Neural-enabled quantum information hiding with error-correcting codes: a novel framework for arbitrary quantum state embedding

Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding classical bits (0/1) within quantum carriers. This includes methods such as disguising classical secret information as channel noise and embedd...

Full description

Saved in:
Bibliographic Details
Published in:EPJ quantum technology Vol. 12; no. 1; p. 88
Main Authors: Hao, ChaoLong, Ma, QuanGong, Si, NianWen, Liu, BuYu, Qu, Dan
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2025
Springer Nature B.V
Subjects:
ISSN:2662-4400, 2196-0763
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding classical bits (0/1) within quantum carriers. This includes methods such as disguising classical secret information as channel noise and embedding it within quantum error correction codes. However, the embedding mechanism for arbitrary quantum states α | 0 〉 + β | 1 〉 is still in the exploratory stage. This paper proposes an innovative framework that leverages the redundant space of quantum error correction codes to construct a nonlinear decoding architecture with quantum neural networks. This approach simultaneously achieves both carrier state error correction and secret state embedding and extraction functions. Specifically, the [5,1,3] stabilizer code is used as the carrier, with secret state embedding achieved through single-qubit substitution, and a quantum autoencoder is designed for steganographic state information decoding. The proposed framework features fully quantum-based input/output systems, overcoming the limitations of traditional variational quantum circuits that rely on probabilistic measurements for output generation. By performing full ground-state measurements at the autoencoder bottleneck layer and optimizing the parallel sub-network architecture, the network achieves efficient convergence and effective extraction of single-copy quantum states. Experimental results show that under the conditions of optimized parameters and data size of 20, the training losses for the carrier and secret states are 0.03 and 0.08, respectively, with test fidelities of 0.92 and 0.93. For a data size of 50, the secret states recovery fidelity exceeds 0.87. KS test analysis indicates that the full ground-state measurement and parallel sub-network are key strategies for achieving network performance. Equivalent error analysis shows that this approach successfully utilizes the potential redundant space of quantum error correction codes, providing new research directions for quantum state information hiding.
AbstractList Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding classical bits (0/1) within quantum carriers. This includes methods such as disguising classical secret information as channel noise and embedding it within quantum error correction codes. However, the embedding mechanism for arbitrary quantum states α|0〉+β|1〉 is still in the exploratory stage. This paper proposes an innovative framework that leverages the redundant space of quantum error correction codes to construct a nonlinear decoding architecture with quantum neural networks. This approach simultaneously achieves both carrier state error correction and secret state embedding and extraction functions. Specifically, the [5,1,3] stabilizer code is used as the carrier, with secret state embedding achieved through single-qubit substitution, and a quantum autoencoder is designed for steganographic state information decoding. The proposed framework features fully quantum-based input/output systems, overcoming the limitations of traditional variational quantum circuits that rely on probabilistic measurements for output generation. By performing full ground-state measurements at the autoencoder bottleneck layer and optimizing the parallel sub-network architecture, the network achieves efficient convergence and effective extraction of single-copy quantum states. Experimental results show that under the conditions of optimized parameters and data size of 20, the training losses for the carrier and secret states are 0.03 and 0.08, respectively, with test fidelities of 0.92 and 0.93. For a data size of 50, the secret states recovery fidelity exceeds 0.87. KS test analysis indicates that the full ground-state measurement and parallel sub-network are key strategies for achieving network performance. Equivalent error analysis shows that this approach successfully utilizes the potential redundant space of quantum error correction codes, providing new research directions for quantum state information hiding.
Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding classical bits (0/1) within quantum carriers. This includes methods such as disguising classical secret information as channel noise and embedding it within quantum error correction codes. However, the embedding mechanism for arbitrary quantum states α | 0 〉 + β | 1 〉 is still in the exploratory stage. This paper proposes an innovative framework that leverages the redundant space of quantum error correction codes to construct a nonlinear decoding architecture with quantum neural networks. This approach simultaneously achieves both carrier state error correction and secret state embedding and extraction functions. Specifically, the [5,1,3] stabilizer code is used as the carrier, with secret state embedding achieved through single-qubit substitution, and a quantum autoencoder is designed for steganographic state information decoding. The proposed framework features fully quantum-based input/output systems, overcoming the limitations of traditional variational quantum circuits that rely on probabilistic measurements for output generation. By performing full ground-state measurements at the autoencoder bottleneck layer and optimizing the parallel sub-network architecture, the network achieves efficient convergence and effective extraction of single-copy quantum states. Experimental results show that under the conditions of optimized parameters and data size of 20, the training losses for the carrier and secret states are 0.03 and 0.08, respectively, with test fidelities of 0.92 and 0.93. For a data size of 50, the secret states recovery fidelity exceeds 0.87. KS test analysis indicates that the full ground-state measurement and parallel sub-network are key strategies for achieving network performance. Equivalent error analysis shows that this approach successfully utilizes the potential redundant space of quantum error correction codes, providing new research directions for quantum state information hiding.
ArticleNumber 88
Author Ma, QuanGong
Qu, Dan
Hao, ChaoLong
Si, NianWen
Liu, BuYu
Author_xml – sequence: 1
  givenname: ChaoLong
  surname: Hao
  fullname: Hao, ChaoLong
  organization: School of Information Systems Engineering, Information Engineering University
– sequence: 2
  givenname: QuanGong
  surname: Ma
  fullname: Ma, QuanGong
  email: quangongma@163.com
  organization: School of Information Systems Engineering, Information Engineering University
– sequence: 3
  givenname: NianWen
  surname: Si
  fullname: Si, NianWen
  organization: School of Information Systems Engineering, Information Engineering University
– sequence: 4
  givenname: BuYu
  surname: Liu
  fullname: Liu, BuYu
  organization: School of Information Systems Engineering, Information Engineering University
– sequence: 5
  givenname: Dan
  surname: Qu
  fullname: Qu, Dan
  email: qudan_xd@163.com
  organization: School of Information Systems Engineering, Information Engineering University, Laboratory for Advanced Computing and Intelligence Engineering
BookMark eNqFkMtuFDEQRa0okRJC_sESa5Pyqx_sUAQEKYINrC13uzrpybQ9U3YzYsO348kgWLKyZd1zq3xesfOYIjLGJbyV0sAt7jb7cpsNWGgFKCsAdC_F4YxdKdk3AtpGn9d70yhhDMAlu8l5AwBSKtvJ9or9-oIr-a3A6IctBr5ffSzrwuc4JVp8mVPkT3OY4yM_zOWJI1EiMSYiHMvxdUwB8zvueUw_cMsn8gseEj3zynNPw1zI08-_vbn4ghyXAcOx9DW7mPw2482f85p9__jh2929ePj66fPd-wcxGmiLUKPq9WiU1to3A5gQxsbKSZsAPqABX__TYD9Z31qU0neNnYaaAmvaoKTR1-zNqXdHab9iLm6TVop1pNNKG2M7aLua6k6pkVLOhJPb0bzU9Z0EdxTuXoS7k3BXhbsX4e5Q0f6E5orER6R_A_7L_gZsYY0_
Cites_doi 10.1007/s00607-025-01422-1
10.1007/s11128-024-04328-7
10.1109/MNET.001.1900092
10.1145/3524455
10.1017/CBO9781139525343
10.1038/s41586-022-04566-8
10.1007/s11128-024-04312-1
10.1007/s11227-024-06332-1
10.1007/s11128-010-0177-y
10.1007/s11128-013-0567-z
10.1007/s11128-022-03513-w
10.3390/app122010294
10.1088/2058-9565/aa8072
10.1109/TIFS.2024.3394768
10.1016/j.physa.2023.128688
10.1007/s11128-023-03914-5
10.1103/PhysRevApplied.15.054012
10.1103/PhysRevA.102.032412
10.1109/COMST.2017.2786748
10.1038/s41598-020-67014-5
10.1038/nature23474
10.1103/PhysRevA.103.L040403
10.34133/research.0134
10.1016/j.comnet.2024.110672
10.1103/PhysRevA.109.032401
10.1002/qute.201900070
10.1038/s41534-017-0032-4
10.22331/q-2023-03-09-942
10.1103/PhysRevA.83.022310
10.1103/PhysRevA.55.900
10.1103/RevModPhys.95.045006
10.1103/PhysRevA.100.052312
10.1038/s41598-019-48892-w
10.1002/qute.201800065
10.1038/nature07127
10.1038/s41586-025-08704-w
10.1103/PhysRevLett.122.060501
10.1103/PhysRevA.101.052319
10.1103/PhysRevLett.124.130502
10.1038/s41598-020-76728-5
10.1016/j.cosrev.2024.100679
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjqt/s40507-025-00391-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-0763
ExternalDocumentID 10_1140_epjqt_s40507_025_00391_w
GroupedDBID 0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ACACY
ACGFS
ACULB
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
ASPBG
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
KQ8
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
SOJ
TUS
AAYXX
AFFHD
AHSBF
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c407t-2c293c42333a6b04ddc651f34d0ade40a1126e9f5a75e11a865fb4dd0547d2143
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538709600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2662-4400
IngestDate Sat Oct 11 06:11:55 EDT 2025
Sat Nov 29 07:32:37 EST 2025
Wed Jul 30 01:28:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Quantum Arbitrary State Embedding
Quantum Information Hiding
Quantum Error-Correcting Codes
Quantum Autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-2c293c42333a6b04ddc651f34d0ade40a1126e9f5a75e11a865fb4dd0547d2143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3234458078?pq-origsite=%requestingapplication%
PQID 3234458078
PQPubID 2034768
ParticipantIDs proquest_journals_3234458078
crossref_primary_10_1140_epjqt_s40507_025_00391_w
springer_journals_10_1140_epjqt_s40507_025_00391_w
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle EPJ quantum technology
PublicationTitleAbbrev EPJ Quantum Technol
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References L Gyongyosi (391_CR34) 2021; 11
K Azuma (391_CR16) 2023; 95
Y Dong (391_CR9) 2024; 80
S Dhar (391_CR5) 2024; 54
C Delle Donne (391_CR14) 2025; 639
C Sutherland (391_CR28) 2019; 100
D Gottesman (391_CR22) 1997
D Bondarenko (391_CR36) 2020; 124
MA Nielsen (391_CR42) 2010
L Gyongyosi (391_CR19) 2022; 65
E Knill (391_CR21) 1997; 55
Z Xing (391_CR7) 2024; 19
Y Dodge (391_CR50) 2008
B Avritzer (391_CR25) 2024; 109
J Biamonte (391_CR30) 2017; 549
A Paszke (391_CR47) 2019
Z Lu (391_CR1) 2014
GQ AI (391_CR24) 2024; 638
DF Locher (391_CR41) 2023; 7
J Romero (391_CR40) 2017; 2
PQ Le (391_CR2) 2011; 10
S Jing-yu (391_CR13) 2024; 23
H Sun (391_CR8) 2022; 21
L Gyongyosi (391_CR32) 2019; 9
DP Kingma (391_CR49) 2015
N Min-Allah (391_CR4) 2022; 12
X-M Zhang (391_CR39) 2021; 103
M-G Zhou (391_CR29) 2023; 6
L Gyongyosi (391_CR20) 2018; 20
L Gyongyosi (391_CR33) 2020; 10
Y Ding (391_CR38) 2019; 2
MM Wilde (391_CR44) 2013
S Sim (391_CR45) 2019; 2
S Maurya (391_CR10) 2023; 22
M Caleffi (391_CR18) 2024; 254
KH Wan (391_CR31) 2017; 3
M Velayatipour (391_CR12) 2025; 107
Y Zhang (391_CR3) 2013; 12
BA Shaw (391_CR26) 2011; 83
HJ Kimble (391_CR15) 2008; 453
C Cao (391_CR46) 2021; 15
C Hao (391_CR6) 2024; 23
391_CR48
C Sutherland (391_CR27) 2020; 101
S Krinner (391_CR23) 2022; 605
A Pepper (391_CR37) 2019; 122
391_CR43
C-J Huang (391_CR35) 2020; 102
AS Cacciapuoti (391_CR17) 2019; 34
J-y Sun (391_CR11) 2023; 617
References_xml – volume: 107
  start-page: 70
  issue: 3
  year: 2025
  ident: 391_CR12
  publication-title: Computing
  doi: 10.1007/s00607-025-01422-1
– volume: 23
  start-page: 112
  issue: 4
  year: 2024
  ident: 391_CR13
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-024-04328-7
– volume: 34
  start-page: 137
  issue: 1
  year: 2019
  ident: 391_CR17
  publication-title: IEEE Netw
  doi: 10.1109/MNET.001.1900092
– volume-title: 3rd international conference on learning representations, ICLR 2015
  year: 2015
  ident: 391_CR49
– volume: 65
  start-page: 52
  issue: 8
  year: 2022
  ident: 391_CR19
  publication-title: Commun ACM
  doi: 10.1145/3524455
– volume-title: Quantum information theory
  year: 2013
  ident: 391_CR44
  doi: 10.1017/CBO9781139525343
– volume: 605
  start-page: 669
  issue: 7911
  year: 2022
  ident: 391_CR23
  publication-title: Nature
  doi: 10.1038/s41586-022-04566-8
– start-page: 8024
  volume-title: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019
  year: 2019
  ident: 391_CR47
– ident: 391_CR43
– volume: 23
  start-page: 106
  issue: 3
  year: 2024
  ident: 391_CR6
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-024-04312-1
– volume: 80
  start-page: 24758
  issue: 16
  year: 2024
  ident: 391_CR9
  publication-title: J Supercomput
  doi: 10.1007/s11227-024-06332-1
– volume: 10
  start-page: 63
  year: 2011
  ident: 391_CR2
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-010-0177-y
– volume: 12
  start-page: 2833
  year: 2013
  ident: 391_CR3
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-013-0567-z
– volume: 21
  start-page: 165
  issue: 5
  year: 2022
  ident: 391_CR8
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-022-03513-w
– volume: 12
  issue: 20
  year: 2022
  ident: 391_CR4
  publication-title: Appl Sci
  doi: 10.3390/app122010294
– volume: 2
  issue: 4
  year: 2017
  ident: 391_CR40
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/aa8072
– volume: 19
  start-page: 5181
  year: 2024
  ident: 391_CR7
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2024.3394768
– volume: 617
  year: 2023
  ident: 391_CR11
  publication-title: Phys A, Stat Mech Appl
  doi: 10.1016/j.physa.2023.128688
– volume: 22
  start-page: 206
  issue: 5
  year: 2023
  ident: 391_CR10
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-023-03914-5
– volume: 15
  issue: 5
  year: 2021
  ident: 391_CR46
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.15.054012
– volume: 102
  issue: 3
  year: 2020
  ident: 391_CR35
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.102.032412
– volume: 20
  start-page: 1149
  issue: 2
  year: 2018
  ident: 391_CR20
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2017.2786748
– volume: 10
  issue: 1
  year: 2020
  ident: 391_CR33
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-67014-5
– volume: 549
  start-page: 195
  issue: 7671
  year: 2017
  ident: 391_CR30
  publication-title: Nature
  doi: 10.1038/nature23474
– start-page: 283
  volume-title: The concise encyclopedia of statistics
  year: 2008
  ident: 391_CR50
– volume: 103
  issue: 4
  year: 2021
  ident: 391_CR39
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.103.L040403
– volume: 6
  year: 2023
  ident: 391_CR29
  publication-title: Research
  doi: 10.34133/research.0134
– volume: 638
  start-page: 920
  issue: 8052
  year: 2024
  ident: 391_CR24
  publication-title: Nature
– volume: 254
  year: 2024
  ident: 391_CR18
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2024.110672
– volume: 109
  issue: 3
  year: 2024
  ident: 391_CR25
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.109.032401
– volume: 2
  issue: 12
  year: 2019
  ident: 391_CR45
  publication-title: Adv Quantum Technol
  doi: 10.1002/qute.201900070
– volume-title: Quantum computation and quantum information
  year: 2010
  ident: 391_CR42
– volume: 3
  start-page: 36
  issue: 1
  year: 2017
  ident: 391_CR31
  publication-title: npj Quantum Inf
  doi: 10.1038/s41534-017-0032-4
– volume: 7
  start-page: 942
  year: 2023
  ident: 391_CR41
  publication-title: Quantum
  doi: 10.22331/q-2023-03-09-942
– volume-title: Stabilizer codes and quantum error correction
  year: 1997
  ident: 391_CR22
– volume: 83
  issue: 2
  year: 2011
  ident: 391_CR26
  publication-title: Phys Rev A, At Mol Opt Phys
  doi: 10.1103/PhysRevA.83.022310
– volume: 55
  start-page: 900
  issue: 2
  year: 1997
  ident: 391_CR21
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.55.900
– volume: 95
  issue: 4
  year: 2023
  ident: 391_CR16
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.95.045006
– volume: 100
  issue: 5
  year: 2019
  ident: 391_CR28
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.100.052312
– volume: 9
  issue: 1
  year: 2019
  ident: 391_CR32
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48892-w
– volume: 2
  issue: 7–8
  year: 2019
  ident: 391_CR38
  publication-title: Adv Quantum Technol
  doi: 10.1002/qute.201800065
– ident: 391_CR48
– volume: 453
  start-page: 1023
  issue: 7198
  year: 2008
  ident: 391_CR15
  publication-title: Nature
  doi: 10.1038/nature07127
– volume: 639
  start-page: 321
  issue: 8054
  year: 2025
  ident: 391_CR14
  publication-title: Nature
  doi: 10.1038/s41586-025-08704-w
– volume-title: Introduction to information hiding
  year: 2014
  ident: 391_CR1
– volume: 122
  issue: 6
  year: 2019
  ident: 391_CR37
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.060501
– volume: 101
  issue: 5
  year: 2020
  ident: 391_CR27
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.101.052319
– volume: 124
  issue: 13
  year: 2020
  ident: 391_CR36
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.124.130502
– volume: 11
  start-page: 5172
  issue: 1
  year: 2021
  ident: 391_CR34
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-76728-5
– volume: 54
  year: 2024
  ident: 391_CR5
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2024.100679
SSID ssj0001125817
ssib035840856
Score 2.3176715
Snippet Quantum information hiding, as an extension of classical information hiding techniques into the realm of quantum information, currently focuses on embedding...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 88
SubjectTerms Algorithms
Channel noise
Codes
Communication
Decoding
Embedding
Error analysis
Error correcting codes
Error correction
Error correction & detection
Internet
Multimedia
Nanotechnology and Microengineering
Neural networks
Optimization
Physics
Physics and Astronomy
Quantum computing
Quantum Information Technology
Quantum phenomena
Quantum Physics
Qubits (quantum computing)
Spintronics
Steganography
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5ggMSFN2IwUA5cI_pI2pQbmpg4TRxA4ha5SSqGxsbaDW78dpy0ZYIDSHBuY6m2U39O7M-EnAOkXIMUDAqBCUpuJJNgOeMgwkLnBWRa-mET6XAoHx6y26aqsmqr3dsrSf-nrvlsgwv78jSbX1QIMNzhWiSYJzdnb6tkTYQyc97dXzKPxxhYEU0ky_MWjOTSD-DFkBQxjr7bFvb8IPxrtFpC0G-3pj4YDbb_8xk7ZKuBoPSq9pldsmIne2TDl4Lqap-8O74OGDPru6oMnS1Q-Ytn2lCsOkPSx5ELedQd4lJbltOSaTflQ7saauq65KtLCnQyfbVjWrTlXxTXUyjzke_0_5TrW5qofc6tcUIPyP3g-q5_w5opDUxjMjhnkUbEoBGVxTEkecCN0QnaOeYmAGN5AK5JyWaFgFTYMASZiCLHtxArpiZCuHZIOpPpxB4RiguSQkoTJiA5IqsME-jUxsZgTiggsF0SttZQLzUZh6obqwPl9apqvSrUq_J6VW9d0mvNpprtWak4ijkXjmq_S6LWTMvHv8k8_suiE7IZOXv7Upge6czLhT0l6_p1PqrKM--8H0Jt7p4
  priority: 102
  providerName: Springer Nature
Title Neural-enabled quantum information hiding with error-correcting codes: a novel framework for arbitrary quantum state embedding
URI https://link.springer.com/article/10.1140/epjqt/s40507-025-00391-w
https://www.proquest.com/docview/3234458078
Volume 12
WOSCitedRecordID wos001538709600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RbStxobQUsfQhH3q1Ng878XJBtGpVDqwiBFLhYk1sR2y13Uey29747Yy9SVf0AIdeckjiUeTP8XwzngfAGWIuDCrJsZJkoJRWcYVOcIEyrkxZ4dCo0GwiH43Uzc2waB1uTRtW2e2JYaO2M-N95IM0SYWQvjr6x_mC-65R_nS1baGxBdu-Upnowfb55aj4uvGykP5Wcd6F8Iho4Oa3i-WgIZ7ifXSJ5KFGOn_4Wy9tyOaT89Ggdq72nvvBr-FVSzjZp_UK2YcXbnoAuyHw0zRv4LevzoET7kIOlWWLFU316o61BVU9bOzX2Cs45l22zNX1rObG9_QwPmKa-Zz45gNDNp3duwmrumAvRuMZ1uU45PU_yg0JTMzdlc56oYfw_ery28U1b3sycEOm35InhviBIQ6WppiVkbDWZIRqKmyE1okIfUqSG1YSc-niGFUmq5LeImaY24TI2VvoTWdT9w4YDcgqpWycoRLEo4ZkLucutZYsQImR60PcIaLn69Ibep1GHemAol6jqAlFHVDUD3047sDQ7c_Y6A0SfUg6ODeP_yfz_b9lHsHLxK-jEOJyDL1lvXInsGPul-OmPm0X5ClsXSSCroX8SfeKz1-KH38AHTTwsg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgSXlkcRSwv4AEdr87ATLxKqqpaqVcuqhyJVXMzEdsSidh_Jbldc-En8xo6dDatyaE89cE48cuLPnm_G8wB4j5gLg0pyLCUZKIVVXKETXKCMS1OU2DMqNJvI-311ft47XYE_bS6MD6tsz8RwUNuR8T7ybpqkQkhfHX1nPOG-a5S_XW1baDSwOHa_5mSy1Z-O9ml9PyTJweezvUO-6CrADRkvU54Y0nCGWESaYlZEwlqT0bxSYSO0TkTok2pcr5SYSxfHqDJZFvQWcZvcJkQvSO4DWBOCjCXaP6fy29KnQ2xBxXkbMCSirhv_nEy7NbEi7xFMJA8V2fn8phZcUtt_bmODkjvY-N9-z1NYX9Bpttvg_xmsuOFzeBTCWk39An772iN4wV3IELNsMiMgzS7ZolysByX7MfDqm3mHNHNVNaq48R1LjI8HZz7jv_7IkA1HV-6ClW0oG6PxDKtiEKoW_JUb0rOYuyyc9UI34eu9fPxLWB2Ohu4VMBqQlUrZOEMliCX24jTNXWot2bcSI9eBuEWAHjeFRXSTJB7pgBrdoEYTanRAjZ53YLtdfL04amq9XPkOJC18lo_vkvn6dpnv4PHh2ZcTfXLUP96CJ4nHcAjm2YbVaTVzb-ChuZoO6upt2AoMvt83uK4BRqxHqw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFhAXylMstOADHK3Nw068SAihtiuqotUeQKq4GMd2xKJ2H8luV1z4Yfw6ZpykK3qgpx44Jx7l8Y3nm_E8AF4bkwtrlOSmlOigFE5xZbzgwsi4tEVpBlaFYRP5aKROTwfjLfjd1cJQWmW3J4aN2s0sxcj7aZIKIak7er9s0yLGh8P38wWnCVJ00tqN02ggcuJ_rtF9q98dH-K_fpMkw6PPBx95O2GAW3RkljyxaO0sMoo0NVkRCedshs-YChcZ50VkqMDGD0ppcunj2KhMlgXehTwndwlSDZR7C3Zy9DFJu8by6ya-g8xBxXmXPCSivp__WCz7NTIkig4mkofu7Hz9t0Xc0NwrJ7PB4A13_-dP9QDutzSbfWj04iFs-ekjuBPSXW39GH5RTxJzxn2oHHNssUKArc5Z20aWwMq-T8isMwpUM19Vs4pbmmRiKU-cUSeA-i0zbDq78Ges7FLcGK5npiomoZvBpdxQtsX8eeEdCX0CX27k5Z_C9nQ29c-A4YKsVMrFmVEC2eMgTtPcp86h3ytN5HsQd2jQ86bhiG6KxyMdEKQbBGlEkA4I0use7HVA0O0WVOsNCnqQdFDaXL5O5vN_y3wFdxFT-tPx6OQF3EsIziHHZw-2l9XK78Nte7Gc1NXLoBUMvt00tv4AU-xQfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-enabled+quantum+information+hiding+with+error-correcting+codes%3A+a+novel+framework+for+arbitrary+quantum+state+embedding&rft.jtitle=EPJ+quantum+technology&rft.au=Hao%2C+ChaoLong&rft.au=Ma%2C+QuanGong&rft.au=Si%2C+NianWen&rft.au=Liu%2C+BuYu&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2196-0763&rft.volume=12&rft.issue=1&rft.spage=88&rft_id=info:doi/10.1140%2Fepjqt%2Fs40507-025-00391-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4400&client=summon