Gator: A Python‐driven program for spectroscopy simulations using correlated wave functions
The Gator program has been developed for computational spectroscopy and calculations of molecular properties using real and complex propagators at the correlated level of wave function theory. Currently, the focus lies on methods based on the algebraic diagrammatic construction (ADC) scheme up to th...
Uloženo v:
| Vydáno v: | Wiley interdisciplinary reviews. Computational molecular science Ročník 11; číslo 6; s. e1528 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
Wiley Periodicals, Inc
01.11.2021
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1759-0876, 1759-0884, 1759-0884 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Gator program has been developed for computational spectroscopy and calculations of molecular properties using real and complex propagators at the correlated level of wave function theory. Currently, the focus lies on methods based on the algebraic diagrammatic construction (ADC) scheme up to the third order of perturbation theory. An auxiliary Fock matrix‐driven implementation of the second‐order ADC method for excitation energies has been realized with an underlying hybrid MPI/OpenMP parallelization scheme suitable for execution in high‐performance computing cluster environments. With a modular and object‐oriented program structure written in a Python/C++ layered fashion, Gator additionally enables time‐efficient prototyping of novel scientific approaches, as well as interactive notebook‐driven training of students in quantum chemistry.
This article is categorized under:
Computer and Information Science > Computer Algorithms and Programming
Electronic Structure Theory > Ab Initio Electronic Structure Methods
Software > Quantum Chemistry
The Gator program is an easy‐to‐use yet powerful tool to calculate molecular properties and spectroscopies with real and complex response functions using the second‐ and third‐order algebraic diagrammatic construction schemes. |
|---|---|
| AbstractList | The Gator program has been developed for computational spectroscopy and calculations of molecular properties using real and complex propagators at the correlated level of wave function theory. Currently, the focus lies on methods based on the algebraic diagrammatic construction (ADC) scheme up to the third order of perturbation theory. An auxiliary Fock matrix‐driven implementation of the second‐order ADC method for excitation energies has been realized with an underlying hybrid MPI/OpenMP parallelization scheme suitable for execution in high‐performance computing cluster environments. With a modular and object‐oriented program structure written in a Python/C++ layered fashion, Gator additionally enables time‐efficient prototyping of novel scientific approaches, as well as interactive notebook‐driven training of students in quantum chemistry.
This article is categorized under:
Computer and Information Science > Computer Algorithms and Programming
Electronic Structure Theory > Ab Initio Electronic Structure Methods
Software > Quantum Chemistry The Gator program has been developed for computational spectroscopy and calculations of molecular properties using real and complex propagators at the correlated level of wave function theory. Currently, the focus lies on methods based on the algebraic diagrammatic construction (ADC) scheme up to the third order of perturbation theory. An auxiliary Fock matrix‐driven implementation of the second‐order ADC method for excitation energies has been realized with an underlying hybrid MPI/OpenMP parallelization scheme suitable for execution in high‐performance computing cluster environments. With a modular and object‐oriented program structure written in a Python/C++ layered fashion, Gator additionally enables time‐efficient prototyping of novel scientific approaches, as well as interactive notebook‐driven training of students in quantum chemistry. This article is categorized under: Computer and Information Science > Computer Algorithms and Programming Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry The Gator program is an easy‐to‐use yet powerful tool to calculate molecular properties and spectroscopies with real and complex response functions using the second‐ and third‐order algebraic diagrammatic construction schemes. The Gator program has been developed for computational spectroscopy and calculations of molecular properties using real and complex propagators at the correlated level of wave function theory. Currently, the focus lies on methods based on the algebraic diagrammatic construction (ADC) scheme up to the third order of perturbation theory. An auxiliary Fock matrix‐driven implementation of the second‐order ADC method for excitation energies has been realized with an underlying hybrid MPI/OpenMP parallelization scheme suitable for execution in high‐performance computing cluster environments. With a modular and object‐oriented program structure written in a Python/C++ layered fashion, Gator additionally enables time‐efficient prototyping of novel scientific approaches, as well as interactive notebook‐driven training of students in quantum chemistry.This article is categorized under:Computer and Information Science > Computer Algorithms and ProgrammingElectronic Structure Theory > Ab Initio Electronic Structure MethodsSoftware > Quantum Chemistry The Gator program has been developed for computational spectroscopy and calculations of molecular properties using real and complex propagators at the correlated level of wave function theory. Currently, the focus lies on methods based on the algebraic diagrammatic construction (ADC) scheme up to the third order of perturbation theory. An auxiliary Fock matrix-driven implementation of the second-order ADC method for excitation energies has been realized with an underlying hybrid MPI/OpenMP parallelization scheme suitable for execution in high-performance computing cluster environments. With a modular and object-oriented program structure written in a Python/C++ layered fashion, Gator additionally enables time-efficient prototyping of novel scientific approaches, as well as interactive notebook-driven training of students in quantum chemistry. This article is categorized under: Computer and Information Science > Computer Algorithms and Programming Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry. The Gator program has been developed for computational spectroscopy and calculations of molecular properties using real and complex propagators at the correlated level of wave function theory. Currently, the focus lies on methods based on the algebraic diagrammatic construction (ADC) scheme up to the third order of perturbation theory. An auxiliary Fock matrix-driven implementation of the second-order ADC method for excitation energies has been realized with an underlying hybrid MPI/OpenMP parallelization scheme suitable for execution in high-performance computing cluster environments. With a modular and object-oriented program structure written in a Python/C++ layered fashion, Gator additionally enables time-efficient prototyping of novel scientific approaches, as well as interactive notebook-driven training of students in quantum chemistry. |
| Author | Scheurer, Maximilian Brand, Manuel Rinkevicius, Zilvinas Dreuw, Andreas Norman, Patrick Dempwolff, Adrian L. Fransson, Thomas Herbst, Michael F. Rehn, Dirk R. Brumboiu, Iulia E. Li, Xin |
| Author_xml | – sequence: 1 givenname: Dirk R. orcidid: 0000-0001-9463-3914 surname: Rehn fullname: Rehn, Dirk R. organization: Ruprecht‐Karls University – sequence: 2 givenname: Zilvinas orcidid: 0000-0003-2729-0290 surname: Rinkevicius fullname: Rinkevicius, Zilvinas organization: Kaunas University of Technology – sequence: 3 givenname: Michael F. orcidid: 0000-0003-0378-7921 surname: Herbst fullname: Herbst, Michael F. organization: CERMICS, École des Ponts ParisTech, 6 & 8 avenue Blaise Pascal, 77455 Marne‐la‐Vallée, France and Inria Paris – sequence: 4 givenname: Xin orcidid: 0000-0001-6508-8355 surname: Li fullname: Li, Xin organization: School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology – sequence: 5 givenname: Maximilian orcidid: 0000-0003-0592-3464 surname: Scheurer fullname: Scheurer, Maximilian organization: Ruprecht‐Karls University – sequence: 6 givenname: Manuel orcidid: 0000-0003-3992-043X surname: Brand fullname: Brand, Manuel organization: School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology – sequence: 7 givenname: Adrian L. orcidid: 0000-0003-1106-8716 surname: Dempwolff fullname: Dempwolff, Adrian L. organization: Ruprecht‐Karls University – sequence: 8 givenname: Iulia E. orcidid: 0000-0003-1671-8298 surname: Brumboiu fullname: Brumboiu, Iulia E. organization: Korea Advanced Institute for Science and Technology – sequence: 9 givenname: Thomas orcidid: 0000-0002-3770-9780 surname: Fransson fullname: Fransson, Thomas organization: Fysikum, Stockholm University, Albanova – sequence: 10 givenname: Andreas orcidid: 0000-0002-5862-5113 surname: Dreuw fullname: Dreuw, Andreas email: dreuw@uni-heidelberg.de organization: Ruprecht‐Karls University – sequence: 11 givenname: Patrick orcidid: 0000-0002-1191-4954 surname: Norman fullname: Norman, Patrick organization: School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-307209$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-193196$$DView record from Swedish Publication Index (Stockholms universitet) |
| BookMark | eNqFkctKAzEYhYMoWGsXvkHAleC0SeaSjLtStQoVBW8rCWkm06ZOJ2My09Kdj-Az-iTOtNKFoGaT8Oc7B_5zDsBubnIFwBFGXYwQ6S3l3HVxSNgOaGEaxh5iLNjdvmm0DzrOzVB9ghgTH7fAy1CUxp7BPrxblVOTf75_JFYvVA4LayZWzGFqLHSFkqU1TppiBZ2eV5kotckdrJzOJ1Aaa1U9UglcioWCaZXL9f8h2EtF5lTn-26Dx8uLh8GVN7odXg_6I08GiDJPsDAliEUoooSO2ZhhlQSCJikTYZDIRKCASp_FIY3HfhAFWEUEx0gglrJIkthvg9ONr1uqohrzwuq5sCtuhObn-qnPjZ1wV3Ec-ziOatz7H38tp9xHlKDG_njD15m8VcqVfGYqm9cbcRIyHDHfp2FNnWwoWSflrEq3vhjxph_e9MObfmq294OVulxnWlqhs78US52p1e_W_Hlwc79WfAHh1aYU |
| CitedBy_id | crossref_primary_10_1002_wcms_1675 crossref_primary_10_1021_acs_jchemed_5c00677 crossref_primary_10_1063_5_0058221 crossref_primary_10_1002_qua_70095 crossref_primary_10_1021_acs_jpca_5c04528 crossref_primary_10_1080_08927022_2022_2126865 crossref_primary_10_3390_pr11102897 crossref_primary_10_1021_acs_jchemed_2c01103 |
| Cites_doi | 10.1002/9781118794821 10.1002/wcms.1457 10.1063/1.1415081 10.1002/9783527636402.ch3 10.1021/acs.jctc.9b00758 10.1080/00268976.2014.952696 10.1080/00268976.2017.1333644 10.1039/c1cp21951k 10.1002/wcms.1462 10.1103/PhysRevA.26.2395 10.1063/1.464746 10.1080/00268976.2013.859313 10.1063/1.1568082 10.1002/cphc.200600064 10.1063/1.4892418 10.1002/wcms.1340 10.1109/MCSE.2011.37 10.1063/1.4921956 10.1021/acs.jctc.8b00576 10.1063/5.0013538 10.1063/1.5144298 10.1063/1.1752875 10.1016/B978-0-12-386013-2.00003-6 10.1063/1.4977039 10.1088/0953-4075/28/12/003 10.1002/jcc.23377 10.1002/cphc.201100200 10.1002/jcc.23703 10.1021/jp993806y 10.1021/ct5006888 10.1021/acs.jctc.8b00286 10.1002/wcms.1206 10.1063/1.2035589 10.1063/5.0006002 10.1063/1.4974841 10.1063/1.2107627 10.1063/1.438955 10.1016/j.cplett.2004.06.011 10.1002/wcms.1327 10.1002/9783527633272 10.1063/5.0006074 10.1109/MCSE.2007.55 10.1021/acs.chemrev.0c00700 10.1103/PhysRevA.22.206 10.1002/jcc.21367 10.1002/jcc.21224 10.1063/1.1606441 10.1038/nmeth.4638 10.1021/acs.chemrev.0c00006 10.1002/jcc.20289 10.1021/ct1003803 10.1063/1.1506918 10.1002/jcc.24713 10.1063/1.456153 10.1063/1.5044765 10.1063/1.464913 10.1063/1.466321 10.1016/0009-2614(95)00841-Q 10.1002/jcc.23354 10.1039/b508541a |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Wiley Periodicals LLC. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7TN 7UA C1K F1W H96 JQ2 L.G ADTPV AFDQA AOWAS D8T D8V ZZAVC ABAVF DG7 |
| DOI | 10.1002/wcms.1528 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Stockholms universitet full text SWEPUB Stockholms universitet |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1759-0884 |
| EndPage | n/a |
| ExternalDocumentID | oai_DiVA_org_su_193196 oai_DiVA_org_kth_307209 10_1002_wcms_1528 WCMS1528 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: GSC220 – fundername: European Research Council funderid: 810367 – fundername: Horizon 2020 Framework Programme funderid: 765739 – fundername: Knut och Alice Wallenbergs Stiftelse funderid: KAW‐2013.0020 – fundername: Vetenskapsrådet funderid: 2017‐06419; 2017‐00356; 2018‐4343 |
| GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION LH4 7QH 7TN 7UA C1K F1W H96 JQ2 L.G ADTPV AFDQA AOWAS D8T D8V ZZAVC ABAVF DG7 |
| ID | FETCH-LOGICAL-c4078-a85f208606727b8b81ed4a7df8a54dcda047c389579b34641e62190a08f86c293 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000629781400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1759-0876 1759-0884 |
| IngestDate | Tue Nov 04 16:29:56 EST 2025 Tue Nov 04 17:18:20 EST 2025 Fri Jul 25 10:45:06 EDT 2025 Sat Nov 29 02:23:38 EST 2025 Tue Nov 18 21:04:25 EST 2025 Wed Jan 22 16:28:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4078-a85f208606727b8b81ed4a7df8a54dcda047c389579b34641e62190a08f86c293 |
| Notes | Funding information Deutsche Forschungsgemeinschaft, Grant/Award Number: GSC220; Horizon 2020 Framework Programme, Grant/Award Number: 765739; Knut och Alice Wallenbergs Stiftelse, Grant/Award Number: KAW‐2013.0020; Vetenskapsrådet, Grant/Award Numbers: 2017‐06419, 2017‐00356, 2018‐4343; European Research Council, Grant/Award Number: 810367 Anna Krylov, Associate Editor Edited by ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1671-8298 0000-0001-9463-3914 0000-0002-1191-4954 0000-0003-0378-7921 0000-0002-5862-5113 0000-0003-3992-043X 0000-0003-0592-3464 0000-0003-1106-8716 0000-0003-2729-0290 0000-0001-6508-8355 0000-0002-3770-9780 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1528 |
| PQID | 2581683375 |
| PQPubID | 2034594 |
| PageCount | 12 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_su_193196 swepub_primary_oai_DiVA_org_kth_307209 proquest_journals_2581683375 crossref_primary_10_1002_wcms_1528 crossref_citationtrail_10_1002_wcms_1528 wiley_primary_10_1002_wcms_1528_WCMS1528 |
| PublicationCentury | 2000 |
| PublicationDate | November/December 2021 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November/December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
| PublicationYear | 2021 |
| Publisher | Wiley Periodicals, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Periodicals, Inc – name: Wiley Subscription Services, Inc |
| References | 2004; 120 2003; 119 2003; 118 2020; 120 2020; 121 2015; 142 2019; 15 2011; 61 2002; 117 2011; 13 2020; 10 2005; 26 2017; 115 1982; 26 2018; 8 1994; 100 2001 1995; 28 1980; 72 2017; 38 2007; 9 1995; 243 2010; 6 2014; 10 2010; 31 2015; 5 2011 2018; 149 2010 1980; 22 2006; 7 2014; 112 2009; 30 2020; 152 2015; 113 2020; 153 2005; 123 2000; 104 2013; 34 1993; 98 2004; 393 1989; 90 2019 2018 2005; 7 2017 2014; 35 2016 2014; 141 2017; 146 2001; 115 2018; 15 2018; 14 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_66_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_64_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_62_1 e_1_2_13_60_1 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_4_1 e_1_2_13_2_1 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_7_1 e_1_2_13_61_1 Holthausen M (e_1_2_13_6_1) 2001 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_58_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_52_1 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 e_1_2_13_28_1 |
| References_xml | – volume: 123 start-page: 194103 year: 2005 article-title: Nonlinear response theory with relaxation: the first‐order hyperpolarizability publication-title: J Chem Phys – volume: 61 year: 2011 – volume: 14 start-page: 4870 issue: 9 year: 2018 end-page: 4883 article-title: Polarizable embedding combined with the algebraic diagrammatic construction: tackling excited states in biomolecular systems publication-title: J Chem Theory Comput – year: 2001 – volume: 117 start-page: 6939 year: 2002 end-page: 6951 article-title: Transition moments and excited‐state first‐order properties in the coupled‐cluster model CC2 using the resolution‐of‐the‐identity approximation publication-title: J Chem Phys – volume: 35 start-page: 1900 year: 2014 end-page: 1915 article-title: Calculating core‐level excitations and X‐ray absorption spectra of medium‐sized closed‐shell molecules with the algebraic‐diagrammatic construction scheme for the polarization propagator publication-title: J Comput Chem – volume: 112 start-page: 774 year: 2014 end-page: 784 article-title: Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach of the polarisation propagator publication-title: Mol Phys – volume: 142 start-page: 224103 year: 2015 article-title: An atomic orbital‐based formulation of the complete active space self‐consistent field method on graphical processing units publication-title: J Chem Phys – volume: 152 start-page: 214115 issue: 21 year: 2020 article-title: Dalton project: a Python platform for molecular‐ and electronic‐structure simulations of complex systems publication-title: J Chem Phys – volume: 10 start-page: e1462 year: 2020 article-title: adcc: a versatile toolkit for rapid development of algebraic‐diagrammatic construction methods publication-title: WIREs Comput Mol Sci – volume: 13 start-page: 28 year: 2011 end-page: 51 article-title: Progress and challenges in the calculation of electronic excited states publication-title: Chem Phys Chem – year: 2018 – volume: 10 issue: 5 year: 2020 article-title: VeloxChem: a Python‐driven density‐functional theory program for spectroscopy simulations in high‐performance computing environments publication-title: WIREs Comput Mol Sci – volume: 34 start-page: 2293 year: 2013 end-page: 2309 article-title: New implementation of high‐level correlated methods using a general block‐tensor library for high‐performance electronic structure calculations publication-title: J Comput Chem – volume: 123 start-page: 124312 issue: 12 year: 2005 article-title: Complex polarization propagator method for calculation of dispersion coefficients of extended ‐conjugated systems: the C coefficients of polyacenes and C publication-title: J Chem Phys – volume: 30 start-page: 2157 issue: 13 year: 2009 end-page: 2164 article-title: PACKMOL: a package for building initial configurations for molecular dynamics simulations publication-title: J Comput Chem – volume: 243 start-page: 409 year: 1995 end-page: 418 article-title: The second‐order approximate coupled cluster singles and doubles model CC2 publication-title: Chem Phys Lett – volume: 6 start-page: 3721 issue: 12 year: 2010 end-page: 3734 article-title: Excited states in solution through polarizable embedding publication-title: J Chem Theory Comput – volume: 8 issue: 1 year: 2018 article-title: PySCF: the Python‐based simulations of chemistry framework publication-title: WIREs Comput Mol Sci – volume: 8 start-page: e1327 issue: 1 year: 2018 article-title: Software update: the ORCA program system, version 4.0 publication-title: WIREs Comput Mol Sci – volume: 26 start-page: 1781 issue: 16 year: 2005 end-page: 1802 article-title: Scalable molecular dynamics with NAMD publication-title: J Comput Chem – volume: 393 start-page: 51 issue: 1–3 year: 2004 end-page: 57 article-title: A new hybrid exchange–correlation functional using the coulomb‐attenuating method (CAM‐B3LYP) publication-title: Chem Phys Lett – volume: 7 start-page: 3297 year: 2005 end-page: 3305 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy publication-title: Phys Chem Chem Phys – volume: 118 start-page: 9167 issue: 20 year: 2003 end-page: 9174 article-title: Polarization propagator calculations of the polarizability tensor at imaginary frequencies and long‐range interactions for the noble gases and n‐alkanes publication-title: J Chem Phys – volume: 13 start-page: 20519 year: 2011 end-page: 20535 article-title: A perspective on nonresonant and resonant electronic response theory for time‐dependent molecular properties publication-title: Phys Chem Chem Phys – volume: 31 start-page: 671 issue: 4 year: 2010 end-page: 690 article-title: CHARMM general force field: a force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields publication-title: J Comput Chem – volume: 153 year: 2020 article-title: Quantifying the error of the core‐valence separation approximation publication-title: J Chem Phys – volume: 120 start-page: 11449 year: 2004 end-page: 11464 article-title: Intermediate state representation approach to physical properties of electronically excited molecules publication-title: J Chem Phys – volume: 115 start-page: 2315 year: 2017 end-page: 2372 article-title: Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 300 density functionals publication-title: Mol Phys – volume: 72 start-page: 650 year: 1980 end-page: 654 article-title: Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions publication-title: J Chem Phys – start-page: 29 year: 2011 end-page: 47 – volume: 121 start-page: 1203 year: 2020 end-page: 1231 article-title: Many‐body quantum chemistry on massively parallel computers publication-title: Chem Rev – year: 2019 – volume: 15 start-page: 6154 issue: 11 year: 2019 end-page: 6163 article-title: CPPE: an open‐source C++ and Python library for polarizable embedding publication-title: J Chem Theory Comput – volume: 149 start-page: 84106 issue: 8 year: 2018 article-title: Towards quantum‐chemical method development for arbitrary basis functions publication-title: J Chem Phys – volume: 5 start-page: 82 year: 2015 end-page: 95 article-title: The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states publication-title: WIREs Comput Mol Sci – volume: 115 start-page: 10323 year: 2001 end-page: 10334 article-title: Near‐resonant absorption in the time‐dependent self‐consistent field and multiconfigurational self‐consistent field approximations publication-title: J Chem Phys – volume: 28 start-page: 2299 year: 1995 end-page: 2324 article-title: An efficient polarization propagator approach to valence electron excitation spectra publication-title: J Phys B At Mol Opt Phys – volume: 104 start-page: 4723 year: 2000 end-page: 4734 article-title: Molecular design for organic nonlinear optics: Polarizability and hyperpolarizabilities of furan homologues investigated by ab initio molecular orbital method publication-title: J Phys Chem A – volume: 141 issue: 6 year: 2014 article-title: The third‐order algebraic diagrammatic construction method (ADC(3)) for the polarization propagator for closed‐shell molecules: efficient implementation and benchmarking publication-title: J Chem Phys – volume: 100 start-page: 4393 year: 1994 end-page: 4400 article-title: Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function publication-title: J Chem Phys – volume: 26 start-page: 2395 year: 1982 end-page: 3416 article-title: Beyond the random‐phase approximation: a new approximation scheme for the polarization propagator publication-title: Phys Rev A – year: 2016 – year: 2010 – volume: 13 start-page: 22 issue: 2 year: 2011 end-page: 30 article-title: The NumPy array: a structure for efficient numerical computation publication-title: Comput Sci Eng – volume: 7 start-page: 2259 year: 2006 end-page: 2274 article-title: Quantum chemical methods for the investigation of photo‐initiated processes in biological systems: theory and applications publication-title: Chem Phys Chem. – volume: 120 start-page: 9015 year: 2020 end-page: 9020 article-title: Editorial: modern architectures and their impact on electronic structure theory publication-title: Chem Rev – volume: 146 year: 2017 article-title: Static polarizabilities and C dispersion coefficients using the algebraic‐diagrammatic construction scheme for the complex polarization propagator publication-title: J Chem Phys – volume: 98 start-page: 7029 year: 1993 end-page: 7039 article-title: Equation of motion coupled‐cluster method: a systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties publication-title: J Chem Phys – volume: 34 start-page: 2135 issue: 25 year: 2013 end-page: 2145 article-title: CHARMM36 all‐atom additive protein force field: validation based on comparison to NMR data publication-title: J Comput Chem – volume: 113 start-page: 184 year: 2015 end-page: 215 article-title: Advance in molecular quantum chemistry contained in the Q‐Chem 4 program package publication-title: Mol Phys – volume: 152 start-page: 184108 year: 2020 article-title: PSI4 1.4: open‐source software for high‐throughput quantum chemistry publication-title: J Chem Phys – volume: 98 start-page: 5648 year: 1993 end-page: 5652 article-title: Density‐functional thermochemistry. III. The role of exact exchange publication-title: J Chem Phys – volume: 10 start-page: 4583 year: 2014 end-page: 4598 article-title: Calculating X‐ray absorption spectra of open‐shell molecules with the unrestricted algebraic‐diagrammatic construction scheme for the polarization propagator publication-title: J Chem Theory Comput – volume: 90 start-page: 1007 year: 1989 end-page: 1023 article-title: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen publication-title: J Chem Phys – volume: 9 start-page: 90 issue: 3 year: 2007 end-page: 95 article-title: Matplotlib: a 2D graphics environment publication-title: Comput Sci Eng – volume: 14 start-page: 3504 issue: 7 year: 2018 end-page: 3511 article-title: Psi4NumPy: an interactive quantum chemistry programming environment for reference implementations and rapid development publication-title: J Chem Theory Comput – volume: 146 year: 2017 article-title: Study of the electronic structure of short chain oligothiophenes publication-title: J Chem Phys – volume: 38 start-page: 842 year: 2017 end-page: 853 article-title: New algorithm for tensor contractions on multi‐core CPUs, GPUs, and accelerators enables CCSD and EOM‐CCSD calculations with over 1000 basis functions on a single compute node publication-title: J Comput Chem – year: 2017 – volume: 119 start-page: 8946 year: 2003 end-page: 8955 article-title: Core shell excitation of furan at the O1s and C1s edges: an experimental and ab initio study publication-title: J Chem Phys – volume: 15 start-page: 351 issue: 5 year: 2018 end-page: 354 article-title: NAMD goes quantum: an integrative suite for hybrid simulations publication-title: Nat Methods – volume: 153 year: 2020 article-title: Recent developments in the PySCF program package publication-title: J Chem Phys – volume: 22 start-page: 206 year: 1980 end-page: 222 article-title: Many‐body theory of core holes publication-title: Phys Rev A – ident: e_1_2_13_2_1 doi: 10.1002/9781118794821 – ident: e_1_2_13_27_1 doi: 10.1002/wcms.1457 – ident: e_1_2_13_34_1 doi: 10.1063/1.1415081 – ident: e_1_2_13_4_1 doi: 10.1002/9783527636402.ch3 – ident: e_1_2_13_43_1 doi: 10.1021/acs.jctc.9b00758 – ident: e_1_2_13_15_1 doi: 10.1080/00268976.2014.952696 – ident: e_1_2_13_7_1 doi: 10.1080/00268976.2017.1333644 – ident: e_1_2_13_38_1 doi: 10.1039/c1cp21951k – ident: e_1_2_13_13_1 doi: 10.1002/wcms.1462 – ident: e_1_2_13_9_1 doi: 10.1103/PhysRevA.26.2395 – ident: e_1_2_13_65_1 doi: 10.1063/1.464746 – ident: e_1_2_13_14_1 doi: 10.1080/00268976.2013.859313 – ident: e_1_2_13_62_1 – ident: e_1_2_13_35_1 doi: 10.1063/1.1568082 – ident: e_1_2_13_8_1 doi: 10.1002/cphc.200600064 – ident: e_1_2_13_11_1 doi: 10.1063/1.4892418 – ident: e_1_2_13_19_1 doi: 10.1002/wcms.1340 – ident: e_1_2_13_18_1 doi: 10.1109/MCSE.2011.37 – ident: e_1_2_13_25_1 doi: 10.1063/1.4921956 – ident: e_1_2_13_42_1 doi: 10.1021/acs.jctc.8b00576 – ident: e_1_2_13_53_1 doi: 10.1063/5.0013538 – ident: e_1_2_13_22_1 doi: 10.1063/1.5144298 – ident: e_1_2_13_63_1 doi: 10.1063/1.1752875 – ident: e_1_2_13_41_1 doi: 10.1016/B978-0-12-386013-2.00003-6 – ident: e_1_2_13_39_1 doi: 10.1063/1.4977039 – ident: e_1_2_13_10_1 doi: 10.1088/0953-4075/28/12/003 – ident: e_1_2_13_29_1 doi: 10.1002/jcc.23377 – ident: e_1_2_13_5_1 doi: 10.1002/cphc.201100200 – ident: e_1_2_13_32_1 doi: 10.1002/jcc.23703 – ident: e_1_2_13_30_1 – ident: e_1_2_13_28_1 – ident: e_1_2_13_52_1 doi: 10.1021/jp993806y – ident: e_1_2_13_33_1 doi: 10.1021/ct5006888 – ident: e_1_2_13_16_1 doi: 10.1021/acs.jctc.8b00286 – ident: e_1_2_13_44_1 – ident: e_1_2_13_12_1 doi: 10.1002/wcms.1206 – ident: e_1_2_13_37_1 doi: 10.1063/1.2035589 – ident: e_1_2_13_17_1 doi: 10.1063/5.0006002 – ident: e_1_2_13_50_1 doi: 10.1063/1.4974841 – ident: e_1_2_13_36_1 doi: 10.1063/1.2107627 – ident: e_1_2_13_46_1 doi: 10.1063/1.438955 – ident: e_1_2_13_54_1 doi: 10.1016/j.cplett.2004.06.011 – ident: e_1_2_13_56_1 doi: 10.1002/wcms.1327 – ident: e_1_2_13_3_1 doi: 10.1002/9783527633272 – ident: e_1_2_13_51_1 – ident: e_1_2_13_20_1 doi: 10.1063/5.0006074 – ident: e_1_2_13_45_1 doi: 10.1109/MCSE.2007.55 – ident: e_1_2_13_23_1 doi: 10.1021/acs.chemrev.0c00700 – ident: e_1_2_13_31_1 doi: 10.1103/PhysRevA.22.206 – ident: e_1_2_13_60_1 doi: 10.1002/jcc.21367 – ident: e_1_2_13_57_1 doi: 10.1002/jcc.21224 – ident: e_1_2_13_49_1 doi: 10.1063/1.1606441 – ident: e_1_2_13_61_1 doi: 10.1038/nmeth.4638 – ident: e_1_2_13_24_1 doi: 10.1021/acs.chemrev.0c00006 – ident: e_1_2_13_58_1 doi: 10.1002/jcc.20289 – ident: e_1_2_13_40_1 doi: 10.1021/ct1003803 – ident: e_1_2_13_26_1 doi: 10.1063/1.1506918 – volume-title: A chemist's guide to density functional theory year: 2001 ident: e_1_2_13_6_1 – ident: e_1_2_13_67_1 doi: 10.1002/jcc.24713 – ident: e_1_2_13_48_1 doi: 10.1063/1.456153 – ident: e_1_2_13_21_1 doi: 10.1063/1.5044765 – ident: e_1_2_13_47_1 doi: 10.1063/1.464913 – ident: e_1_2_13_66_1 doi: 10.1063/1.466321 – ident: e_1_2_13_64_1 doi: 10.1016/0009-2614(95)00841-Q – ident: e_1_2_13_59_1 doi: 10.1002/jcc.23354 – ident: e_1_2_13_55_1 doi: 10.1039/b508541a |
| SSID | ssj0000491231 |
| Score | 2.3780122 |
| Snippet | The Gator program has been developed for computational spectroscopy and calculations of molecular properties using real and complex propagators at the... |
| SourceID | swepub proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1528 |
| SubjectTerms | Ab initio electronic structure methods Algebra Algebraic diagrammatic constructions Algorithms Analytical methods Calculations Cluster computing Computation theory computational spectroscopy Computer applications Computer software Correlated wave functions Electronic structure electronic structure theory High level languages High-performance computing clusters Modular structures Molecular properties Object oriented programming Object-oriented program Parallel processing Perturbation techniques Perturbation theory propagator theory Prototyping Quantum chemistry response theory Spectroscopy Theories Training Wave functions |
| Title | Gator: A Python‐driven program for spectroscopy simulations using correlated wave functions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1528 https://www.proquest.com/docview/2581683375 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-307209 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-193196 |
| Volume | 11 |
| WOSCitedRecordID | wos000629781400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1759-0884 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491231 issn: 1759-0884 databaseCode: DRFUL dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFD5BMNEXBZWwiqQxanyZMNNppx152iysPgDZqCgvpum0U9gou2RngfDmT-A3-kvs6VyARI2Jb5OZ00nTyzlfL-f7AF5KmjortIi45jxiuUsjyfIsEqk1BrN8XBl4ZnfF_r48PMxHC7DV5sLU_BDdhhvOjOCvcYLrotq8Jg29MCcVqvfIO7CUJKlE3QbKRt0Gi4e-3iuHBZfgeYTUay2zUEw3u9K349ENkFkTh97GrCHoDB_-V3WX4UGDNUm_HhwrsFBOHsG9QSvx9hi-vsMl91vSJ6NL5BD4-ePKztD9kebaFvGQloRkTCS9nJ5ekmp80gh-VQTvzB8Rg_oe_lVpyYU-LwlGyvD9CRwMdz4N3keN3kJk8DQv0pI76pc44XS2kIVMSsu0sE5qzqyxOmbCeIDDRV6kLGNJmXl_F-tYOpkZjxtWYXEynZRrQHThI7_VRep0xpxmWifc2NzRxHnMVmQ9eNO2ujINGTlqYnxXNY0yVdheCturBy8609OageN3Rutt16lmElaKchQVSVPBe_C67s7uD8iqvT3-3FfT2ZH6Nj9W3tfROO_Bq78ZVmfKA17vtHz9Q2f_uUbqy2DvIz48_XfTZ3Cf4pWZkOq4Dovz2Vn5HO6a8_m4mm2E4b0BS9sfhge7vwCl-gMT |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFD5BNIEX8RpXUBujxpcJs5122iG-bFYR47LZRFReSNNpp7ABdsnOAuGNn-Bv5JfQ07koiRoT3yYzp5Oml3O-Xs73AbySNHFWaBFxzXnEMpdEkmVpJBJrDGb5uCLwzA7EcCh3d7PRArxrcmEqfoh2ww1nRvDXOMFxQ3r9J2vouTkuUb5H3oLbzEcZHOWUjdodFo99vVsOKy7Bswi51xpqoZiut6VvBqRfUGbFHHoTtIaos7nyf_W9B3drtEl61fC4DwvF5AEs9RuRt4ew9xEX3RukR0YXyCJwdfnDztABkvriFvGgloR0TKS9nJ5ckHJ8XEt-lQRvze8Tgwof_lVhybk-KwjGyvD9EXzd_LDT34pqxYXI4HlepCV31C9ywvlsLnPZLSzTwjqpObPG6pgJ4yEOF1mesJR1i9R7vFjH0snUeOTwGBYn00nxBIjOfey3Ok-cTpnTTOsuNzZztOs8asvTDrxtml2Zmo4cVTGOVEWkTBW2l8L26sDL1vSk4uD4ndFa03eqnoalohxlRZJE8A68qfqz_QPyar8ff-up6WxfHc4PlPd2NM468PpvhuWp8pDXuy1f_9Dbf66R-t7f_oIPT__d9AUsbe1sD9Tg0_DzKixTvEATEh_XYHE-Oy2ewR1zNh-Xs-dhrF8D4MkFXg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aHQJeuKMVBlgIEC_R0sSOHcRL1VJAlKoCBntBluPLqMbaquk27Y2fwG_kl-DjXGASICTeouQ4snw55_PlfB_AQ5GkznDFI6YYi2ju0kjQPIt4arTGLB9nA8_smE8mYm8vn27AsyYXpuKHaDfccGYEf40T3C6N2_nJGnqiD0uU7xHnYJOiiEwHNodvR7vjdo_Fo1_vmMOai7M8Qva1hlwoTnba8mdD0i84s-IOPQtbQ9wZXfm_Gl-FyzXeJP1qgFyDDTu_DhcHjczbDfj0ApfdT0mfTE-RR-D7129mhS6Q1Fe3iIe1JCRkIvHlYnlKytlhLfpVErw3v080anz4V9aQE3VsCUbL8P0m7I6evx-8jGrNhUjjiV6kBHOJX-aEE9pCFKJnDVXcOKEYNdqomHLtQQ7jeZHSjPZs5n1erGLhRKY9drgFnflibreAqMJHf6OK1KmMOkWV6jFtcpf0nMdtRdaFJ02zS10TkqMuxhdZUSknEttLYnt14UFruqxYOH5ntN30nawnYikThsIiacpZFx5X_dn-AZm1h7MPfblY7cuD9Wfp_V0S51149DfD8kh60Osdl69_6O0_10h-HLx5hw-3_930PlyYDkdy_Gry-g5cSvAGTch83IbOenVk78J5fbyelat79WD_AR9YBnQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gator%3A+A+Python%E2%80%90driven+program+for+spectroscopy+simulations+using+correlated+wave+functions&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Rehn%2C+Dirk+R&rft.au=Rinkevicius%2C+Zilvinas&rft.au=Herbst%2C+Michael+F&rft.au=Li%2C+Xin&rft.date=2021-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=11&rft.issue=6&rft.spage=e1528&rft_id=info:doi/10.1002%2Fwcms.1528&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |