression model (GA-SVR). The developed methodology showed high accuracy as indicated by the low root mean square error values of 4.65 × 10−4 and 4.62 × 10−4 for oxygenated and deoxygenated hemoglobin, respectively. In addition, the models exhibited 99.85 and 99.84% correlation coefficients (r) for the oxygenated and deoxygenated hemoglobin, thus, validating the strong agreement between the predicted and the experimental results Due to the accuracy and relative simplicity of the proposed models, we envisage that these models would serve as important references for future studies on optical properties of blood.
AbstractList •GA-SVR models for estimation of refractive index of oxygenated and deoxygenated hemoglobin is presented.•The proposed models are characterized by over 99.8% correlation coefficients.•The GA-SVR models exhibit a high degree of prediction accuracies. The refractive index of hemoglobin plays important role in hematology due to its strong correlation with the pathophysiology of different diseases. Measurement of the real part of the refractive index remains a challenge due to strong absorption of the hemoglobin especially at relevant high physiological concentrations. So far, only a few studies on direct measurement of refractive index have been reported and there are no firm agreements on the reported values of refractive index of hemoglobin due to measurement artifacts. In addition, it is time consuming, laborious and expensive to perform several experiments to obtain the refractive index of hemoglobin. In this work, we proposed a very rapid and accurate computational intelligent approach using Genetic Algorithm/Support Vector Regression models to estimate the real part of the refractive index for oxygenated and deoxygenated hemoglobin samples. These models utilized experimental data of wavelengths and hemoglobin concentrations in building highly accurate Genetic Algorithm/Support Vector Regression model (GA-SVR). The developed methodology showed high accuracy as indicated by the low root mean square error values of 4.65 × 10−4 and 4.62 × 10−4 for oxygenated and deoxygenated hemoglobin, respectively. In addition, the models exhibited 99.85 and 99.84% correlation coefficients (r) for the oxygenated and deoxygenated hemoglobin, thus, validating the strong agreement between the predicted and the experimental results Due to the accuracy and relative simplicity of the proposed models, we envisage that these models would serve as important references for future studies on optical properties of blood.
The refractive index of hemoglobin plays important role in hematology due to its strong correlation with the pathophysiology of different diseases. Measurement of the real part of the refractive index remains a challenge due to strong absorption of the hemoglobin especially at relevant high physiological concentrations. So far, only a few studies on direct measurement of refractive index have been reported and there are no firm agreements on the reported values of refractive index of hemoglobin due to measurement artifacts. In addition, it is time consuming, laborious and expensive to perform several experiments to obtain the refractive index of hemoglobin. In this work, we proposed a very rapid and accurate computational intelligent approach using Genetic Algorithm/Support Vector Regression models to estimate the real part of the refractive index for oxygenated and deoxygenated hemoglobin samples.BACKGROUND AND OBJECTIVESThe refractive index of hemoglobin plays important role in hematology due to its strong correlation with the pathophysiology of different diseases. Measurement of the real part of the refractive index remains a challenge due to strong absorption of the hemoglobin especially at relevant high physiological concentrations. So far, only a few studies on direct measurement of refractive index have been reported and there are no firm agreements on the reported values of refractive index of hemoglobin due to measurement artifacts. In addition, it is time consuming, laborious and expensive to perform several experiments to obtain the refractive index of hemoglobin. In this work, we proposed a very rapid and accurate computational intelligent approach using Genetic Algorithm/Support Vector Regression models to estimate the real part of the refractive index for oxygenated and deoxygenated hemoglobin samples.These models utilized experimental data of wavelengths and hemoglobin concentrations in building highly accurate Genetic Algorithm/Support Vector Regression model (GA-SVR).METHODSThese models utilized experimental data of wavelengths and hemoglobin concentrations in building highly accurate Genetic Algorithm/Support Vector Regression model (GA-SVR).The developed methodology showed high accuracy as indicated by the low root mean square error values of 4.65 × 10-4 and 4.62 × 10-4 for oxygenated and deoxygenated hemoglobin, respectively. In addition, the models exhibited 99.85 and 99.84% correlation coefficients (r) for the oxygenated and deoxygenated hemoglobin, thus, validating the strong agreement between the predicted and the experimental results CONCLUSIONS: Due to the accuracy and relative simplicity of the proposed models, we envisage that these models would serve as important references for future studies on optical properties of blood.RESULTSThe developed methodology showed high accuracy as indicated by the low root mean square error values of 4.65 × 10-4 and 4.62 × 10-4 for oxygenated and deoxygenated hemoglobin, respectively. In addition, the models exhibited 99.85 and 99.84% correlation coefficients (r) for the oxygenated and deoxygenated hemoglobin, thus, validating the strong agreement between the predicted and the experimental results CONCLUSIONS: Due to the accuracy and relative simplicity of the proposed models, we envisage that these models would serve as important references for future studies on optical properties of blood.
The refractive index of hemoglobin plays important role in hematology due to its strong correlation with the pathophysiology of different diseases. Measurement of the real part of the refractive index remains a challenge due to strong absorption of the hemoglobin especially at relevant high physiological concentrations. So far, only a few studies on direct measurement of refractive index have been reported and there are no firm agreements on the reported values of refractive index of hemoglobin due to measurement artifacts. In addition, it is time consuming, laborious and expensive to perform several experiments to obtain the refractive index of hemoglobin. In this work, we proposed a very rapid and accurate computational intelligent approach using Genetic Algorithm/Support Vector Regression models to estimate the real part of the refractive index for oxygenated and deoxygenated hemoglobin samples. These models utilized experimental data of wavelengths and hemoglobin concentrations in building highly accurate Genetic Algorithm/Support Vector Regression model (GA-SVR). The developed methodology showed high accuracy as indicated by the low root mean square error values of 4.65 × 10 and 4.62 × 10 for oxygenated and deoxygenated hemoglobin, respectively. In addition, the models exhibited 99.85 and 99.84% correlation coefficients (r) for the oxygenated and deoxygenated hemoglobin, thus, validating the strong agreement between the predicted and the experimental results CONCLUSIONS: Due to the accuracy and relative simplicity of the proposed models, we envisage that these models would serve as important references for future studies on optical properties of blood.
Author Saleh, Tawfik A.
Alade, Ibrahim Olanrewaju
Bagudu, Aliyu
Oyehan, Tajudeen A.
Rahman, Mohd Amiruddin Abd
Olatunji, Sunday Olusanya
Author_xml – sequence: 1
  givenname: Ibrahim Olanrewaju
  surname: Alade
  fullname: Alade, Ibrahim Olanrewaju
  organization: Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia
– sequence: 2
  givenname: Aliyu
  surname: Bagudu
  fullname: Bagudu, Aliyu
  organization: College of Computer Science and Information Technology, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
– sequence: 3
  givenname: Tajudeen A.
  surname: Oyehan
  fullname: Oyehan, Tajudeen A.
  organization: Geosciences Department, College of Petroleum & Geosciences, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
– sequence: 4
  givenname: Mohd Amiruddin Abd
  surname: Rahman
  fullname: Rahman, Mohd Amiruddin Abd
  organization: Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia
– sequence: 5
  givenname: Tawfik A.
  orcidid: 0000-0002-3037-5159
  surname: Saleh
  fullname: Saleh, Tawfik A.
  email: tawfik@kfupm.edu.sa
  organization: Chemistry Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
– sequence: 6
  givenname: Sunday Olusanya
  surname: Olatunji
  fullname: Olatunji, Sunday Olusanya
  organization: Department of Computer Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30119848$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFF2CBvGSTYCex4yA2qCo_UiU2sLYc-ybjIbGD7Yw6OzY8AW_Ik-DRFIS6KKsr-X7nWjrfBTpz3gFCzykpKaH81a7U89KXFaGiJKwkVfcIbahoq6JlnJ2hTQ51RcVJe44uYtwRQirG-BN0XhNKO9GIDfpxHZOdVbJuxGkLOMAQlE52D9g6A7fYD9jfHkZwKoHByhls4J-HLcx-nHxvHV7j8UheQLIaq2n0wabtjH99_4njuiw-JLwHnXzIv4wBYrTe4dkbmJ6ix4OaIjy7m5foy7vrz1cfiptP7z9evb0pdEPaVLDatF1jWFszM7CWGhg6TnnfDJRy1vOedpVqmp430Nagmo40VQWcg9Ci4byvL9HL090l-G8rxCRnGzVMk3Lg1ygrIjrBieAsR1_cRdd-BiOXkDWFg_yjLgeqU0AHH2P29jdCiTz2I3fy2I889iMJk7mfDIl7kLYp2_cuBWWnh9E3JxSyoL2FIKO24DQYG7JVabx9GH99D9eTdVar6Ssc_gf_BtyWwjs
CitedBy_id crossref_primary_10_1080_10255842_2023_2228957
crossref_primary_10_1016_j_heliyon_2023_e21601
crossref_primary_10_1007_s10973_021_11124_3
crossref_primary_10_1515_rams_2025_0143
crossref_primary_10_3390_ma15134386
crossref_primary_10_1016_j_aap_2019_105345
crossref_primary_10_1016_j_eswa_2023_119558
crossref_primary_10_1016_j_jenvman_2021_113783
crossref_primary_10_1007_s10973_020_10491_7
crossref_primary_10_1016_j_conbuildmat_2023_134101
crossref_primary_10_1016_j_mtcomm_2023_107885
crossref_primary_10_1016_j_cmpb_2018_06_001
crossref_primary_10_1007_s11664_022_10172_1
crossref_primary_10_1016_j_saa_2020_119260
crossref_primary_10_1016_j_wasman_2021_09_019
crossref_primary_10_1016_j_jece_2021_105649
crossref_primary_10_1371_journal_pone_0296494
crossref_primary_10_1515_rams_2023_0179
crossref_primary_10_1016_j_conbuildmat_2021_123439
crossref_primary_10_3390_ma15010039
crossref_primary_10_1155_2018_8696202
crossref_primary_10_1016_j_cemconcomp_2022_104721
crossref_primary_10_1515_rams_2024_0068
crossref_primary_10_3390_w14101567
crossref_primary_10_1007_s43503_024_00029_3
crossref_primary_10_1016_j_conbuildmat_2022_130230
crossref_primary_10_1007_s41870_024_01998_5
crossref_primary_10_1016_j_renene_2021_06_112
crossref_primary_10_1016_j_cherd_2024_06_001
crossref_primary_10_1016_j_cscm_2025_e04755
crossref_primary_10_1016_j_est_2022_105359
crossref_primary_10_1016_j_ijbiomac_2022_10_201
crossref_primary_10_1016_j_fuel_2021_120606
crossref_primary_10_1063_5_0008977
crossref_primary_10_1007_s42452_019_0417_4
crossref_primary_10_1016_j_jmmm_2019_166305
crossref_primary_10_1016_j_solener_2019_02_060
crossref_primary_10_1515_rams_2025_0126
crossref_primary_10_1016_j_istruc_2024_107917
crossref_primary_10_1515_rams_2025_0125
crossref_primary_10_3390_buildings15111932
crossref_primary_10_1063_5_0002753
crossref_primary_10_1016_j_eswa_2022_118289
crossref_primary_10_1016_j_conbuildmat_2025_143074
crossref_primary_10_1016_j_eswa_2022_119497
crossref_primary_10_1155_2019_3094670
crossref_primary_10_1038_s41598_023_31524_9
crossref_primary_10_1061_JCCEE5_CPENG_6062
crossref_primary_10_1007_s13369_025_10116_x
crossref_primary_10_3390_sym14112324
crossref_primary_10_1016_j_ijbiomac_2023_123548
crossref_primary_10_1016_j_cscm_2022_e01774
crossref_primary_10_1108_WJE_08_2020_0347
crossref_primary_10_1016_j_cscm_2023_e02102
crossref_primary_10_1515_rams_2024_0008
crossref_primary_10_3390_buildings15132244
crossref_primary_10_1515_rams_2024_0049
crossref_primary_10_1007_s11356_021_18238_z
crossref_primary_10_1016_j_petrol_2021_110067
crossref_primary_10_1016_j_rser_2021_112016
crossref_primary_10_1515_rams_2024_0042
crossref_primary_10_1002_suco_202200344
crossref_primary_10_1515_rams_2023_0187
crossref_primary_10_1016_j_fuel_2023_128646
crossref_primary_10_1016_j_jenvman_2021_112420
crossref_primary_10_1371_journal_pone_0324827
crossref_primary_10_1155_2022_9704632
crossref_primary_10_1016_j_energy_2019_116106
crossref_primary_10_1002_er_7764
crossref_primary_10_1016_j_ijhydene_2023_01_339
crossref_primary_10_1515_rams_2025_0092
crossref_primary_10_1515_rams_2023_0189
Cites_doi 10.1088/0031-9155/58/14/5007
10.1016/S0893-6080(99)00032-5
10.5194/nhess-14-525-2014
10.1016/j.compbiomed.2018.04.024
10.1007/s101030050062
10.1016/j.ijepes.2015.05.002
10.1007/s10877-013-9456-3
10.1073/pnas.0806100105
10.1155/2015/382641
10.1117/1.2138027
10.1140/epjst/e2013-02018-7
10.1103/PhysRevLett.93.028102
10.1364/BOE.6.002536
10.1117/1.3656732
10.1007/s10103-013-1446-7
10.1002/lapl.200810007
10.1117/1.JBO.17.11.115002
10.1117/1.429919
10.1364/OL.22.000190
10.1016/j.advengsoft.2011.09.026
10.1088/0031-9155/61/4/1405
10.1364/AO.55.008951
10.1016/j.asoc.2014.02.002
10.1023/B:STCO.0000035301.49549.88
10.1002/prot.20234
10.1117/1.2203659
10.1088/0031-9155/51/20/N02
10.1016/j.asoc.2016.02.009
10.1016/j.apt.2017.10.023
10.1038/srep24461
10.1016/S0893-6080(98)00032-X
10.1088/0031-9155/56/13/017
10.1039/C5LC01445J
10.3390/en10101520
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cmpb.2018.05.029
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 142
ExternalDocumentID 30119848
10_1016_j_cmpb_2018_05_029
S0169260718301871
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
AFCTW
NPM
7X8
ID FETCH-LOGICAL-c407t-53d794d5735df571def9616b4f1165b6b192a44b64e73ea490422e66e8c8466b3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441510100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Sun Nov 09 10:44:33 EST 2025
Thu Apr 03 06:57:23 EDT 2025
Tue Nov 18 22:24:22 EST 2025
Sat Nov 29 03:57:43 EST 2025
Fri Feb 23 02:26:01 EST 2024
Tue Oct 14 19:32:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hemoglobin
Refractive index
Genetic Algorithm
Support Vector Regression
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-53d794d5735df571def9616b4f1165b6b192a44b64e73ea490422e66e8c8466b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3037-5159
PMID 30119848
PQID 2089860865
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2089860865
pubmed_primary_30119848
crossref_primary_10_1016_j_cmpb_2018_05_029
crossref_citationtrail_10_1016_j_cmpb_2018_05_029
elsevier_sciencedirect_doi_10_1016_j_cmpb_2018_05_029
elsevier_clinicalkey_doi_10_1016_j_cmpb_2018_05_029
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
2018-Sep
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Chin, Ser, Chen, Hsieh, Lee, Sung, Ayi, Yap, Liedberg, Wang, Bourouina, Leprince-Wang (bib0016) 2016; 16
Faber, Aalders, Mik, Hooper, Van Gemert, Van Leeuwen (bib0001) 2004; 93
Roggan, Friebel, Dörschel, Hahn, Müller (bib0011) 1999; 4
Sydoruk, Zhernovaya, Tuchin, Douplik (bib0017) 2012; 17
Yahya, Saghir (bib0021) 2016; 61
Wang, Deng, Wang, Ye, Zhou, Mei, Zhang, Tian (bib0025) 2015; 6
Sujay, Deka (bib0033) 2014; 19
Friebel, Roggan, Müller, Meinke (bib0022) 2006; 11
Basak, Pal, Patranabis (bib0036) 2007; 11
Bruulsema, Hayward, Farrell, Patterson, Heinemann, Berger, Koschinsky, Sandahl-Christiansen, Orskov, Essenpreis, Schmelzeisen-Redeker, Böcker (bib0015) 1997; 22
Park, Diez-Silva, Popescu, Lykotrafitis, Choi, Feld, Suresh (bib0003) 2008; 105
Rinehart, Park, Walzer, Chi, Wax (bib0005) 2016; 6
Oyehan, Alade, Bagudu, Sulaiman, Olatunji, Saleh (bib0014) 2018
Sajan, Kumar, Tyagi (bib0023) 2015; 73
Stitson M., Vapnik V., W. J. (bib0030) 1999
Zhernovaya, Sydoruk, Tuchin, Douplik (bib0020) 2011; 56
Smola, Scholkopf (bib0034) 2004; 14
Serebrennikova, Huffman, Garcia-Rubio (bib0004) 2015; 2015
Ahmadi, Hasanvand, Bahadori (bib0040) 2015; 0
Sardar, Levy (bib0010) 1998; 13
Li, Zhang, Shi (bib0027) 2017; 10
Jin, Chen, Xu, Wang (bib0012) 2006; 51
Patil, Mandal, Hegde (bib0035) 2012; 45
Smola, Schölkopf, Müller (bib0037) 1998; 11
Moritz Friebel (bib0019) 2005; 10
Meinke, Friebel, Lutter, Gersonde, Roggan, Gmbh (bib0009) 2006; 11
Bosschaart, Edelman, Aalders, Van Leeuwen, Faber (bib0018) 2014; 29
Amari, Wu (bib0038) 1999; 12
Vapnik (bib0026) 1995
Jedrzejewska-Szczerska (bib0007) 2013; 222
Jacques (bib0008) 2013; 58
Li, Kong (bib0039) 2014; 14
Alade, Oyehan, Popoola, Olatunji, Bagudu (bib0029) 2018; 29
Berkow (bib0002) 2013
Z. Yuan, B. Huang, Prediction of protein accessible surface areas by support, 564 (2004) 558–564. doi:10.1002/prot.20234.
Wang (bib0006) 2011; 16
Adewumi, Owolabi, Alade, Olatunji (bib0028) 2016; 42
Zhernovaya, Tuchin, Meglinski (bib0013) 2008; 5
Collobert, Bengio (bib0031) 2001; 1
Gienger, Groß, Neukammer, Bär (bib0024) 2016; 55
Serebrennikova (10.1016/j.cmpb.2018.05.029_bib0004) 2015; 2015
Collobert (10.1016/j.cmpb.2018.05.029_bib0031) 2001; 1
Li (10.1016/j.cmpb.2018.05.029_bib0027) 2017; 10
Meinke (10.1016/j.cmpb.2018.05.029_bib0009) 2006; 11
Rinehart (10.1016/j.cmpb.2018.05.029_bib0005) 2016; 6
Berkow (10.1016/j.cmpb.2018.05.029_bib0002) 2013
Bosschaart (10.1016/j.cmpb.2018.05.029_bib0018) 2014; 29
Adewumi (10.1016/j.cmpb.2018.05.029_bib0028) 2016; 42
Jedrzejewska-Szczerska (10.1016/j.cmpb.2018.05.029_bib0007) 2013; 222
Wang (10.1016/j.cmpb.2018.05.029_bib0025) 2015; 6
Jacques (10.1016/j.cmpb.2018.05.029_bib0008) 2013; 58
Sardar (10.1016/j.cmpb.2018.05.029_bib0010) 1998; 13
Zhernovaya (10.1016/j.cmpb.2018.05.029_bib0020) 2011; 56
Park (10.1016/j.cmpb.2018.05.029_bib0003) 2008; 105
Bruulsema (10.1016/j.cmpb.2018.05.029_bib0015) 1997; 22
Moritz Friebel (10.1016/j.cmpb.2018.05.029_bib0019) 2005; 10
Jin (10.1016/j.cmpb.2018.05.029_bib0012) 2006; 51
Zhernovaya (10.1016/j.cmpb.2018.05.029_bib0013) 2008; 5
Friebel (10.1016/j.cmpb.2018.05.029_bib0022) 2006; 11
Vapnik (10.1016/j.cmpb.2018.05.029_bib0026) 1995
Stitson M. (10.1016/j.cmpb.2018.05.029_bib0030) 1999
Amari (10.1016/j.cmpb.2018.05.029_bib0038) 1999; 12
Oyehan (10.1016/j.cmpb.2018.05.029_bib0014) 2018
Liu (10.1016/j.cmpb.2018.05.029_bib0016) 2016; 16
Gienger (10.1016/j.cmpb.2018.05.029_bib0024) 2016; 55
Faber (10.1016/j.cmpb.2018.05.029_bib0001) 2004; 93
Sydoruk (10.1016/j.cmpb.2018.05.029_bib0017) 2012; 17
Patil (10.1016/j.cmpb.2018.05.029_bib0035) 2012; 45
Basak (10.1016/j.cmpb.2018.05.029_bib0036) 2007; 11
Alade (10.1016/j.cmpb.2018.05.029_bib0029) 2018; 29
Wang (10.1016/j.cmpb.2018.05.029_bib0006) 2011; 16
Roggan (10.1016/j.cmpb.2018.05.029_bib0011) 1999; 4
Sujay (10.1016/j.cmpb.2018.05.029_bib0033) 2014; 19
Smola (10.1016/j.cmpb.2018.05.029_bib0037) 1998; 11
10.1016/j.cmpb.2018.05.029_bib0032
Yahya (10.1016/j.cmpb.2018.05.029_bib0021) 2016; 61
Ahmadi (10.1016/j.cmpb.2018.05.029_bib0040) 2015; 0
Sajan (10.1016/j.cmpb.2018.05.029_bib0023) 2015; 73
Smola (10.1016/j.cmpb.2018.05.029_bib0034) 2004; 14
Li (10.1016/j.cmpb.2018.05.029_bib0039) 2014; 14
References_xml – volume: 51
  year: 2006
  ident: bib0012
  article-title: Refractive index measurement for biomaterial samples by total internal reflection
  publication-title: Phys. Med. Biol.
– start-page: 85
  year: 1999
  end-page: 2292
  ident: bib0030
  article-title: Support vector regression with ANOVA decomposition kernels
  publication-title: Advances in Kernel Methods – Support Vector Learn
– volume: 11
  start-page: 34021
  year: 2006
  ident: bib0022
  article-title: Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions
  publication-title: J. Biomed. Opt.
– volume: 58
  year: 2013
  ident: bib0008
  article-title: Optical properties of biological tissues: a review
  publication-title: Phys. Med. Biol.
– volume: 11
  start-page: 203
  year: 2007
  end-page: 224
  ident: bib0036
  article-title: Support Vector regression
  publication-title: Neural Information Processing — Letters and Reviews
– volume: 29
  start-page: 453
  year: 2014
  end-page: 479
  ident: bib0018
  article-title: A literature review and novel theoretical approach on the optical properties of whole blood
  publication-title: Lasers Med. Sci.
– volume: 222
  start-page: 2367
  year: 2013
  end-page: 2372
  ident: bib0007
  article-title: Measurement of complex refractive index of human blood by low-coherence interferometry
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 6
  start-page: 2536
  year: 2015
  ident: bib0025
  article-title: Measurement of the refractive index of hemoglobin solutions for a continuous spectral region
  publication-title: Biomed. Opt. Expr.
– volume: 5
  start-page: 460
  year: 2008
  end-page: 464
  ident: bib0013
  article-title: Monitoring of blood proteins glycation by refractive index and spectral measurements
  publication-title: Laser Phys. Lett.
– volume: 1
  start-page: 143
  year: 2001
  end-page: 160
  ident: bib0031
  article-title: SVMTorch : support vector machines for large-scale regression problems
  publication-title: J. Mac Hine Learn. Res.
– volume: 22
  start-page: 190
  year: 1997
  end-page: 192
  ident: bib0015
  article-title: Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient
  publication-title: Opt. Lett.
– volume: 10
  start-page: 64019
  year: 2005
  ident: bib0019
  article-title: Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements
  publication-title: J. Biomed. Opt.
– volume: 55
  start-page: 8951
  year: 2016
  end-page: 8961
  ident: bib0024
  article-title: Determining the refractive index of human hemoglobin solutions by Kramers–Kronig relations with an improved absorption model
  publication-title: Applied Optics.
– volume: 14
  start-page: 525
  year: 2014
  end-page: 533
  ident: bib0039
  article-title: Application of GA-SVM method with parameter optimization for landslide development prediction
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 13
  start-page: 106
  year: 1998
  end-page: 111
  ident: bib0010
  article-title: Optical properties of whole blood
  publication-title: Lasers Med. Sci.
– volume: 10
  start-page: 1520
  year: 2017
  ident: bib0027
  article-title: Combining a Genetic Algorithm and Support Vector Machine to study the factors influencing CO2 emissions in Beijing with scenario analysis
  publication-title: Energies
– volume: 11
  start-page: 637
  year: 1998
  end-page: 649
  ident: bib0037
  article-title: The connection between regularization operators and support vector kernels
  publication-title: Neural Netw.
– volume: 45
  start-page: 203
  year: 2012
  end-page: 212
  ident: bib0035
  article-title: Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater
  publication-title: Adv. Eng. Softw.
– volume: 17
  year: 2012
  ident: bib0017
  article-title: Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers–Kronig analysis
  publication-title: J. Biomed. Opt.
– reference: Z. Yuan, B. Huang, Prediction of protein accessible surface areas by support, 564 (2004) 558–564. doi:10.1002/prot.20234.
– volume: 56
  start-page: 4013
  year: 2011
  end-page: 4021
  ident: bib0020
  article-title: The refractive index of human hemoglobin in the visible range
  publication-title: Phys. Med. Biol.
– volume: 2015
  year: 2015
  ident: bib0004
  article-title: Characterization of red blood cells with multiwavelength transmission spectroscopy
  publication-title: Biomed. Res. Int.
– start-page: 499
  year: 2013
  end-page: 508
  ident: bib0002
  article-title: Factors affecting hemoglobin measurement
  publication-title: J. Clin. Monit. Comput.
– year: 1995
  ident: bib0026
  article-title: The nature of statistical learning theory
– volume: 105
  start-page: 13730
  year: 2008
  end-page: 13735
  ident: bib0003
  article-title: Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum
  publication-title: Proc. Natl. Acad. Sci.
– volume: 4
  start-page: 36
  year: 1999
  ident: bib0011
  article-title: Optical properties of circulating human blood in the wavelength range 400–2500nm
  publication-title: J. Biomed. Opt.
– year: 2018
  ident: bib0014
  article-title: Prediction of the refractive index of haemoglobin using the Hybrid GA-SVM approach
  publication-title: Comput. Biol. Med.
– volume: 42
  start-page: 342
  year: 2016
  end-page: 350
  ident: bib0028
  article-title: Estimation of physical, mechanical and hydrological properties of permeable concrete using computational intelligence approach
  publication-title: Appl. Soft Comput. J.
– volume: 11
  start-page: 2
  year: 2006
  end-page: 3
  ident: bib0009
  article-title: Determination of optical properties of human blood to develop new devices for blood monitoring
  publication-title: J. Biomed. Opt.
– volume: 0
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0040
  article-title: A least-squares support vector machine approach to predict temperature drop accompanying a given pressure drop for the natural gas production and processing systems
  publication-title: Int. J. Ambient Energy
– volume: 29
  start-page: 157
  year: 2018
  end-page: 167
  ident: bib0029
  article-title: Modeling thermal conductivity enhancement of metal and metallic oxide nanofluids using support vector regression
  publication-title: Adv. Powder Technol.
– volume: 19
  start-page: 372
  year: 2014
  end-page: 386
  ident: bib0033
  article-title: Support vector machine applications in the field of hydrology : a review
  publication-title: Appl. Soft Comput. J.
– volume: 12
  start-page: 783
  year: 1999
  end-page: 789
  ident: bib0038
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Netw.
– volume: 16
  start-page: 634
  year: 2016
  end-page: 644
  ident: bib0016
  article-title: Cell refractive index for cell biology and disease diagnosis: past, present and future
  publication-title: Lab Chip.
– volume: 73
  start-page: 200
  year: 2015
  end-page: 208
  ident: bib0023
  article-title: Genetic algorithm based support vector machine for on-line voltage stability monitoring
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 16
  year: 2011
  ident: bib0006
  article-title: Tissue refractive index as marker of disease
  publication-title: J. Biomed. Opt.
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bib0034
  article-title: A Tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0005
  article-title: Hemoglobin consumption by
  publication-title: Sci. Rep.
– volume: 93
  start-page: 28102
  year: 2004
  end-page: 281012
  ident: bib0001
  article-title: Oxygen saturation-dependent absorption and scattering of blood
  publication-title: Phys. Rev. Lett.
– volume: 61
  start-page: 1405
  year: 2016
  end-page: 1415
  ident: bib0021
  article-title: Empirical modelling to predict the refractive index of human blood
  publication-title: Phys. Med. Biol.
– volume: 58
  year: 2013
  ident: 10.1016/j.cmpb.2018.05.029_bib0008
  article-title: Optical properties of biological tissues: a review
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/14/5007
– volume: 12
  start-page: 783
  year: 1999
  ident: 10.1016/j.cmpb.2018.05.029_bib0038
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00032-5
– volume: 14
  start-page: 525
  year: 2014
  ident: 10.1016/j.cmpb.2018.05.029_bib0039
  article-title: Application of GA-SVM method with parameter optimization for landslide development prediction
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-14-525-2014
– year: 2018
  ident: 10.1016/j.cmpb.2018.05.029_bib0014
  article-title: Prediction of the refractive index of haemoglobin using the Hybrid GA-SVM approach
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.04.024
– volume: 13
  start-page: 106
  year: 1998
  ident: 10.1016/j.cmpb.2018.05.029_bib0010
  article-title: Optical properties of whole blood
  publication-title: Lasers Med. Sci.
  doi: 10.1007/s101030050062
– volume: 73
  start-page: 200
  year: 2015
  ident: 10.1016/j.cmpb.2018.05.029_bib0023
  article-title: Genetic algorithm based support vector machine for on-line voltage stability monitoring
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.05.002
– start-page: 499
  year: 2013
  ident: 10.1016/j.cmpb.2018.05.029_bib0002
  article-title: Factors affecting hemoglobin measurement
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-013-9456-3
– volume: 105
  start-page: 13730
  year: 2008
  ident: 10.1016/j.cmpb.2018.05.029_bib0003
  article-title: Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0806100105
– volume: 2015
  year: 2015
  ident: 10.1016/j.cmpb.2018.05.029_bib0004
  article-title: Characterization of red blood cells with multiwavelength transmission spectroscopy
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/382641
– volume: 10
  start-page: 64019
  year: 2005
  ident: 10.1016/j.cmpb.2018.05.029_bib0019
  article-title: Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2138027
– volume: 11
  start-page: 203
  year: 2007
  ident: 10.1016/j.cmpb.2018.05.029_bib0036
  article-title: Support Vector regression
  publication-title: Neural Information Processing — Letters and Reviews
– volume: 222
  start-page: 2367
  year: 2013
  ident: 10.1016/j.cmpb.2018.05.029_bib0007
  article-title: Measurement of complex refractive index of human blood by low-coherence interferometry
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2013-02018-7
– year: 1995
  ident: 10.1016/j.cmpb.2018.05.029_bib0026
– volume: 93
  start-page: 28102
  year: 2004
  ident: 10.1016/j.cmpb.2018.05.029_bib0001
  article-title: Oxygen saturation-dependent absorption and scattering of blood
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.028102
– volume: 6
  start-page: 2536
  year: 2015
  ident: 10.1016/j.cmpb.2018.05.029_bib0025
  article-title: Measurement of the refractive index of hemoglobin solutions for a continuous spectral region
  publication-title: Biomed. Opt. Expr.
  doi: 10.1364/BOE.6.002536
– volume: 16
  year: 2011
  ident: 10.1016/j.cmpb.2018.05.029_bib0006
  article-title: Tissue refractive index as marker of disease
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3656732
– volume: 29
  start-page: 453
  year: 2014
  ident: 10.1016/j.cmpb.2018.05.029_bib0018
  article-title: A literature review and novel theoretical approach on the optical properties of whole blood
  publication-title: Lasers Med. Sci.
  doi: 10.1007/s10103-013-1446-7
– volume: 5
  start-page: 460
  year: 2008
  ident: 10.1016/j.cmpb.2018.05.029_bib0013
  article-title: Monitoring of blood proteins glycation by refractive index and spectral measurements
  publication-title: Laser Phys. Lett.
  doi: 10.1002/lapl.200810007
– volume: 17
  year: 2012
  ident: 10.1016/j.cmpb.2018.05.029_bib0017
  article-title: Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers–Kronig analysis
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.17.11.115002
– volume: 4
  start-page: 36
  year: 1999
  ident: 10.1016/j.cmpb.2018.05.029_bib0011
  article-title: Optical properties of circulating human blood in the wavelength range 400–2500nm
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.429919
– volume: 22
  start-page: 190
  year: 1997
  ident: 10.1016/j.cmpb.2018.05.029_bib0015
  article-title: Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient
  publication-title: Opt. Lett.
  doi: 10.1364/OL.22.000190
– volume: 45
  start-page: 203
  year: 2012
  ident: 10.1016/j.cmpb.2018.05.029_bib0035
  article-title: Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.09.026
– volume: 61
  start-page: 1405
  year: 2016
  ident: 10.1016/j.cmpb.2018.05.029_bib0021
  article-title: Empirical modelling to predict the refractive index of human blood
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/4/1405
– volume: 11
  start-page: 2
  year: 2006
  ident: 10.1016/j.cmpb.2018.05.029_bib0009
  article-title: Determination of optical properties of human blood to develop new devices for blood monitoring
  publication-title: J. Biomed. Opt.
– volume: 55
  start-page: 8951
  year: 2016
  ident: 10.1016/j.cmpb.2018.05.029_bib0024
  article-title: Determining the refractive index of human hemoglobin solutions by Kramers–Kronig relations with an improved absorption model
  publication-title: Applied Optics.
  doi: 10.1364/AO.55.008951
– start-page: 85
  year: 1999
  ident: 10.1016/j.cmpb.2018.05.029_bib0030
  article-title: Support vector regression with ANOVA decomposition kernels
– volume: 1
  start-page: 143
  year: 2001
  ident: 10.1016/j.cmpb.2018.05.029_bib0031
  article-title: SVMTorch : support vector machines for large-scale regression problems
  publication-title: J. Mac Hine Learn. Res.
– volume: 19
  start-page: 372
  year: 2014
  ident: 10.1016/j.cmpb.2018.05.029_bib0033
  article-title: Support vector machine applications in the field of hydrology : a review
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.02.002
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.cmpb.2018.05.029_bib0034
  article-title: A Tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 0
  start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2018.05.029_bib0040
  article-title: A least-squares support vector machine approach to predict temperature drop accompanying a given pressure drop for the natural gas production and processing systems
  publication-title: Int. J. Ambient Energy
– ident: 10.1016/j.cmpb.2018.05.029_bib0032
  doi: 10.1002/prot.20234
– volume: 11
  start-page: 34021
  year: 2006
  ident: 10.1016/j.cmpb.2018.05.029_bib0022
  article-title: Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2203659
– volume: 51
  year: 2006
  ident: 10.1016/j.cmpb.2018.05.029_bib0012
  article-title: Refractive index measurement for biomaterial samples by total internal reflection
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/20/N02
– volume: 42
  start-page: 342
  year: 2016
  ident: 10.1016/j.cmpb.2018.05.029_bib0028
  article-title: Estimation of physical, mechanical and hydrological properties of permeable concrete using computational intelligence approach
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2016.02.009
– volume: 29
  start-page: 157
  year: 2018
  ident: 10.1016/j.cmpb.2018.05.029_bib0029
  article-title: Modeling thermal conductivity enhancement of metal and metallic oxide nanofluids using support vector regression
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.10.023
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.cmpb.2018.05.029_bib0005
  article-title: Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy
  publication-title: Sci. Rep.
  doi: 10.1038/srep24461
– volume: 11
  start-page: 637
  year: 1998
  ident: 10.1016/j.cmpb.2018.05.029_bib0037
  article-title: The connection between regularization operators and support vector kernels
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00032-X
– volume: 56
  start-page: 4013
  year: 2011
  ident: 10.1016/j.cmpb.2018.05.029_bib0020
  article-title: The refractive index of human hemoglobin in the visible range
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/13/017
– volume: 16
  start-page: 634
  year: 2016
  ident: 10.1016/j.cmpb.2018.05.029_bib0016
  article-title: Cell refractive index for cell biology and disease diagnosis: past, present and future
  publication-title: Lab Chip.
  doi: 10.1039/C5LC01445J
– volume: 10
  start-page: 1520
  year: 2017
  ident: 10.1016/j.cmpb.2018.05.029_bib0027
  article-title: Combining a Genetic Algorithm and Support Vector Machine to study the factors influencing CO2 emissions in Beijing with scenario analysis
  publication-title: Energies
  doi: 10.3390/en10101520
SSID ssj0002556
Score 2.4771235
Snippet •GA-SVR models for estimation of refractive index of oxygenated and deoxygenated hemoglobin is presented.•The proposed models are characterized by over 99.8%...
The refractive index of hemoglobin plays important role in hematology due to its strong correlation with the pathophysiology of different diseases. Measurement...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135
SubjectTerms Genetic Algorithm
Hemoglobin
Refractive index
Support Vector Regression
Title Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm – support vector regression model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260718301871
https://dx.doi.org/10.1016/j.cmpb.2018.05.029
https://www.ncbi.nlm.nih.gov/pubmed/30119848
https://www.proquest.com/docview/2089860865
Volume 163
WOSCitedRecordID wos000441510100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiEuiGcJj2qRuFmu7Hhtr48RCqKItkgUlJtlezexo8SOkjgkNy78Av4hP4DfwIx3badULQ-JixVtvNlV5vPOwzPfEPLSFsxjAZcmw-QwFkXcjKNEmn4gkzjglrCqZMxP7_zTUz4cBu87nR91Lcx66uc532yC-X8VNYyBsLF09i_E3fwoDMBnEDpcQexw_SPBD-ChRTNUl0GBBqwKodbIDiLkBq3DYrOF6REamxg3F3JnIJWzAllCstwoqzgCfCErVtfpuFhkq3Rm1AkSjrEs52i_G-sq9g9rjVVaba467OxavnX7CN2zeqkZCqrssConVxEBXHjR359qVuBj8OnTbGacTZGe6HM0KdsI7LgUpSrVybbN8NlWprrxMtwsMBOtf9S-00p13PekSIXRn2WLUggM_MRiNwpi8ybNS4fmLpXnqGipF5jgsCmNLtUJz31wKVzVoKJRAfqQVYe4rQhUtD1gK_avS6pGRT0mR8lsHmOKIK8YYHX45iKF9wfcCO4Dzk9sggje-n7PdwM4hff7x4Ph28Z2QEI4xUavNq7LvFRG4q8rXWVKXeUqVSbT-V1yR_s6tK8weo90ZH6f3DrRQn5AvrZQpQBV2kKVVlClxYi2yKQAGLoLVdpClVZQpRqqtIEq_f7lG9UgpQqktAUprUD6kHx8PTh_9cbUbUHMhFn-ynQdAUpEuL7jipHr20KOAs_2YjZCKqnYi8FpiRiLPSZ9R0YsQJo76XmSJ2Bse7HziOzlRS4fExolLOkJTGqQHlL9xcwS0g0c1rMtJ2a8S-z6Hw4TzZmPrVumYZ0cOQlRKiFKJbTcEKTSJUYzZ64YY66926kFF9a10KC9Q0DZtbPcZpa2lJUF_Nt5L2pshKBG8N1glMuiXMJNPOCexT23Sw4UaJrdow0QcMaf_OOqT8nt9pF9RvZWi1I-JzeT9SpbLg7JDX_ID_WD8BOAUP47
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+refractive+index+of+oxygenated+and+deoxygenated+hemoglobin+using+genetic+algorithm+%E2%80%93+support+vector+regression+model&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Alade%2C+Ibrahim+Olanrewaju&rft.au=Bagudu%2C+Aliyu&rft.au=Oyehan%2C+Tajudeen+A.&rft.au=Rahman%2C+Mohd+Amiruddin+Abd&rft.date=2018-09-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=163&rft.spage=135&rft.epage=142&rft_id=info:doi/10.1016%2Fj.cmpb.2018.05.029&rft.externalDocID=S0169260718301871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon