SUPG-based stabilization using a separated representations approach
We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG sc...
Uloženo v:
| Vydáno v: | International journal of material forming Ročník 3; číslo Suppl 1; s. 883 - 886 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Paris
Springer-Verlag
01.04.2010
Springer Verlag |
| Témata: | |
| ISSN: | 1960-6206, 1960-6214 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of stabilization is well known. |
|---|---|
| ISSN: | 1960-6206 1960-6214 |
| DOI: | 10.1007/s12289-010-0909-7 |