Neural-enabled quantum information hiding with error-correcting codes: a novel framework for arbitrary quantum state embedding
Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding classical bits (0/1) within quantum carriers. This includes methods such as disguising classical secret information as channel noise and embedd...
Saved in:
| Published in: | EPJ quantum technology Vol. 12; no. 1; p. 88 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2662-4400, 2196-0763 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding classical bits (0/1) within quantum carriers. This includes methods such as disguising classical secret information as channel noise and embedding it within quantum error correction codes. However, the embedding mechanism for arbitrary quantum states
α
|
0
〉
+
β
|
1
〉
is still in the exploratory stage. This paper proposes an innovative framework that leverages the redundant space of quantum error correction codes to construct a nonlinear decoding architecture with quantum neural networks. This approach simultaneously achieves both carrier state error correction and secret state embedding and extraction functions. Specifically, the [5,1,3] stabilizer code is used as the carrier, with secret state embedding achieved through single-qubit substitution, and a quantum autoencoder is designed for steganographic state information decoding. The proposed framework features fully quantum-based input/output systems, overcoming the limitations of traditional variational quantum circuits that rely on probabilistic measurements for output generation. By performing full ground-state measurements at the autoencoder bottleneck layer and optimizing the parallel sub-network architecture, the network achieves efficient convergence and effective extraction of single-copy quantum states. Experimental results show that under the conditions of optimized parameters and data size of 20, the training losses for the carrier and secret states are 0.03 and 0.08, respectively, with test fidelities of 0.92 and 0.93. For a data size of 50, the secret states recovery fidelity exceeds 0.87. KS test analysis indicates that the full ground-state measurement and parallel sub-network are key strategies for achieving network performance. Equivalent error analysis shows that this approach successfully utilizes the potential redundant space of quantum error correction codes, providing new research directions for quantum state information hiding. |
|---|---|
| AbstractList | Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding classical bits (0/1) within quantum carriers. This includes methods such as disguising classical secret information as channel noise and embedding it within quantum error correction codes. However, the embedding mechanism for arbitrary quantum states α|0〉+β|1〉 is still in the exploratory stage. This paper proposes an innovative framework that leverages the redundant space of quantum error correction codes to construct a nonlinear decoding architecture with quantum neural networks. This approach simultaneously achieves both carrier state error correction and secret state embedding and extraction functions. Specifically, the [5,1,3] stabilizer code is used as the carrier, with secret state embedding achieved through single-qubit substitution, and a quantum autoencoder is designed for steganographic state information decoding. The proposed framework features fully quantum-based input/output systems, overcoming the limitations of traditional variational quantum circuits that rely on probabilistic measurements for output generation. By performing full ground-state measurements at the autoencoder bottleneck layer and optimizing the parallel sub-network architecture, the network achieves efficient convergence and effective extraction of single-copy quantum states. Experimental results show that under the conditions of optimized parameters and data size of 20, the training losses for the carrier and secret states are 0.03 and 0.08, respectively, with test fidelities of 0.92 and 0.93. For a data size of 50, the secret states recovery fidelity exceeds 0.87. KS test analysis indicates that the full ground-state measurement and parallel sub-network are key strategies for achieving network performance. Equivalent error analysis shows that this approach successfully utilizes the potential redundant space of quantum error correction codes, providing new research directions for quantum state information hiding. Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding classical bits (0/1) within quantum carriers. This includes methods such as disguising classical secret information as channel noise and embedding it within quantum error correction codes. However, the embedding mechanism for arbitrary quantum states α | 0 〉 + β | 1 〉 is still in the exploratory stage. This paper proposes an innovative framework that leverages the redundant space of quantum error correction codes to construct a nonlinear decoding architecture with quantum neural networks. This approach simultaneously achieves both carrier state error correction and secret state embedding and extraction functions. Specifically, the [5,1,3] stabilizer code is used as the carrier, with secret state embedding achieved through single-qubit substitution, and a quantum autoencoder is designed for steganographic state information decoding. The proposed framework features fully quantum-based input/output systems, overcoming the limitations of traditional variational quantum circuits that rely on probabilistic measurements for output generation. By performing full ground-state measurements at the autoencoder bottleneck layer and optimizing the parallel sub-network architecture, the network achieves efficient convergence and effective extraction of single-copy quantum states. Experimental results show that under the conditions of optimized parameters and data size of 20, the training losses for the carrier and secret states are 0.03 and 0.08, respectively, with test fidelities of 0.92 and 0.93. For a data size of 50, the secret states recovery fidelity exceeds 0.87. KS test analysis indicates that the full ground-state measurement and parallel sub-network are key strategies for achieving network performance. Equivalent error analysis shows that this approach successfully utilizes the potential redundant space of quantum error correction codes, providing new research directions for quantum state information hiding. |
| ArticleNumber | 88 |
| Author | Ma, QuanGong Qu, Dan Hao, ChaoLong Si, NianWen Liu, BuYu |
| Author_xml | – sequence: 1 givenname: ChaoLong surname: Hao fullname: Hao, ChaoLong organization: School of Information Systems Engineering, Information Engineering University – sequence: 2 givenname: QuanGong surname: Ma fullname: Ma, QuanGong email: quangongma@163.com organization: School of Information Systems Engineering, Information Engineering University – sequence: 3 givenname: NianWen surname: Si fullname: Si, NianWen organization: School of Information Systems Engineering, Information Engineering University – sequence: 4 givenname: BuYu surname: Liu fullname: Liu, BuYu organization: School of Information Systems Engineering, Information Engineering University – sequence: 5 givenname: Dan surname: Qu fullname: Qu, Dan email: qudan_xd@163.com organization: School of Information Systems Engineering, Information Engineering University, Laboratory for Advanced Computing and Intelligence Engineering |
| BookMark | eNqFkMtuFDEQRa0okRJC_sESa5Pyqx_sUAQEKYINrC13uzrpybQ9U3YzYsO348kgWLKyZd1zq3xesfOYIjLGJbyV0sAt7jb7cpsNWGgFKCsAdC_F4YxdKdk3AtpGn9d70yhhDMAlu8l5AwBSKtvJ9or9-oIr-a3A6IctBr5ffSzrwuc4JVp8mVPkT3OY4yM_zOWJI1EiMSYiHMvxdUwB8zvueUw_cMsn8gseEj3zynNPw1zI08-_vbn4ghyXAcOx9DW7mPw2482f85p9__jh2929ePj66fPd-wcxGmiLUKPq9WiU1to3A5gQxsbKSZsAPqABX__TYD9Z31qU0neNnYaaAmvaoKTR1-zNqXdHab9iLm6TVop1pNNKG2M7aLua6k6pkVLOhJPb0bzU9Z0EdxTuXoS7k3BXhbsX4e5Q0f6E5orER6R_A_7L_gZsYY0_ |
| Cites_doi | 10.1007/s00607-025-01422-1 10.1007/s11128-024-04328-7 10.1109/MNET.001.1900092 10.1145/3524455 10.1017/CBO9781139525343 10.1038/s41586-022-04566-8 10.1007/s11128-024-04312-1 10.1007/s11227-024-06332-1 10.1007/s11128-010-0177-y 10.1007/s11128-013-0567-z 10.1007/s11128-022-03513-w 10.3390/app122010294 10.1088/2058-9565/aa8072 10.1109/TIFS.2024.3394768 10.1016/j.physa.2023.128688 10.1007/s11128-023-03914-5 10.1103/PhysRevApplied.15.054012 10.1103/PhysRevA.102.032412 10.1109/COMST.2017.2786748 10.1038/s41598-020-67014-5 10.1038/nature23474 10.1103/PhysRevA.103.L040403 10.34133/research.0134 10.1016/j.comnet.2024.110672 10.1103/PhysRevA.109.032401 10.1002/qute.201900070 10.1038/s41534-017-0032-4 10.22331/q-2023-03-09-942 10.1103/PhysRevA.83.022310 10.1103/PhysRevA.55.900 10.1103/RevModPhys.95.045006 10.1103/PhysRevA.100.052312 10.1038/s41598-019-48892-w 10.1002/qute.201800065 10.1038/nature07127 10.1038/s41586-025-08704-w 10.1103/PhysRevLett.122.060501 10.1103/PhysRevA.101.052319 10.1103/PhysRevLett.124.130502 10.1038/s41598-020-76728-5 10.1016/j.cosrev.2024.100679 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1140/epjqt/s40507-025-00391-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2196-0763 |
| ExternalDocumentID | 10_1140_epjqt_s40507_025_00391_w |
| GroupedDBID | 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN AASML ABEEZ ACACY ACGFS ACULB ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS ASPBG BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON GROUPED_DOAJ HCIFZ IAO ISR ITC KQ8 M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC SOJ TUS AAYXX AFFHD AHSBF CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c407t-2c293c42333a6b04ddc651f34d0ade40a1126e9f5a75e11a865fb4dd0547d2143 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538709600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2662-4400 |
| IngestDate | Sat Oct 11 06:11:55 EDT 2025 Sat Nov 29 07:32:37 EST 2025 Wed Jul 30 01:28:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Quantum Arbitrary State Embedding Quantum Information Hiding Quantum Error-Correcting Codes Quantum Autoencoder |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-2c293c42333a6b04ddc651f34d0ade40a1126e9f5a75e11a865fb4dd0547d2143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3234458078?pq-origsite=%requestingapplication% |
| PQID | 3234458078 |
| PQPubID | 2034768 |
| ParticipantIDs | proquest_journals_3234458078 crossref_primary_10_1140_epjqt_s40507_025_00391_w springer_journals_10_1140_epjqt_s40507_025_00391_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | EPJ quantum technology |
| PublicationTitleAbbrev | EPJ Quantum Technol |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | L Gyongyosi (391_CR34) 2021; 11 K Azuma (391_CR16) 2023; 95 Y Dong (391_CR9) 2024; 80 S Dhar (391_CR5) 2024; 54 C Delle Donne (391_CR14) 2025; 639 C Sutherland (391_CR28) 2019; 100 D Gottesman (391_CR22) 1997 D Bondarenko (391_CR36) 2020; 124 MA Nielsen (391_CR42) 2010 L Gyongyosi (391_CR19) 2022; 65 E Knill (391_CR21) 1997; 55 Z Xing (391_CR7) 2024; 19 Y Dodge (391_CR50) 2008 B Avritzer (391_CR25) 2024; 109 J Biamonte (391_CR30) 2017; 549 A Paszke (391_CR47) 2019 Z Lu (391_CR1) 2014 GQ AI (391_CR24) 2024; 638 DF Locher (391_CR41) 2023; 7 J Romero (391_CR40) 2017; 2 PQ Le (391_CR2) 2011; 10 S Jing-yu (391_CR13) 2024; 23 H Sun (391_CR8) 2022; 21 L Gyongyosi (391_CR32) 2019; 9 DP Kingma (391_CR49) 2015 N Min-Allah (391_CR4) 2022; 12 X-M Zhang (391_CR39) 2021; 103 M-G Zhou (391_CR29) 2023; 6 L Gyongyosi (391_CR20) 2018; 20 L Gyongyosi (391_CR33) 2020; 10 Y Ding (391_CR38) 2019; 2 MM Wilde (391_CR44) 2013 S Sim (391_CR45) 2019; 2 S Maurya (391_CR10) 2023; 22 M Caleffi (391_CR18) 2024; 254 KH Wan (391_CR31) 2017; 3 M Velayatipour (391_CR12) 2025; 107 Y Zhang (391_CR3) 2013; 12 BA Shaw (391_CR26) 2011; 83 HJ Kimble (391_CR15) 2008; 453 C Cao (391_CR46) 2021; 15 C Hao (391_CR6) 2024; 23 391_CR48 C Sutherland (391_CR27) 2020; 101 S Krinner (391_CR23) 2022; 605 A Pepper (391_CR37) 2019; 122 391_CR43 C-J Huang (391_CR35) 2020; 102 AS Cacciapuoti (391_CR17) 2019; 34 J-y Sun (391_CR11) 2023; 617 |
| References_xml | – volume: 107 start-page: 70 issue: 3 year: 2025 ident: 391_CR12 publication-title: Computing doi: 10.1007/s00607-025-01422-1 – volume: 23 start-page: 112 issue: 4 year: 2024 ident: 391_CR13 publication-title: Quantum Inf Process doi: 10.1007/s11128-024-04328-7 – volume: 34 start-page: 137 issue: 1 year: 2019 ident: 391_CR17 publication-title: IEEE Netw doi: 10.1109/MNET.001.1900092 – volume-title: 3rd international conference on learning representations, ICLR 2015 year: 2015 ident: 391_CR49 – volume: 65 start-page: 52 issue: 8 year: 2022 ident: 391_CR19 publication-title: Commun ACM doi: 10.1145/3524455 – volume-title: Quantum information theory year: 2013 ident: 391_CR44 doi: 10.1017/CBO9781139525343 – volume: 605 start-page: 669 issue: 7911 year: 2022 ident: 391_CR23 publication-title: Nature doi: 10.1038/s41586-022-04566-8 – start-page: 8024 volume-title: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019 year: 2019 ident: 391_CR47 – ident: 391_CR43 – volume: 23 start-page: 106 issue: 3 year: 2024 ident: 391_CR6 publication-title: Quantum Inf Process doi: 10.1007/s11128-024-04312-1 – volume: 80 start-page: 24758 issue: 16 year: 2024 ident: 391_CR9 publication-title: J Supercomput doi: 10.1007/s11227-024-06332-1 – volume: 10 start-page: 63 year: 2011 ident: 391_CR2 publication-title: Quantum Inf Process doi: 10.1007/s11128-010-0177-y – volume: 12 start-page: 2833 year: 2013 ident: 391_CR3 publication-title: Quantum Inf Process doi: 10.1007/s11128-013-0567-z – volume: 21 start-page: 165 issue: 5 year: 2022 ident: 391_CR8 publication-title: Quantum Inf Process doi: 10.1007/s11128-022-03513-w – volume: 12 issue: 20 year: 2022 ident: 391_CR4 publication-title: Appl Sci doi: 10.3390/app122010294 – volume: 2 issue: 4 year: 2017 ident: 391_CR40 publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/aa8072 – volume: 19 start-page: 5181 year: 2024 ident: 391_CR7 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2024.3394768 – volume: 617 year: 2023 ident: 391_CR11 publication-title: Phys A, Stat Mech Appl doi: 10.1016/j.physa.2023.128688 – volume: 22 start-page: 206 issue: 5 year: 2023 ident: 391_CR10 publication-title: Quantum Inf Process doi: 10.1007/s11128-023-03914-5 – volume: 15 issue: 5 year: 2021 ident: 391_CR46 publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.15.054012 – volume: 102 issue: 3 year: 2020 ident: 391_CR35 publication-title: Phys Rev A doi: 10.1103/PhysRevA.102.032412 – volume: 20 start-page: 1149 issue: 2 year: 2018 ident: 391_CR20 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2017.2786748 – volume: 10 issue: 1 year: 2020 ident: 391_CR33 publication-title: Sci Rep doi: 10.1038/s41598-020-67014-5 – volume: 549 start-page: 195 issue: 7671 year: 2017 ident: 391_CR30 publication-title: Nature doi: 10.1038/nature23474 – start-page: 283 volume-title: The concise encyclopedia of statistics year: 2008 ident: 391_CR50 – volume: 103 issue: 4 year: 2021 ident: 391_CR39 publication-title: Phys Rev A doi: 10.1103/PhysRevA.103.L040403 – volume: 6 year: 2023 ident: 391_CR29 publication-title: Research doi: 10.34133/research.0134 – volume: 638 start-page: 920 issue: 8052 year: 2024 ident: 391_CR24 publication-title: Nature – volume: 254 year: 2024 ident: 391_CR18 publication-title: Comput Netw doi: 10.1016/j.comnet.2024.110672 – volume: 109 issue: 3 year: 2024 ident: 391_CR25 publication-title: Phys Rev A doi: 10.1103/PhysRevA.109.032401 – volume: 2 issue: 12 year: 2019 ident: 391_CR45 publication-title: Adv Quantum Technol doi: 10.1002/qute.201900070 – volume-title: Quantum computation and quantum information year: 2010 ident: 391_CR42 – volume: 3 start-page: 36 issue: 1 year: 2017 ident: 391_CR31 publication-title: npj Quantum Inf doi: 10.1038/s41534-017-0032-4 – volume: 7 start-page: 942 year: 2023 ident: 391_CR41 publication-title: Quantum doi: 10.22331/q-2023-03-09-942 – volume-title: Stabilizer codes and quantum error correction year: 1997 ident: 391_CR22 – volume: 83 issue: 2 year: 2011 ident: 391_CR26 publication-title: Phys Rev A, At Mol Opt Phys doi: 10.1103/PhysRevA.83.022310 – volume: 55 start-page: 900 issue: 2 year: 1997 ident: 391_CR21 publication-title: Phys Rev A doi: 10.1103/PhysRevA.55.900 – volume: 95 issue: 4 year: 2023 ident: 391_CR16 publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.95.045006 – volume: 100 issue: 5 year: 2019 ident: 391_CR28 publication-title: Phys Rev A doi: 10.1103/PhysRevA.100.052312 – volume: 9 issue: 1 year: 2019 ident: 391_CR32 publication-title: Sci Rep doi: 10.1038/s41598-019-48892-w – volume: 2 issue: 7–8 year: 2019 ident: 391_CR38 publication-title: Adv Quantum Technol doi: 10.1002/qute.201800065 – ident: 391_CR48 – volume: 453 start-page: 1023 issue: 7198 year: 2008 ident: 391_CR15 publication-title: Nature doi: 10.1038/nature07127 – volume: 639 start-page: 321 issue: 8054 year: 2025 ident: 391_CR14 publication-title: Nature doi: 10.1038/s41586-025-08704-w – volume-title: Introduction to information hiding year: 2014 ident: 391_CR1 – volume: 122 issue: 6 year: 2019 ident: 391_CR37 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.122.060501 – volume: 101 issue: 5 year: 2020 ident: 391_CR27 publication-title: Phys Rev A doi: 10.1103/PhysRevA.101.052319 – volume: 124 issue: 13 year: 2020 ident: 391_CR36 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.124.130502 – volume: 11 start-page: 5172 issue: 1 year: 2021 ident: 391_CR34 publication-title: Sci Rep doi: 10.1038/s41598-020-76728-5 – volume: 54 year: 2024 ident: 391_CR5 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2024.100679 |
| SSID | ssj0001125817 ssib035840856 |
| Score | 2.3176715 |
| Snippet | Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 88 |
| SubjectTerms | Algorithms Channel noise Codes Communication Decoding Embedding Error analysis Error correcting codes Error correction Error correction & detection Internet Multimedia Nanotechnology and Microengineering Neural networks Optimization Physics Physics and Astronomy Quantum computing Quantum Information Technology Quantum phenomena Quantum Physics Qubits (quantum computing) Spintronics Steganography |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5ggMSFN2IwUA5cI_pI2pQbmpg4TRxA4ha5SSqGxsbaDW78dpy0ZYIDSHBuY6m2U39O7M-EnAOkXIMUDAqBCUpuJJNgOeMgwkLnBWRa-mET6XAoHx6y26aqsmqr3dsrSf-nrvlsgwv78jSbX1QIMNzhWiSYJzdnb6tkTYQyc97dXzKPxxhYEU0ky_MWjOTSD-DFkBQxjr7bFvb8IPxrtFpC0G-3pj4YDbb_8xk7ZKuBoPSq9pldsmIne2TDl4Lqap-8O74OGDPru6oMnS1Q-Ytn2lCsOkPSx5ELedQd4lJbltOSaTflQ7saauq65KtLCnQyfbVjWrTlXxTXUyjzke_0_5TrW5qofc6tcUIPyP3g-q5_w5opDUxjMjhnkUbEoBGVxTEkecCN0QnaOeYmAGN5AK5JyWaFgFTYMASZiCLHtxArpiZCuHZIOpPpxB4RiguSQkoTJiA5IqsME-jUxsZgTiggsF0SttZQLzUZh6obqwPl9apqvSrUq_J6VW9d0mvNpprtWak4ijkXjmq_S6LWTMvHv8k8_suiE7IZOXv7Upge6czLhT0l6_p1PqrKM--8H0Jt7p4 priority: 102 providerName: Springer Nature |
| Title | Neural-enabled quantum information hiding with error-correcting codes: a novel framework for arbitrary quantum state embedding |
| URI | https://link.springer.com/article/10.1140/epjqt/s40507-025-00391-w https://www.proquest.com/docview/3234458078 |
| Volume | 12 |
| WOSCitedRecordID | wos001538709600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: PIMPY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RbStxobQUsfQhH3q1Ng878XJBtGpVDqwiBFLhYk1sR2y13Uey29747Yy9SVf0AIdeckjiUeTP8XwzngfAGWIuDCrJsZJkoJRWcYVOcIEyrkxZ4dCo0GwiH43Uzc2waB1uTRtW2e2JYaO2M-N95IM0SYWQvjr6x_mC-65R_nS1baGxBdu-Upnowfb55aj4uvGykP5Wcd6F8Iho4Oa3i-WgIZ7ifXSJ5KFGOn_4Wy9tyOaT89Ggdq72nvvBr-FVSzjZp_UK2YcXbnoAuyHw0zRv4LevzoET7kIOlWWLFU316o61BVU9bOzX2Cs45l22zNX1rObG9_QwPmKa-Zz45gNDNp3duwmrumAvRuMZ1uU45PU_yg0JTMzdlc56oYfw_ery28U1b3sycEOm35InhviBIQ6WppiVkbDWZIRqKmyE1okIfUqSG1YSc-niGFUmq5LeImaY24TI2VvoTWdT9w4YDcgqpWycoRLEo4ZkLucutZYsQImR60PcIaLn69Ibep1GHemAol6jqAlFHVDUD3047sDQ7c_Y6A0SfUg6ODeP_yfz_b9lHsHLxK-jEOJyDL1lvXInsGPul-OmPm0X5ClsXSSCroX8SfeKz1-KH38AHTTwsg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgSXlkcRSwv4AEdr87ATLxKqqpaqVcuqhyJVXMzEdsSidh_Jbldc-En8xo6dDatyaE89cE48cuLPnm_G8wB4j5gLg0pyLCUZKIVVXKETXKCMS1OU2DMqNJvI-311ft47XYE_bS6MD6tsz8RwUNuR8T7ybpqkQkhfHX1nPOG-a5S_XW1baDSwOHa_5mSy1Z-O9ml9PyTJweezvUO-6CrADRkvU54Y0nCGWESaYlZEwlqT0bxSYSO0TkTok2pcr5SYSxfHqDJZFvQWcZvcJkQvSO4DWBOCjCXaP6fy29KnQ2xBxXkbMCSirhv_nEy7NbEi7xFMJA8V2fn8phZcUtt_bmODkjvY-N9-z1NYX9Bpttvg_xmsuOFzeBTCWk39An772iN4wV3IELNsMiMgzS7ZolysByX7MfDqm3mHNHNVNaq48R1LjI8HZz7jv_7IkA1HV-6ClW0oG6PxDKtiEKoW_JUb0rOYuyyc9UI34eu9fPxLWB2Ohu4VMBqQlUrZOEMliCX24jTNXWot2bcSI9eBuEWAHjeFRXSTJB7pgBrdoEYTanRAjZ53YLtdfL04amq9XPkOJC18lo_vkvn6dpnv4PHh2ZcTfXLUP96CJ4nHcAjm2YbVaTVzb-ChuZoO6upt2AoMvt83uK4BRqxHqw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFhAXylMstOADHK3Nw068SAihtiuqotUeQKq4GMd2xKJ2H8luV1z4Yfw6ZpykK3qgpx44Jx7l8Y3nm_E8AF4bkwtrlOSmlOigFE5xZbzgwsi4tEVpBlaFYRP5aKROTwfjLfjd1cJQWmW3J4aN2s0sxcj7aZIKIak7er9s0yLGh8P38wWnCVJ00tqN02ggcuJ_rtF9q98dH-K_fpMkw6PPBx95O2GAW3RkljyxaO0sMoo0NVkRCedshs-YChcZ50VkqMDGD0ppcunj2KhMlgXehTwndwlSDZR7C3Zy9DFJu8by6ya-g8xBxXmXPCSivp__WCz7NTIkig4mkofu7Hz9t0Xc0NwrJ7PB4A13_-dP9QDutzSbfWj04iFs-ekjuBPSXW39GH5RTxJzxn2oHHNssUKArc5Z20aWwMq-T8isMwpUM19Vs4pbmmRiKU-cUSeA-i0zbDq78Ges7FLcGK5npiomoZvBpdxQtsX8eeEdCX0CX27k5Z_C9nQ29c-A4YKsVMrFmVEC2eMgTtPcp86h3ytN5HsQd2jQ86bhiG6KxyMdEKQbBGlEkA4I0use7HVA0O0WVOsNCnqQdFDaXL5O5vN_y3wFdxFT-tPx6OQF3EsIziHHZw-2l9XK78Nte7Gc1NXLoBUMvt00tv4AU-xQfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-enabled+quantum+information+hiding+with+error-correcting+codes%3A+a+novel+framework+for+arbitrary+quantum+state+embedding&rft.jtitle=EPJ+quantum+technology&rft.au=Hao%2C+ChaoLong&rft.au=Ma%2C+QuanGong&rft.au=Si%2C+NianWen&rft.au=Liu%2C+BuYu&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2196-0763&rft.volume=12&rft.issue=1&rft.spage=88&rft_id=info:doi/10.1140%2Fepjqt%2Fs40507-025-00391-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4400&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4400&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4400&client=summon |