Evaluating image quality measures to assess the impact of lossy data compression applied to climate simulation data

Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However, because lossy data compression does not exactly preserve the original data, its application to scientific data must be done judiciously. To th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 38; číslo 3; s. 517 - 528
Hlavní autori: Baker, A. H., Hammerling, D. M., Turton, T. L.
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.06.2019
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However, because lossy data compression does not exactly preserve the original data, its application to scientific data must be done judiciously. To this end, a collection of measures is being developed to evaluate various aspects of lossy compression quality on climate model output. Given the importance of data visualization to climate scientists interacting with model output, any suite of measures must include a means of assessing whether images generated from the compressed model data are noticeably different from images based on the original model data. Therefore, in this work we conduct a forced‐choice visual evaluation study with climate model data that surveyed more than one hundred participants with domain relevant expertise. In addition to the images created from unaltered climate model data, study images are generated from model data that is subjected to two different types of lossy compression approaches and multiple levels (amounts) of compression. Study participants indicate whether a visual difference can be seen, with respect to the reference image, due to lossy compression effects. We assess the relationship between the perceptual scores from the user study to a number of common (full reference) image quality assessment (IQA) measures, and use statistical models to suggest appropriate measures and thresholds for evaluating lossily compressed climate data. We find the structural similarity index (SSIM) to perform the best, and our findings indicate that the threshold required for climate model data is much higher than previous findings in the literature.
AbstractList Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However, because lossy data compression does not exactly preserve the original data, its application to scientific data must be done judiciously. To this end, a collection of measures is being developed to evaluate various aspects of lossy compression quality on climate model output. Given the importance of data visualization to climate scientists interacting with model output, any suite of measures must include a means of assessing whether images generated from the compressed model data are noticeably different from images based on the original model data. Therefore, in this work we conduct a forced‐choice visual evaluation study with climate model data that surveyed more than one hundred participants with domain relevant expertise. In addition to the images created from unaltered climate model data, study images are generated from model data that is subjected to two different types of lossy compression approaches and multiple levels (amounts) of compression. Study participants indicate whether a visual difference can be seen, with respect to the reference image, due to lossy compression effects. We assess the relationship between the perceptual scores from the user study to a number of common (full reference) image quality assessment (IQA) measures, and use statistical models to suggest appropriate measures and thresholds for evaluating lossily compressed climate data. We find the structural similarity index (SSIM) to perform the best, and our findings indicate that the threshold required for climate model data is much higher than previous findings in the literature.
Author Hammerling, D. M.
Baker, A. H.
Turton, T. L.
Author_xml – sequence: 1
  givenname: A. H.
  orcidid: 0000-0003-2436-7838
  surname: Baker
  fullname: Baker, A. H.
– sequence: 2
  givenname: D. M.
  orcidid: 0000-0003-3583-3611
  surname: Hammerling
  fullname: Hammerling, D. M.
– sequence: 3
  givenname: T. L.
  orcidid: 0000-0003-4345-7783
  surname: Turton
  fullname: Turton, T. L.
BackLink https://www.osti.gov/servlets/purl/1525806$$D View this record in Osti.gov
BookMark eNp9kEFPAjEQhRuDiYAe_AeNnjwALd3t7h4NATQh8aLnppRZKCnbZdvV7L93AE8m2ksn02_e9L0B6VW-AkLuORtzPBOzLcdcZCy7In2eyGyUy7TokT7jWGcsTW_IIIQ9YyzJZNonYf6pXaujrbbUHvQW6LHVzsaOHkCHtoFAo6c6BAhY7QChWptIfUmdD6GjGx01Nf5QIxqsr6iua2dhcxozDiUj0GAPrcMd-HrCb8l1qV2Au597SD4W8_fZy2j1tnydPa9GJmFZNipSyGVWQC6E0bIwDICXIpeFLAXXa8EFgGBsw3lebEoDeSrWnE8l9kUBiRFD8nDR9SFaFYyNYHbGVxWYqHg6TXMmEXq8QHXjjy2EqPa-bSr8l5pOZZGcgsuRerpQpkHXDZSqbtBb0ynO1Cl4hcGrc_DITn6xuPnsPjbauv8mvqyD7m9pNVsuLhPfYF2XCA
CitedBy_id crossref_primary_10_1038_s43588_021_00156_2
crossref_primary_10_1109_TVCG_2023_3332843
crossref_primary_10_1145_3733104
crossref_primary_10_1016_j_future_2024_05_022
crossref_primary_10_1109_ACCESS_2023_3243466
crossref_primary_10_1109_TPDS_2022_3154096
crossref_primary_10_1109_TPDS_2022_3194695
crossref_primary_10_1109_MCSE_2021_3119509
Cites_doi 10.1007/s10278-012-9538-7
10.1002/2014EO090001
10.1175/BAMS-D-13-00255.1
10.1007/s10278-012-9542-y
10.1109/TVCG.2014.2346458
10.1007/300530-014-0446-1
10.5194/gmd-9-3199-2016
10.1109/TIP.2006.881959
10.1109/TIP.2013.2293423
10.1145/2503210.2503283
10.1007/s13244-011-0071-x
10.1145/2600212.2600217
10.1109/TVCG.2018.2876539
10.1109/TIP.2003.819861
10.1001/archopht.1993.01090050073032
10.1109/TVCG.2006.143
10.1002/2014EO490002
10.1117/12.334677
10.5194/gmd-9-4381-2016
10.1117/12.2043196
10.1117/1.3267105
10.1109/MSP.2008.930649
10.1109/MSP.2011.942295
10.2352/ISSN.2470-1173.2016.16.HVEI-103
10.1109/IPDPS.2017.115
10.1145/1753326.1753357
10.1109/TIP.2011.2109730
10.1109/MSP.2010.936781
10.1117/12.845292
10.1175/BAMS-D-12-00121.1
10.1007/978-3-642-38750-0_26
10.1109/TVCG.2018.2855742
10.1007/978-3-319-67630-2_3
10.1016/j.bspc.2016.02.006
10.1109/TIP.2005.859378
10.1109/LDAV.2011.6092314
10.1109/IPDPS.2016.11
ContentType Journal Article
Conference Proceeding
Copyright 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2019 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2019 The Eurographics Association and John Wiley & Sons Ltd.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
DOI 10.1111/cgf.13707
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 528
ExternalDocumentID 1525806
10_1111_cgf_13707
CGF13707
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
AAJUZ
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c4077-95e8679e833ca69c0ee1f38696f31ab313ee300d1189dfce853b112613e39e4c3
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481468200041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Mon Feb 19 05:01:10 EST 2024
Sun Nov 09 08:25:34 EST 2025
Sat Nov 29 03:41:17 EST 2025
Tue Nov 18 22:46:20 EST 2025
Wed Jan 22 16:39:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4077-95e8679e833ca69c0ee1f38696f31ab313ee300d1189dfce853b112613e39e4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
work performed elsewhere
89233218CNA000001
LA-UR-19-22420
ORCID 0000-0003-3583-3611
0000-0003-4345-7783
0000-0003-2436-7838
0000000343457783
OpenAccessLink https://www.osti.gov/servlets/purl/1525806
PQID 2269401678
PQPubID 30877
PageCount 12
ParticipantIDs osti_scitechconnect_1525806
proquest_journals_2269401678
crossref_primary_10_1111_cgf_13707
crossref_citationtrail_10_1111_cgf_13707
wiley_primary_10_1111_cgf_13707_CGF13707
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United States
PublicationTitle Computer graphics forum
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2013; 26
2011; 2
2012
2006; 12
2006; 57
2010; 19
2011
2010
2015; 96
2006; 15
1998
2003
2002
2014; 23
2009; 26
2014; 20
2012; 2
2010; 27
2016; 3
2013; 94
2004; 13
2011; 20
2018
2017
2016
2014
2012; 26
2013
2011; 28
2014; 95
2016; 27
2016; 9
1989
1993; 111
2016; 22
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
Koff D. (e_1_2_8_22_2) 2006; 57
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_36_2
Kuhn M. (e_1_2_8_19_2) 2016; 3
Kumar R. (e_1_2_8_21_2) 2012; 2
e_1_2_8_30_2
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_42_2
e_1_2_8_44_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_2
e_1_2_8_37_2
Cummingham D. W. (e_1_2_8_8_2) 2012
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_50_2
References_xml – year: 2011
– volume: 28
  start-page: 137
  issue: 6
  year: 2011
  end-page: 142
  article-title: Applications of objective image quality assessment methods [applications corner]
  publication-title: IEEE Signal Processing Magazine
– start-page: 31
  year: 2011
  end-page: 38
– volume: 27
  start-page: 125
  issue: 4
  year: 2010
  end-page: 130
  article-title: Compression of medical sensor data
  publication-title: IEEE Signal Processing Magazine
– start-page: 1
  year: 2018
  end-page: 1
– volume: 96
  year: 2015
  article-title: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability
  publication-title: Bulletin of the American Meteorological Society
– volume: 23
  start-page: 684
  issue: 2
  year: 2014
  end-page: 695
  article-title: Gradient magnitude similarity deviation: A highly efficient perceptual image quality index
  publication-title: IEEE Transactions on Image Processing
– volume: 26
  start-page: 427
  issue: 3
  year: 2012
  end-page: 439
  article-title: Quantitative visually lossless compression ratio determination of JPEG2000 in digitized mammograms
  publication-title: Journal of digital imaging
– volume: 19
  year: 2010
  article-title: Most apparent distortion: Full‐reference image quality assessment and the role of strategy
  publication-title: Journal of Electronic Imaging
– year: 1989
– volume: 9
  start-page: 3199
  issue: 9
  year: 2016
  end-page: 3211
  article-title: Bit grooming: statistically accurate precision‐preserving quantization with compression, evaluated in the netcdf operators (nco, v4.4.8+)
  publication-title: Geoscientific Model Development
– volume: 27
  start-page: 145
  year: 2016
  end-page: 154
  article-title: Review of medical image quality assessment
  publication-title: Biomedical signal processing and control
– volume: 2
  start-page: 137
  issue: 11
  year: 2012
  end-page: 144
  article-title: Analysis of various quality metrics for medical image processing
  publication-title: International Journal of Advanced Research in Computer Science and Software Engineering
– start-page: 1129
  year: 2017
  end-page: 1139
– volume: 15
  start-page: 3440
  year: 2006
  end-page: 3451
  article-title: A statistical evaluation of recent full reference image quality assessment algorithms
  publication-title: IEEE Transactions on Image Processing
– volume: 22
  start-page: 213
  issue: 2
  year: 2016
  end-page: 227
  article-title: Mean opinion score (MoS) revisited: methods and applications, limitations and alternatives
  publication-title: Multimedia Systems
– volume: 26
  start-page: 440
  year: 2013
  end-page: 446
  article-title: Evaluation of irreversible compression ratios for medical images thin slice CT and update of Canadian Association of Radiologists (CAR) guidelines
  publication-title: Journal of Digital Imaging
– year: 2014
– volume: 20
  start-page: 2674
  issue: 12
  year: 2014
  end-page: 2683
  article-title: Fixed‐rate compressed floating‐point arrays
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 26
  start-page: 98
  issue: 1
  year: 2009
  end-page: 117
  article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Processing Magazine
– volume: 26
  start-page: 427
  issue: 3
  year: 2012
  end-page: 39
  article-title: Quantitative visually lossless compression ratio determination of JPEG2000 in digitized mammograms
  publication-title: Journal of digital imaging
– volume: 12
  start-page: 1245
  year: 2006
  end-page: 1250
  article-title: Fast and efficient compression of floating‐point data
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2012
– volume: 3
  start-page: 75
  issue: 1
  year: 2016
  end-page: 94
  article-title: Data compression for climate data
  publication-title: Supercomputing frontiers and innovations
– volume: 2
  start-page: 103
  year: 2011
  end-page: 115
  article-title: Usability of irreversible image compression in radiological imaging. a position paper by the european society of radiology (esr)
  publication-title: Insights into Imaging
– start-page: 294
  year: 1998
  end-page: 305
– start-page: 1398
  year: 2003
  end-page: 1402
– volume: 20
  start-page: 2378
  issue: 8
  year: 2011
  end-page: 2386
  article-title: FSIM: A feature similarity index for image quality assessment
  publication-title: IEEE Transactions on Image Processing
– volume: 15
  start-page: 430
  issue: 2
  year: 2006
  end-page: 444
  article-title: Image information and visual quality
  publication-title: IEEE Transactions on Image Processing
– volume: 95
  start-page: 77
  issue: 9
  year: 2014
  end-page: 78
  article-title: Climate model intercomparisons: Preparing for the next phase
  publication-title: Eos, Transactions American Geophysical Union
– start-page: 203
  year: 2014
  end-page: 214
– start-page: 30
  year: 2017
  end-page: 42
– year: 2002
– start-page: 453
  year: 2014
  end-page: 455
– start-page: 730
  year: 2016
  end-page: 739
– volume: 9
  issue: 12
  year: 2016
  article-title: Evaluating lossy data compression on climate simulation data within a large ensemble
  publication-title: Geoscientific Model Development
– volume: 111
  start-page: 639
  issue: 5
  year: 1993
  end-page: 641
  article-title: Comparison of the Farnsworth‐Munsell 100‐hue, the Farnsworth D‐15, and the Anthony D‐15 desaturated color tests
  publication-title: Archives of Ophthalmology
– volume: 94
  start-page: 1339
  year: 2013
  end-page: 1360
  article-title: The Community Earth System Model: a framework for collaborative research
  publication-title: Bulletin of the American Meteorological Society
– start-page: 75270
  year: 2010
– year: 2017
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– volume: 57
  year: 2006
  article-title: An overview of digital compression of medical images: can we use lossy image compression in radiology?
  publication-title: Canadian Association of Radiologists Journal
– start-page: 203
  year: 2010
  end-page: 212
– start-page: 1
  year: 2016
  end-page: 6
– start-page: 343
  year: 2013
  end-page: 356
– year: 2013
– ident: e_1_2_8_11_2
  doi: 10.1007/s10278-012-9538-7
– ident: e_1_2_8_30_2
  doi: 10.1002/2014EO090001
– ident: e_1_2_8_18_2
  doi: 10.1175/BAMS-D-13-00255.1
– ident: e_1_2_8_17_2
  doi: 10.1007/s10278-012-9542-y
– ident: e_1_2_8_27_2
  doi: 10.1109/TVCG.2014.2346458
– ident: e_1_2_8_37_2
  doi: 10.1007/300530-014-0446-1
– ident: e_1_2_8_49_2
  doi: 10.5194/gmd-9-3199-2016
– ident: e_1_2_8_36_2
  doi: 10.1109/TIP.2006.881959
– ident: e_1_2_8_48_2
  doi: 10.1109/TIP.2013.2293423
– ident: e_1_2_8_31_2
– volume: 2
  start-page: 137
  issue: 11
  year: 2012
  ident: e_1_2_8_21_2
  article-title: Analysis of various quality metrics for medical image processing
  publication-title: International Journal of Advanced Research in Computer Science and Software Engineering
– ident: e_1_2_8_6_2
– ident: e_1_2_8_28_2
  doi: 10.1145/2503210.2503283
– ident: e_1_2_8_35_2
  doi: 10.1007/s13244-011-0071-x
– ident: e_1_2_8_3_2
  doi: 10.1145/2600212.2600217
– ident: e_1_2_8_10_2
  doi: 10.1109/TVCG.2018.2876539
– ident: e_1_2_8_43_2
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_8_5_2
  doi: 10.1001/archopht.1993.01090050073032
– ident: e_1_2_8_26_2
  doi: 10.1109/TVCG.2006.143
– ident: e_1_2_8_33_2
  doi: 10.1002/2014EO490002
– ident: e_1_2_8_16_2
  doi: 10.1117/12.334677
– ident: e_1_2_8_2_2
  doi: 10.5194/gmd-9-4381-2016
– ident: e_1_2_8_23_2
  doi: 10.1117/12.2043196
– ident: e_1_2_8_25_2
  doi: 10.1117/1.3267105
– ident: e_1_2_8_42_2
  doi: 10.1109/MSP.2008.930649
– volume: 57
  year: 2006
  ident: e_1_2_8_22_2
  article-title: An overview of digital compression of medical images: can we use lossy image compression in radiology?
  publication-title: Canadian Association of Radiologists Journal
– ident: e_1_2_8_41_2
  doi: 10.1109/MSP.2011.942295
– ident: e_1_2_8_32_2
– ident: e_1_2_8_12_2
  doi: 10.1007/s10278-012-9538-7
– ident: e_1_2_8_24_2
  doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-103
– ident: e_1_2_8_39_2
  doi: 10.1109/IPDPS.2017.115
– ident: e_1_2_8_38_2
– ident: e_1_2_8_46_2
– ident: e_1_2_8_13_2
  doi: 10.1145/1753326.1753357
– ident: e_1_2_8_29_2
– ident: e_1_2_8_50_2
  doi: 10.1109/TIP.2011.2109730
– ident: e_1_2_8_44_2
  doi: 10.1109/MSP.2010.936781
– ident: e_1_2_8_20_2
  doi: 10.1117/12.845292
– ident: e_1_2_8_14_2
  doi: 10.1175/BAMS-D-12-00121.1
– ident: e_1_2_8_15_2
  doi: 10.1007/978-3-642-38750-0_26
– volume: 3
  start-page: 75
  issue: 1
  year: 2016
  ident: e_1_2_8_19_2
  article-title: Data compression for climate data
  publication-title: Supercomputing frontiers and innovations
– ident: e_1_2_8_47_2
  doi: 10.1109/TVCG.2018.2855742
– volume-title: Experimental Design – From User Studies to Psychophysics
  year: 2012
  ident: e_1_2_8_8_2
– ident: e_1_2_8_4_2
  doi: 10.1007/978-3-319-67630-2_3
– ident: e_1_2_8_40_2
– ident: e_1_2_8_7_2
  doi: 10.1016/j.bspc.2016.02.006
– ident: e_1_2_8_34_2
  doi: 10.1109/TIP.2005.859378
– ident: e_1_2_8_45_2
  doi: 10.1109/LDAV.2011.6092314
– ident: e_1_2_8_9_2
  doi: 10.1109/IPDPS.2016.11
SSID ssj0004765
Score 2.4195447
Snippet Applying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However,...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 517
SubjectTerms Categories and Subject Descriptors (according to ACM CCS)
Climate models
Compression tests
Computer simulation
Data compression
data compression, scientific visualization, climate science, visual evaluation
E.4 [Coding and Information Theory]: Data Compaction and Compression
H.1.2 [User/Machine Systems]: Human factors
I.5.2 [Design Methodology]: Feature evaluation
Image compression
Image quality
Quality assessment
Scientific visualization
Software reviews
Statistical models
Title Evaluating image quality measures to assess the impact of lossy data compression applied to climate simulation data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13707
https://www.proquest.com/docview/2269401678
https://www.osti.gov/servlets/purl/1525806
Volume 38
WOSCitedRecordID wos000481468200041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5k80Ef_C3OqQTxwZdKu8w0xSeZmz6IiCjsrSRpOgZbJ2sV_O-9a9o5QUHwrQ9JSHN3yXfJ3XcAZzxJDNfolqSiq70u70hPqyDwQpEGCCjQpdBl1ZL78OFBDofR4wpc1bkwjh9iceFGllHu12TgSudLRm5G6UXAQ8okb3ZQby8b0Lx5Grzcf6VFhuKypvYm0piKWIgCeRadvx1HjRma1TeouQxYyxNnsPmvuW7BRgU02bXTjG1YsdkOrC_RD-5C3q-ovrMRG09xY2EuxfKDTd3NYc6KGVPlszBDoMhcSiWbpWyCP_PBKLyUUVC6C6bNmHKYlrqZCQ5ZWJaPp1WFsLL5HrwM-s-9O68qwuAZ9PXoedcSJ5-VnBslIuNbG6RcikikPFCaB9xa7vsJOipRklIRVK4pLYluVyPbNXwfGtksswfALKIpxYVMqOi6FlrKQCmV6C5uAug1pS04r2URm4qhnAplTOLaU8F1jMt1bMHpoumro-X4qVGbBBojliBCXEORQ6aIqeKT9EULjmo5x5Xd5nGHEntJYSROppTo78PHvdtB-XH496ZtWEPEFblYsyNoFPM3ewyr5r0Y5_OTSoE_Ac_780k
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GJqgPfovzM4gPvlTWpXYt-CLqnDiHiIJvIUnTMdg6Wauw_967pp0TFATf-pCENHeX_C65-x3ACY8izRW6JbHvKcfjzcBR0nWdlh-7CCjQpVB51ZJuq9cLXl_DxwpclLkwlh9iduFGlpHv12TgdCE9Z-W6H5-5vEWp5DUP1Qj1u3b91H7pfuVFtvzzktubWGMKZiGK5Jl1_nYeVcdoV9-w5jxizY-c9ur_JrsGKwXUZJdWN9ahYpINWJ4jINyE9KYg-076bDDCrYXZJMspG9m7w5RlYybzh2GGUJHZpEo2jtkQ_2bKKMCUUVi6DadNmLSolrrpIQ6ZGZYORkWNsLz5Fry0b56vOk5RhsHR6O3RA68hVj4TcK6lH-qGMW6Myx36MXel4i43hjcaEboqYRRTGVSuKDGJ7ldD42m-DdVknJgdYAbxlOR-EFHZdeWrIHCllJHycBtAvymuw2kpDKELjnIqlTEUpa-C6yjydazD8azpmyXm-KnRHklUIJogSlxNsUM6E1TzKWj4ddgvBS0Ky01Fk1J7SWMCnEwu0t-HF1e37fxj9-9Nj2Cx8_zQFd273v0eLCH-Cm3k2T5Us8m7OYAF_ZEN0slhoc2fYEv3OQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RSxwxEB7klNI-VK0Vr3fVIH3wZeXWbHNZ6EtRV8XjEKngW0iyiRzc7Ym7Cv77zmx2rycoFHzbh0nIZjLJN8nMNwA_eJ5bbtAt8SIxUcKPZGR0HEdD4WMEFOhSmLpqyWg4Hsvb2_RqBX61uTCBH2Jx4UaWUe_XZODuPvdLVm7v_GHMh5RKvppQEZkOrJ5cZzejf3mRQ_Gz5fYm1piGWYgieRaNX5xHnTna1QusuYxY6yMnW3_fYDfgcwM12e-wNjZhxRVf4NMSAeEWlKcN2XdxxyYz3FpYSLJ8ZrNwd1iyas50_TDMECqykFTJ5p5N8W-eGQWYMgpLD-G0BdMB1VIzO8UuK8fKyaypEVaLf4Wb7PTP8XnUlGGILHp79MDriJXPSc6tFqkdOBd7LkUqPI-14TF3jg8GOboqae6pDCo3lJhE96upSyzfhk4xL9wOMId4SnMhcyq7boSRMtZa5ybBbQD9Jt-Fg1YZyjYc5VQqY6paXwXnUdXz2IX9heh9IOZ4TahHGlWIJogS11LskK0U1XySA9GFfqto1VhuqY4otZdWjMTB1Cp9u3t1fJbVH9_-X3QPPlydZGp0Mb7swUeEX2kIPOtDp3p4dN9hzT5Vk_Jht1nMfwH4Yfa0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Evaluating+image+quality+measures+to+assess+the+impact+of+lossy+data+compression+applied+to+climate+simulation+data&rft.au=Baker%2C+Allison+H.&rft.au=Hammerling%2C+Dorit+M.&rft.au=Turton%2C+Terece+L.&rft.date=2019-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=3&rft_id=info:doi/10.1111%2Fcgf.13707&rft.externalDocID=1525806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon