Evaluating image quality measures to assess the impact of lossy data compression applied to climate simulation data
Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However, because lossy data compression does not exactly preserve the original data, its application to scientific data must be done judiciously. To th...
Uložené v:
| Vydané v: | Computer graphics forum Ročník 38; číslo 3; s. 517 - 528 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Blackwell Publishing Ltd
01.06.2019
|
| Predmet: | |
| ISSN: | 0167-7055, 1467-8659 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However, because lossy data compression does not exactly preserve the original data, its application to scientific data must be done judiciously. To this end, a collection of measures is being developed to evaluate various aspects of lossy compression quality on climate model output. Given the importance of data visualization to climate scientists interacting with model output, any suite of measures must include a means of assessing whether images generated from the compressed model data are noticeably different from images based on the original model data. Therefore, in this work we conduct a forced‐choice visual evaluation study with climate model data that surveyed more than one hundred participants with domain relevant expertise. In addition to the images created from unaltered climate model data, study images are generated from model data that is subjected to two different types of lossy compression approaches and multiple levels (amounts) of compression. Study participants indicate whether a visual difference can be seen, with respect to the reference image, due to lossy compression effects. We assess the relationship between the perceptual scores from the user study to a number of common (full reference) image quality assessment (IQA) measures, and use statistical models to suggest appropriate measures and thresholds for evaluating lossily compressed climate data. We find the structural similarity index (SSIM) to perform the best, and our findings indicate that the threshold required for climate model data is much higher than previous findings in the literature. |
|---|---|
| AbstractList | Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However, because lossy data compression does not exactly preserve the original data, its application to scientific data must be done judiciously. To this end, a collection of measures is being developed to evaluate various aspects of lossy compression quality on climate model output. Given the importance of data visualization to climate scientists interacting with model output, any suite of measures must include a means of assessing whether images generated from the compressed model data are noticeably different from images based on the original model data. Therefore, in this work we conduct a forced‐choice visual evaluation study with climate model data that surveyed more than one hundred participants with domain relevant expertise. In addition to the images created from unaltered climate model data, study images are generated from model data that is subjected to two different types of lossy compression approaches and multiple levels (amounts) of compression. Study participants indicate whether a visual difference can be seen, with respect to the reference image, due to lossy compression effects. We assess the relationship between the perceptual scores from the user study to a number of common (full reference) image quality assessment (IQA) measures, and use statistical models to suggest appropriate measures and thresholds for evaluating lossily compressed climate data. We find the structural similarity index (SSIM) to perform the best, and our findings indicate that the threshold required for climate model data is much higher than previous findings in the literature. |
| Author | Hammerling, D. M. Baker, A. H. Turton, T. L. |
| Author_xml | – sequence: 1 givenname: A. H. orcidid: 0000-0003-2436-7838 surname: Baker fullname: Baker, A. H. – sequence: 2 givenname: D. M. orcidid: 0000-0003-3583-3611 surname: Hammerling fullname: Hammerling, D. M. – sequence: 3 givenname: T. L. orcidid: 0000-0003-4345-7783 surname: Turton fullname: Turton, T. L. |
| BackLink | https://www.osti.gov/servlets/purl/1525806$$D View this record in Osti.gov |
| BookMark | eNp9kEFPAjEQhRuDiYAe_AeNnjwALd3t7h4NATQh8aLnppRZKCnbZdvV7L93AE8m2ksn02_e9L0B6VW-AkLuORtzPBOzLcdcZCy7In2eyGyUy7TokT7jWGcsTW_IIIQ9YyzJZNonYf6pXaujrbbUHvQW6LHVzsaOHkCHtoFAo6c6BAhY7QChWptIfUmdD6GjGx01Nf5QIxqsr6iua2dhcxozDiUj0GAPrcMd-HrCb8l1qV2Au597SD4W8_fZy2j1tnydPa9GJmFZNipSyGVWQC6E0bIwDICXIpeFLAXXa8EFgGBsw3lebEoDeSrWnE8l9kUBiRFD8nDR9SFaFYyNYHbGVxWYqHg6TXMmEXq8QHXjjy2EqPa-bSr8l5pOZZGcgsuRerpQpkHXDZSqbtBb0ynO1Cl4hcGrc_DITn6xuPnsPjbauv8mvqyD7m9pNVsuLhPfYF2XCA |
| CitedBy_id | crossref_primary_10_1038_s43588_021_00156_2 crossref_primary_10_1109_TVCG_2023_3332843 crossref_primary_10_1145_3733104 crossref_primary_10_1016_j_future_2024_05_022 crossref_primary_10_1109_ACCESS_2023_3243466 crossref_primary_10_1109_TPDS_2022_3154096 crossref_primary_10_1109_TPDS_2022_3194695 crossref_primary_10_1109_MCSE_2021_3119509 |
| Cites_doi | 10.1007/s10278-012-9538-7 10.1002/2014EO090001 10.1175/BAMS-D-13-00255.1 10.1007/s10278-012-9542-y 10.1109/TVCG.2014.2346458 10.1007/300530-014-0446-1 10.5194/gmd-9-3199-2016 10.1109/TIP.2006.881959 10.1109/TIP.2013.2293423 10.1145/2503210.2503283 10.1007/s13244-011-0071-x 10.1145/2600212.2600217 10.1109/TVCG.2018.2876539 10.1109/TIP.2003.819861 10.1001/archopht.1993.01090050073032 10.1109/TVCG.2006.143 10.1002/2014EO490002 10.1117/12.334677 10.5194/gmd-9-4381-2016 10.1117/12.2043196 10.1117/1.3267105 10.1109/MSP.2008.930649 10.1109/MSP.2011.942295 10.2352/ISSN.2470-1173.2016.16.HVEI-103 10.1109/IPDPS.2017.115 10.1145/1753326.1753357 10.1109/TIP.2011.2109730 10.1109/MSP.2010.936781 10.1117/12.845292 10.1175/BAMS-D-12-00121.1 10.1007/978-3-642-38750-0_26 10.1109/TVCG.2018.2855742 10.1007/978-3-319-67630-2_3 10.1016/j.bspc.2016.02.006 10.1109/TIP.2005.859378 10.1109/LDAV.2011.6092314 10.1109/IPDPS.2016.11 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2019 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2019 The Eurographics Association and John Wiley & Sons Ltd. |
| CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| CorporateAuthor_xml | – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D OIOZB OTOTI |
| DOI | 10.1111/cgf.13707 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 528 |
| ExternalDocumentID | 1525806 10_1111_cgf_13707 CGF13707 |
| Genre | article |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD JQ2 L7M L~C L~D AAJUZ ABHUG ABWRO ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
| ID | FETCH-LOGICAL-c4077-95e8679e833ca69c0ee1f38696f31ab313ee300d1189dfce853b112613e39e4c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481468200041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Mon Feb 19 05:01:10 EST 2024 Sun Nov 09 08:25:34 EST 2025 Sat Nov 29 03:41:17 EST 2025 Tue Nov 18 22:46:20 EST 2025 Wed Jan 22 16:39:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4077-95e8679e833ca69c0ee1f38696f31ab313ee300d1189dfce853b112613e39e4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 work performed elsewhere 89233218CNA000001 LA-UR-19-22420 |
| ORCID | 0000-0003-3583-3611 0000-0003-4345-7783 0000-0003-2436-7838 0000000343457783 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1525806 |
| PQID | 2269401678 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | osti_scitechconnect_1525806 proquest_journals_2269401678 crossref_primary_10_1111_cgf_13707 crossref_citationtrail_10_1111_cgf_13707 wiley_primary_10_1111_cgf_13707_CGF13707 |
| PublicationCentury | 2000 |
| PublicationDate | June 2019 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: United States |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2019 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2013; 26 2011; 2 2012 2006; 12 2006; 57 2010; 19 2011 2010 2015; 96 2006; 15 1998 2003 2002 2014; 23 2009; 26 2014; 20 2012; 2 2010; 27 2016; 3 2013; 94 2004; 13 2011; 20 2018 2017 2016 2014 2012; 26 2013 2011; 28 2014; 95 2016; 27 2016; 9 1989 1993; 111 2016; 22 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 Koff D. (e_1_2_8_22_2) 2006; 57 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_43_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_36_2 Kuhn M. (e_1_2_8_19_2) 2016; 3 Kumar R. (e_1_2_8_21_2) 2012; 2 e_1_2_8_30_2 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_42_2 e_1_2_8_44_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_14_2 e_1_2_8_37_2 Cummingham D. W. (e_1_2_8_8_2) 2012 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_50_2 |
| References_xml | – year: 2011 – volume: 28 start-page: 137 issue: 6 year: 2011 end-page: 142 article-title: Applications of objective image quality assessment methods [applications corner] publication-title: IEEE Signal Processing Magazine – start-page: 31 year: 2011 end-page: 38 – volume: 27 start-page: 125 issue: 4 year: 2010 end-page: 130 article-title: Compression of medical sensor data publication-title: IEEE Signal Processing Magazine – start-page: 1 year: 2018 end-page: 1 – volume: 96 year: 2015 article-title: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability publication-title: Bulletin of the American Meteorological Society – volume: 23 start-page: 684 issue: 2 year: 2014 end-page: 695 article-title: Gradient magnitude similarity deviation: A highly efficient perceptual image quality index publication-title: IEEE Transactions on Image Processing – volume: 26 start-page: 427 issue: 3 year: 2012 end-page: 439 article-title: Quantitative visually lossless compression ratio determination of JPEG2000 in digitized mammograms publication-title: Journal of digital imaging – volume: 19 year: 2010 article-title: Most apparent distortion: Full‐reference image quality assessment and the role of strategy publication-title: Journal of Electronic Imaging – year: 1989 – volume: 9 start-page: 3199 issue: 9 year: 2016 end-page: 3211 article-title: Bit grooming: statistically accurate precision‐preserving quantization with compression, evaluated in the netcdf operators (nco, v4.4.8+) publication-title: Geoscientific Model Development – volume: 27 start-page: 145 year: 2016 end-page: 154 article-title: Review of medical image quality assessment publication-title: Biomedical signal processing and control – volume: 2 start-page: 137 issue: 11 year: 2012 end-page: 144 article-title: Analysis of various quality metrics for medical image processing publication-title: International Journal of Advanced Research in Computer Science and Software Engineering – start-page: 1129 year: 2017 end-page: 1139 – volume: 15 start-page: 3440 year: 2006 end-page: 3451 article-title: A statistical evaluation of recent full reference image quality assessment algorithms publication-title: IEEE Transactions on Image Processing – volume: 22 start-page: 213 issue: 2 year: 2016 end-page: 227 article-title: Mean opinion score (MoS) revisited: methods and applications, limitations and alternatives publication-title: Multimedia Systems – volume: 26 start-page: 440 year: 2013 end-page: 446 article-title: Evaluation of irreversible compression ratios for medical images thin slice CT and update of Canadian Association of Radiologists (CAR) guidelines publication-title: Journal of Digital Imaging – year: 2014 – volume: 20 start-page: 2674 issue: 12 year: 2014 end-page: 2683 article-title: Fixed‐rate compressed floating‐point arrays publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 26 start-page: 98 issue: 1 year: 2009 end-page: 117 article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures publication-title: IEEE Signal Processing Magazine – volume: 26 start-page: 427 issue: 3 year: 2012 end-page: 39 article-title: Quantitative visually lossless compression ratio determination of JPEG2000 in digitized mammograms publication-title: Journal of digital imaging – volume: 12 start-page: 1245 year: 2006 end-page: 1250 article-title: Fast and efficient compression of floating‐point data publication-title: IEEE Transactions on Visualization and Computer Graphics – year: 2012 – volume: 3 start-page: 75 issue: 1 year: 2016 end-page: 94 article-title: Data compression for climate data publication-title: Supercomputing frontiers and innovations – volume: 2 start-page: 103 year: 2011 end-page: 115 article-title: Usability of irreversible image compression in radiological imaging. a position paper by the european society of radiology (esr) publication-title: Insights into Imaging – start-page: 294 year: 1998 end-page: 305 – start-page: 1398 year: 2003 end-page: 1402 – volume: 20 start-page: 2378 issue: 8 year: 2011 end-page: 2386 article-title: FSIM: A feature similarity index for image quality assessment publication-title: IEEE Transactions on Image Processing – volume: 15 start-page: 430 issue: 2 year: 2006 end-page: 444 article-title: Image information and visual quality publication-title: IEEE Transactions on Image Processing – volume: 95 start-page: 77 issue: 9 year: 2014 end-page: 78 article-title: Climate model intercomparisons: Preparing for the next phase publication-title: Eos, Transactions American Geophysical Union – start-page: 203 year: 2014 end-page: 214 – start-page: 30 year: 2017 end-page: 42 – year: 2002 – start-page: 453 year: 2014 end-page: 455 – start-page: 730 year: 2016 end-page: 739 – volume: 9 issue: 12 year: 2016 article-title: Evaluating lossy data compression on climate simulation data within a large ensemble publication-title: Geoscientific Model Development – volume: 111 start-page: 639 issue: 5 year: 1993 end-page: 641 article-title: Comparison of the Farnsworth‐Munsell 100‐hue, the Farnsworth D‐15, and the Anthony D‐15 desaturated color tests publication-title: Archives of Ophthalmology – volume: 94 start-page: 1339 year: 2013 end-page: 1360 article-title: The Community Earth System Model: a framework for collaborative research publication-title: Bulletin of the American Meteorological Society – start-page: 75270 year: 2010 – year: 2017 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Transactions on Image Processing – volume: 57 year: 2006 article-title: An overview of digital compression of medical images: can we use lossy image compression in radiology? publication-title: Canadian Association of Radiologists Journal – start-page: 203 year: 2010 end-page: 212 – start-page: 1 year: 2016 end-page: 6 – start-page: 343 year: 2013 end-page: 356 – year: 2013 – ident: e_1_2_8_11_2 doi: 10.1007/s10278-012-9538-7 – ident: e_1_2_8_30_2 doi: 10.1002/2014EO090001 – ident: e_1_2_8_18_2 doi: 10.1175/BAMS-D-13-00255.1 – ident: e_1_2_8_17_2 doi: 10.1007/s10278-012-9542-y – ident: e_1_2_8_27_2 doi: 10.1109/TVCG.2014.2346458 – ident: e_1_2_8_37_2 doi: 10.1007/300530-014-0446-1 – ident: e_1_2_8_49_2 doi: 10.5194/gmd-9-3199-2016 – ident: e_1_2_8_36_2 doi: 10.1109/TIP.2006.881959 – ident: e_1_2_8_48_2 doi: 10.1109/TIP.2013.2293423 – ident: e_1_2_8_31_2 – volume: 2 start-page: 137 issue: 11 year: 2012 ident: e_1_2_8_21_2 article-title: Analysis of various quality metrics for medical image processing publication-title: International Journal of Advanced Research in Computer Science and Software Engineering – ident: e_1_2_8_6_2 – ident: e_1_2_8_28_2 doi: 10.1145/2503210.2503283 – ident: e_1_2_8_35_2 doi: 10.1007/s13244-011-0071-x – ident: e_1_2_8_3_2 doi: 10.1145/2600212.2600217 – ident: e_1_2_8_10_2 doi: 10.1109/TVCG.2018.2876539 – ident: e_1_2_8_43_2 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_8_5_2 doi: 10.1001/archopht.1993.01090050073032 – ident: e_1_2_8_26_2 doi: 10.1109/TVCG.2006.143 – ident: e_1_2_8_33_2 doi: 10.1002/2014EO490002 – ident: e_1_2_8_16_2 doi: 10.1117/12.334677 – ident: e_1_2_8_2_2 doi: 10.5194/gmd-9-4381-2016 – ident: e_1_2_8_23_2 doi: 10.1117/12.2043196 – ident: e_1_2_8_25_2 doi: 10.1117/1.3267105 – ident: e_1_2_8_42_2 doi: 10.1109/MSP.2008.930649 – volume: 57 year: 2006 ident: e_1_2_8_22_2 article-title: An overview of digital compression of medical images: can we use lossy image compression in radiology? publication-title: Canadian Association of Radiologists Journal – ident: e_1_2_8_41_2 doi: 10.1109/MSP.2011.942295 – ident: e_1_2_8_32_2 – ident: e_1_2_8_12_2 doi: 10.1007/s10278-012-9538-7 – ident: e_1_2_8_24_2 doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-103 – ident: e_1_2_8_39_2 doi: 10.1109/IPDPS.2017.115 – ident: e_1_2_8_38_2 – ident: e_1_2_8_46_2 – ident: e_1_2_8_13_2 doi: 10.1145/1753326.1753357 – ident: e_1_2_8_29_2 – ident: e_1_2_8_50_2 doi: 10.1109/TIP.2011.2109730 – ident: e_1_2_8_44_2 doi: 10.1109/MSP.2010.936781 – ident: e_1_2_8_20_2 doi: 10.1117/12.845292 – ident: e_1_2_8_14_2 doi: 10.1175/BAMS-D-12-00121.1 – ident: e_1_2_8_15_2 doi: 10.1007/978-3-642-38750-0_26 – volume: 3 start-page: 75 issue: 1 year: 2016 ident: e_1_2_8_19_2 article-title: Data compression for climate data publication-title: Supercomputing frontiers and innovations – ident: e_1_2_8_47_2 doi: 10.1109/TVCG.2018.2855742 – volume-title: Experimental Design – From User Studies to Psychophysics year: 2012 ident: e_1_2_8_8_2 – ident: e_1_2_8_4_2 doi: 10.1007/978-3-319-67630-2_3 – ident: e_1_2_8_40_2 – ident: e_1_2_8_7_2 doi: 10.1016/j.bspc.2016.02.006 – ident: e_1_2_8_34_2 doi: 10.1109/TIP.2005.859378 – ident: e_1_2_8_45_2 doi: 10.1109/LDAV.2011.6092314 – ident: e_1_2_8_9_2 doi: 10.1109/IPDPS.2016.11 |
| SSID | ssj0004765 |
| Score | 2.4195447 |
| Snippet | Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However,... |
| SourceID | osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 517 |
| SubjectTerms | Categories and Subject Descriptors (according to ACM CCS) Climate models Compression tests Computer simulation Data compression data compression, scientific visualization, climate science, visual evaluation E.4 [Coding and Information Theory]: Data Compaction and Compression H.1.2 [User/Machine Systems]: Human factors I.5.2 [Design Methodology]: Feature evaluation Image compression Image quality Quality assessment Scientific visualization Software reviews Statistical models |
| Title | Evaluating image quality measures to assess the impact of lossy data compression applied to climate simulation data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13707 https://www.proquest.com/docview/2269401678 https://www.osti.gov/servlets/purl/1525806 |
| Volume | 38 |
| WOSCitedRecordID | wos000481468200041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5k80Ef_C3OqQTxwZdKu8w0xSeZmz6IiCjsrSRpOgZbJ2sV_O-9a9o5QUHwrQ9JSHN3yXfJ3XcAZzxJDNfolqSiq70u70hPqyDwQpEGCCjQpdBl1ZL78OFBDofR4wpc1bkwjh9iceFGllHu12TgSudLRm5G6UXAQ8okb3ZQby8b0Lx5Grzcf6VFhuKypvYm0piKWIgCeRadvx1HjRma1TeouQxYyxNnsPmvuW7BRgU02bXTjG1YsdkOrC_RD-5C3q-ovrMRG09xY2EuxfKDTd3NYc6KGVPlszBDoMhcSiWbpWyCP_PBKLyUUVC6C6bNmHKYlrqZCQ5ZWJaPp1WFsLL5HrwM-s-9O68qwuAZ9PXoedcSJ5-VnBslIuNbG6RcikikPFCaB9xa7vsJOipRklIRVK4pLYluVyPbNXwfGtksswfALKIpxYVMqOi6FlrKQCmV6C5uAug1pS04r2URm4qhnAplTOLaU8F1jMt1bMHpoumro-X4qVGbBBojliBCXEORQ6aIqeKT9EULjmo5x5Xd5nGHEntJYSROppTo78PHvdtB-XH496ZtWEPEFblYsyNoFPM3ewyr5r0Y5_OTSoE_Ac_780k |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GJqgPfovzM4gPvlTWpXYt-CLqnDiHiIJvIUnTMdg6Wauw_967pp0TFATf-pCENHeX_C65-x3ACY8izRW6JbHvKcfjzcBR0nWdlh-7CCjQpVB51ZJuq9cLXl_DxwpclLkwlh9iduFGlpHv12TgdCE9Z-W6H5-5vEWp5DUP1Qj1u3b91H7pfuVFtvzzktubWGMKZiGK5Jl1_nYeVcdoV9-w5jxizY-c9ur_JrsGKwXUZJdWN9ahYpINWJ4jINyE9KYg-076bDDCrYXZJMspG9m7w5RlYybzh2GGUJHZpEo2jtkQ_2bKKMCUUVi6DadNmLSolrrpIQ6ZGZYORkWNsLz5Fry0b56vOk5RhsHR6O3RA68hVj4TcK6lH-qGMW6Myx36MXel4i43hjcaEboqYRRTGVSuKDGJ7ldD42m-DdVknJgdYAbxlOR-EFHZdeWrIHCllJHycBtAvymuw2kpDKELjnIqlTEUpa-C6yjydazD8azpmyXm-KnRHklUIJogSlxNsUM6E1TzKWj4ddgvBS0Ky01Fk1J7SWMCnEwu0t-HF1e37fxj9-9Nj2Cx8_zQFd273v0eLCH-Cm3k2T5Us8m7OYAF_ZEN0slhoc2fYEv3OQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RSxwxEB7klNI-VK0Vr3fVIH3wZeXWbHNZ6EtRV8XjEKngW0iyiRzc7Ym7Cv77zmx2rycoFHzbh0nIZjLJN8nMNwA_eJ5bbtAt8SIxUcKPZGR0HEdD4WMEFOhSmLpqyWg4Hsvb2_RqBX61uTCBH2Jx4UaWUe_XZODuPvdLVm7v_GHMh5RKvppQEZkOrJ5cZzejf3mRQ_Gz5fYm1piGWYgieRaNX5xHnTna1QusuYxY6yMnW3_fYDfgcwM12e-wNjZhxRVf4NMSAeEWlKcN2XdxxyYz3FpYSLJ8ZrNwd1iyas50_TDMECqykFTJ5p5N8W-eGQWYMgpLD-G0BdMB1VIzO8UuK8fKyaypEVaLf4Wb7PTP8XnUlGGILHp79MDriJXPSc6tFqkdOBd7LkUqPI-14TF3jg8GOboqae6pDCo3lJhE96upSyzfhk4xL9wOMId4SnMhcyq7boSRMtZa5ybBbQD9Jt-Fg1YZyjYc5VQqY6paXwXnUdXz2IX9heh9IOZ4TahHGlWIJogS11LskK0U1XySA9GFfqto1VhuqY4otZdWjMTB1Cp9u3t1fJbVH9_-X3QPPlydZGp0Mb7swUeEX2kIPOtDp3p4dN9hzT5Vk_Jht1nMfwH4Yfa0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Evaluating+image+quality+measures+to+assess+the+impact+of+lossy+data+compression+applied+to+climate+simulation+data&rft.au=Baker%2C+Allison+H.&rft.au=Hammerling%2C+Dorit+M.&rft.au=Turton%2C+Terece+L.&rft.date=2019-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=3&rft_id=info:doi/10.1111%2Fcgf.13707&rft.externalDocID=1525806 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |