SUPG-based stabilization using a separated representations approach

We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG sc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of material forming Ročník 3; číslo Suppl 1; s. 883 - 886
Hlavní autoři: González, D., Debeugny, L., Cueto, E., Chinesta, F., Díez, P., Huerta, A.
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Paris Springer-Verlag 01.04.2010
Springer Verlag
Témata:
ISSN:1960-6206, 1960-6214
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of stabilization is well known.
ISSN:1960-6206
1960-6214
DOI:10.1007/s12289-010-0909-7