Computational fluid dynamics simulation and performance optimization of an electrical vehicle Air-conditioning system
In vehicles, air conditioning tends to offer efficient thermal conditioning and air circulation inside cabin for passenger comfort from different climate variation. The working performance of air conditioning system in vehicles is an essential factor for thermal comfort and driving safety of the pas...
Uložené v:
| Vydané v: | Alexandria engineering journal Ročník 61; číslo 1; s. 315 - 328 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.01.2022
Elsevier |
| Predmet: | |
| ISSN: | 1110-0168 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In vehicles, air conditioning tends to offer efficient thermal conditioning and air circulation inside cabin for passenger comfort from different climate variation. The working performance of air conditioning system in vehicles is an essential factor for thermal comfort and driving safety of the passenger compartment of vehicles. Therefore, it is of great significance to construct a numerical simulation model for theoretical analysis and performance evaluation of vehicle air conditioning system. In current research, the air conditioning system of an electric vehicle is taken as the research subject. Internal flow field characteristics of air conditioning system is investigated by Computational Fluid Dynamics (CFD). Results show that the air flow in air-conditioning system is relatively smooth, and the velocity distribution in the front windshield A area and the driver's field of vision of the left and right windows is not ideal when the defrosting-demisting mode is on; the velocity and air quantity distribution of the two outlets in the middle air duct are not uniform under blowing mode. In view of the uneven distribution of velocity and air quantity, the corresponding optimization scheme is proposed. After optimization, the cell relative velocity of the front windshield is significantly improved, and velocity distribution of the side window glass is slightly increased and the defrosting-demisting performance meets the vehicle defrosting requirements of national standard; after optimization, the air quantity distribution of the air ducts at blowing mode is more uniform, which is conducive to the comfort of the passenger compartment. |
|---|---|
| AbstractList | In vehicles, air conditioning tends to offer efficient thermal conditioning and air circulation inside cabin for passenger comfort from different climate variation. The working performance of air conditioning system in vehicles is an essential factor for thermal comfort and driving safety of the passenger compartment of vehicles. Therefore, it is of great significance to construct a numerical simulation model for theoretical analysis and performance evaluation of vehicle air conditioning system. In current research, the air conditioning system of an electric vehicle is taken as the research subject. Internal flow field characteristics of air conditioning system is investigated by Computational Fluid Dynamics (CFD). Results show that the air flow in air-conditioning system is relatively smooth, and the velocity distribution in the front windshield A area and the driver's field of vision of the left and right windows is not ideal when the defrosting-demisting mode is on; the velocity and air quantity distribution of the two outlets in the middle air duct are not uniform under blowing mode. In view of the uneven distribution of velocity and air quantity, the corresponding optimization scheme is proposed. After optimization, the cell relative velocity of the front windshield is significantly improved, and velocity distribution of the side window glass is slightly increased and the defrosting-demisting performance meets the vehicle defrosting requirements of national standard; after optimization, the air quantity distribution of the air ducts at blowing mode is more uniform, which is conducive to the comfort of the passenger compartment. |
| Author | Tan, Libin Yuan, Yuejin |
| Author_xml | – sequence: 1 givenname: Libin surname: Tan fullname: Tan, Libin email: bs1905005@sust.edu.cn organization: College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Weiyangdaxueyuan district of Xi’an, 710021, China – sequence: 2 givenname: Yuejin surname: Yuan fullname: Yuan, Yuejin email: yuanyj@sust.edu.cn organization: College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Weiyangdaxueyuan district of Xi’an, 710021, China |
| BookMark | eNp9kcFO5SAYhVlooqM-gDteoBUKlDazMjfjaGIyG10TCj_6N225gV6TO08_XDuzmYVsSDh8JyfnfCNnS1yAkFvOas54ezfWFsa6YQ2vmaoZ42fkknPOqiJ2F-Qm55GVo3Qv-_aSHHZx3h9Wu2Jc7ETDdEBP_XGxM7pMM86H6VOjdvF0DynENNvFAY37FWf8vYkxFJ3CBG5N6IrPB7yjm4DeY6pcXDyevuHyRvMxrzBfk_Ngpww3f-8r8vrw42X3WD3_-vm0u3-unGTtWoUgGiY71w7Csq7T3mvmuG0E1zpI4dt20NoqP4gAvfDd0CmmXON6qb3kshFX5Gnz9dGOZp9wtulookXz-RDTm7FpPSU13oJTfaOU74XsJB-8CD0TAF0Q2g9t8dKbl0sx5wTBONx6W5PFyXBmTgOY0ZQBzGkAw5QpAxSS_0f-S_IV831joNTzgZBMdgileI-ptFzy4xf0H1CEpJo |
| CitedBy_id | crossref_primary_10_3390_pr12071495 crossref_primary_10_1007_s12206_022_0645_1 crossref_primary_10_1109_ACCESS_2025_3582081 crossref_primary_10_1007_s10973_024_13715_2 crossref_primary_10_1016_j_energy_2025_137984 crossref_primary_10_1016_j_apenergy_2025_125673 crossref_primary_10_3390_fluids7070226 crossref_primary_10_1177_09544070241306826 crossref_primary_10_3390_en18020437 crossref_primary_10_3390_fluids10060146 crossref_primary_10_1016_j_applthermaleng_2022_119594 crossref_primary_10_1016_j_applthermaleng_2024_123286 crossref_primary_10_3390_en16207154 crossref_primary_10_1016_j_est_2024_114662 crossref_primary_10_1016_j_enbenv_2023_04_005 crossref_primary_10_3390_en16124693 crossref_primary_10_3390_en17092224 crossref_primary_10_1007_s12008_022_01015_8 crossref_primary_10_1016_j_etran_2025_100423 crossref_primary_10_3390_app14156406 crossref_primary_10_1016_j_applthermaleng_2023_121564 crossref_primary_10_1016_j_applthermaleng_2024_124142 crossref_primary_10_3390_math11030784 |
| Cites_doi | 10.1504/IJVD.2010.029641 10.1016/j.applthermaleng.2008.10.006 10.2298/TSCI120623150S 10.4271/02-11-01-0002 10.1016/j.ijheatmasstransfer.2019.119083 10.4271/2013-01-0859 10.1016/j.applthermaleng.2017.11.086 10.2507/IJSIMM13(1)4.253 10.1016/j.applthermaleng.2019.114609 10.1016/j.applthermaleng.2014.05.074 10.1016/j.vacuum.2015.09.016 10.4271/2005-01-3476 10.1016/j.applthermaleng.2008.10.005 10.1177/0954407014532805 10.1007/s00484-009-0211-x 10.1007/s12239-008-0053-2 10.1016/j.apenergy.2014.07.089 10.1016/j.jallcom.2018.09.380 10.1016/j.applthermaleng.2018.03.099 10.1007/s11664-016-5089-x 10.1007/s12274-014-0696-4 10.1177/0954407019827691 10.1016/j.applthermaleng.2018.02.054 |
| ContentType | Journal Article |
| Copyright | 2021 THE AUTHORS |
| Copyright_xml | – notice: 2021 THE AUTHORS |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.aej.2021.05.001 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 328 |
| ExternalDocumentID | oai_doaj_org_article_daec59255d934841bd3f903ee8f37db6 10_1016_j_aej_2021_05_001 S1110016821003422 |
| GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
| ID | FETCH-LOGICAL-c406t-ff32048c6b3a0887dd70c1a23177f43d66b77a5db3fe93d8b8505c2c947d41423 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709484000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-0168 |
| IngestDate | Fri Oct 03 12:53:04 EDT 2025 Wed Oct 29 21:24:04 EDT 2025 Tue Nov 18 22:38:13 EST 2025 Wed May 17 00:06:52 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Numerical simulation Flow field analysis Air-conditioning system Defrosting-demisting mode Optimization Face blowing mode |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-ff32048c6b3a0887dd70c1a23177f43d66b77a5db3fe93d8b8505c2c947d41423 |
| OpenAccessLink | https://doaj.org/article/daec59255d934841bd3f903ee8f37db6 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_daec59255d934841bd3f903ee8f37db6 crossref_citationtrail_10_1016_j_aej_2021_05_001 crossref_primary_10_1016_j_aej_2021_05_001 elsevier_sciencedirect_doi_10_1016_j_aej_2021_05_001 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Wan, Deng, Su (b0065) 2017; 46 Zvar, Lorenz, Butala (b0045) 2014; 13 Chua S. N. D., Chan B. K. , S. F. Lim. Experimental and simulation study of thermal accumulation in an enclosed vehicle. P I MECH ENG D-J AUT, 2019, 233: 1–9. ElDegwy, Khalil (b0090) 2018 Wang, Zhao, Liu (b0050) 2018; 35 Zhu, Su, Gao (b0140) 2020; 38 Jokar, Hosni, Eckels (b0110) 2005–01-3476. Ibrahim, Mehta (b0130) 2018; 11 Mao, Wang, Li (b0025) 2018; 137 Oh, Ahn, Kim (b0105) 2014; 133 Yuan, Tan, Xu (b0135) 2015; 122 Link, Pohlman (b0055) 2018; 11 Grundstein, Meentemeyer, Dowd (b0005) 2009; 53 Ji, Kim, Yang (b0150) 2014; 228 Lim, Han, Lee (b0020) 2020; 165 Zhang, Uddin, Robinson (b0095) 2018; 130 Warey, Kaushik, Khalighi (b0120) 2020; 148 Singh, Abbassi (b0100) 2018; 135 Lee S.M., Lee J.H., BAK S., et al Hybrid windshield-glass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nano wires, and an over- coating layer. Nano Res , 2015, 8 (6) , pp. 1882-1892. Gokhan, Muhsin (b0015) 2013; 17 Kim, Lim, Yeon (b0060) 2019; 774 Lan, Xiao, Srinivasan (b0115) 2013–01-0859. Hariharan, Sanjana, Saravanan (b0040) 2019 Zhang, Dai, Xu (b0075) 2009; 29 Gokhan, Muhsin (b0010) 2010; 52 Zhang, Dai, Xu (b0070) 2009; 29 Danca, Bode, Nastase (b0080) 2018; 32 Torregrosa-Jaime, Bjurling, Corberán (b0030) 2015; 75 Chien, Jang, Chen (b0035) 2008; 9 Wang, Wang (b0125) 2018; 35 Lan (10.1016/j.aej.2021.05.001_b0115) 2013 Zhu (10.1016/j.aej.2021.05.001_b0140) 2020; 38 Ibrahim (10.1016/j.aej.2021.05.001_b0130) 2018; 11 Ji (10.1016/j.aej.2021.05.001_b0150) 2014; 228 Wan (10.1016/j.aej.2021.05.001_b0065) 2017; 46 Zhang (10.1016/j.aej.2021.05.001_b0095) 2018; 130 Grundstein (10.1016/j.aej.2021.05.001_b0005) 2009; 53 Wang (10.1016/j.aej.2021.05.001_b0050) 2018; 35 10.1016/j.aej.2021.05.001_b0145 Chien (10.1016/j.aej.2021.05.001_b0035) 2008; 9 10.1016/j.aej.2021.05.001_b0085 Gokhan (10.1016/j.aej.2021.05.001_b0015) 2013; 17 Warey (10.1016/j.aej.2021.05.001_b0120) 2020; 148 Gokhan (10.1016/j.aej.2021.05.001_b0010) 2010; 52 Link (10.1016/j.aej.2021.05.001_b0055) 2018; 11 Zhang (10.1016/j.aej.2021.05.001_b0070) 2009; 29 Zhang (10.1016/j.aej.2021.05.001_b0075) 2009; 29 Wang (10.1016/j.aej.2021.05.001_b0125) 2018; 35 Torregrosa-Jaime (10.1016/j.aej.2021.05.001_b0030) 2015; 75 Danca (10.1016/j.aej.2021.05.001_b0080) 2018; 32 Singh (10.1016/j.aej.2021.05.001_b0100) 2018; 135 ElDegwy (10.1016/j.aej.2021.05.001_b0090) 2018 Yuan (10.1016/j.aej.2021.05.001_b0135) 2015; 122 Zvar (10.1016/j.aej.2021.05.001_b0045) 2014; 13 Oh (10.1016/j.aej.2021.05.001_b0105) 2014; 133 Jokar (10.1016/j.aej.2021.05.001_b0110) 2005 Hariharan (10.1016/j.aej.2021.05.001_b0040) 2019 Kim (10.1016/j.aej.2021.05.001_b0060) 2019; 774 Mao (10.1016/j.aej.2021.05.001_b0025) 2018; 137 Lim (10.1016/j.aej.2021.05.001_b0020) 2020; 165 |
| References_xml | – volume: 32 year: 2018 ident: b0080 article-title: CFD simulation of a cabin thermal environment with and without human body-Thermal comfort evaluation publication-title: E3S Web Conferences – reference: Lee S.M., Lee J.H., BAK S., et al Hybrid windshield-glass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nano wires, and an over- coating layer. Nano Res , 2015, 8 (6) , pp. 1882-1892. – volume: 9 start-page: 437 year: 2008 end-page: 445 ident: b0035 article-title: 3-D numerical and experimental analysisfor airflow within a passenger compartment publication-title: Int J Auto Technol. – volume: 29 start-page: 2022 year: 2009 end-page: 2027 ident: b0070 article-title: Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part I: Test/numerical model and validation publication-title: Appl. Therm. Eng – volume: 53 start-page: 255 year: 2009 end-page: 261 ident: b0005 article-title: Maximum vehicle cabin temperatures under different meteorological conditions publication-title: Int. J. Biometeorol. – volume: 135 start-page: 406 year: 2018 end-page: 417 ident: b0100 article-title: 1D/3D Transient HVAC Thermal Modeling of an Off-Highway Machinery Cabin using CFD-ANN Hybrid Method publication-title: Appl. Therm. Eng. – reference: Chua S. N. D., Chan B. K. , S. F. Lim. Experimental and simulation study of thermal accumulation in an enclosed vehicle. P I MECH ENG D-J AUT, 2019, 233: 1–9. – volume: 133 start-page: 14 year: 2014 end-page: 21 ident: b0105 article-title: Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system publication-title: Appl. Energ. – volume: 148 year: 2020 ident: b0120 article-title: Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results publication-title: Int. J. Heat Mass Trans. – volume: 52 start-page: 144 year: 2010 end-page: 159 ident: b0010 article-title: Transient numerical analysis of airflow and heat transfer in a vehicle cabin during heating period publication-title: Int. J. Veh. Des. – volume: 122 start-page: 168 year: 2015 end-page: 178 ident: b0135 article-title: Three-dimensional CFD modeling and simulation on the performance of steam ejector heat pump for dryer section of the paper machine publication-title: Vacuum – year: 2019 ident: b0040 article-title: CFD studies for energy conservation in the HVAC system of a hatchback model passenger car publication-title: Energy Sour. Part A – volume: 29 start-page: 2028 year: 2009 end-page: 2036 ident: b0075 article-title: Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part II: Simulation results and discussion publication-title: Appl. Therm. Eng – volume: 11 start-page: 141 year: 2018 end-page: 150 ident: b0130 article-title: An Investigation of Air Flow and Thermal Comfort of Modified Conventional Car Cabin using Computational Fluid Dynamics publication-title: J. Appl. Fluid Mech. – volume: 46 start-page: 2990 year: 2017 end-page: 2998 ident: b0065 article-title: Optimization of a Localized Air Conditioning System Using Thermoelectric Coolers for Commercial Vehicles publication-title: J. Electr. Mater. – volume: 774 start-page: 1092 year: 2019 end-page: 1101 ident: b0060 article-title: Effective deicing of vehicle windows and thermal response of asymmetric multilayered transparent-film heaters publication-title: J. Alloy Compd. – volume: 165 year: 2020 ident: b0020 article-title: Design optimization of bare tube heat exchanger for the application to mobile air conditioning systems publication-title: Appl. Therm. Eng. – volume: 38 start-page: 33 year: 2020 end-page: 39 ident: b0140 article-title: Air Flow Distribution Research on Heat Mode of Automotive HVAC Module publication-title: Light Industry Machinery – volume: 11 start-page: 17 year: 2018 end-page: 30 ident: b0055 article-title: CFD Windshield Deicing Simulations for Commercial Vehicle Applications publication-title: SAE Int. J. Commer. Veh. – volume: 17 start-page: 397 year: 2013 end-page: 406 ident: b0015 article-title: Investigation of transient cooling of an automobile cabin with a virtual manikin under solar radiation publication-title: Therm. Sci. – volume: 130 start-page: 1328 year: 2018 end-page: 1340 ident: b0095 article-title: Full vehicle CFD investigations on the influence of front-end configuration on radiator performance and cooling drag publication-title: Appl. Therm. Eng. – volume: 13 start-page: 42 year: 2014 end-page: 53 ident: b0045 article-title: Adiabatic flow simulation in an vehicle passenger compartment publication-title: Int. J. Sim. Model – volume: 35 start-page: 50 year: 2018 end-page: 53 ident: b0050 article-title: Based on CFD analysis and optimization of air conditioning ducts publication-title: J. Mach. Des. – volume: 228 start-page: 1468 year: 2014 end-page: 1479 ident: b0150 article-title: Study of thermal phenomena in the cabin of a passenger vehicle using finite element analysis: human comfort and system performance publication-title: P I Mech. Eng. D-J. Aut. – volume: 75 start-page: 45 year: 2015 end-page: 53 ident: b0030 article-title: Transient thermal model of a vehicle's cabin validated under variable ambient conditions publication-title: Appl. Therm. Eng. – volume: 35 start-page: 72 year: 2018 end-page: 76 ident: b0125 article-title: Analysis and Optimization for Defrost Performance of Automobile Air-Condition Based on CFD publication-title: J. Jilin Inst. Chem. Technol. – year: 2013–01-0859. ident: b0115 article-title: The Impact of Vehicle Front End Design on AC Performance publication-title: SAE Technical Paper Series – year: 2005–01-3476. ident: b0110 article-title: New Generation Integrated Automotive Thermal System publication-title: SAE Technical Paper Series – volume: 137 start-page: 356 year: 2018 end-page: 367 ident: b0025 article-title: Experimental and numerical study of air flow and temperature variations in an electric vehicle cabin during cooling and heating publication-title: Appl. Therm. Eng. – year: 2018 ident: b0090 article-title: Passengers, thermal comfort in private car cabin in hot climate publication-title: AIAA Propulsion and Energy Forum – volume: 52 start-page: 144 year: 2010 ident: 10.1016/j.aej.2021.05.001_b0010 article-title: Transient numerical analysis of airflow and heat transfer in a vehicle cabin during heating period publication-title: Int. J. Veh. Des. doi: 10.1504/IJVD.2010.029641 – volume: 35 start-page: 50 issue: S1 year: 2018 ident: 10.1016/j.aej.2021.05.001_b0050 article-title: Based on CFD analysis and optimization of air conditioning ducts publication-title: J. Mach. Des. – volume: 29 start-page: 2028 year: 2009 ident: 10.1016/j.aej.2021.05.001_b0075 article-title: Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part II: Simulation results and discussion publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2008.10.006 – volume: 17 start-page: 397 issue: 2 year: 2013 ident: 10.1016/j.aej.2021.05.001_b0015 article-title: Investigation of transient cooling of an automobile cabin with a virtual manikin under solar radiation publication-title: Therm. Sci. doi: 10.2298/TSCI120623150S – volume: 11 start-page: 17 issue: 1 year: 2018 ident: 10.1016/j.aej.2021.05.001_b0055 article-title: CFD Windshield Deicing Simulations for Commercial Vehicle Applications publication-title: SAE Int. J. Commer. Veh. doi: 10.4271/02-11-01-0002 – volume: 11 start-page: 141 issue: Special issue year: 2018 ident: 10.1016/j.aej.2021.05.001_b0130 article-title: An Investigation of Air Flow and Thermal Comfort of Modified Conventional Car Cabin using Computational Fluid Dynamics publication-title: J. Appl. Fluid Mech. – volume: 148 year: 2020 ident: 10.1016/j.aej.2021.05.001_b0120 article-title: Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results publication-title: Int. J. Heat Mass Trans. doi: 10.1016/j.ijheatmasstransfer.2019.119083 – year: 2019 ident: 10.1016/j.aej.2021.05.001_b0040 article-title: CFD studies for energy conservation in the HVAC system of a hatchback model passenger car publication-title: Energy Sour. Part A – year: 2013 ident: 10.1016/j.aej.2021.05.001_b0115 article-title: The Impact of Vehicle Front End Design on AC Performance publication-title: SAE Technical Paper Series doi: 10.4271/2013-01-0859 – volume: 130 start-page: 1328 year: 2018 ident: 10.1016/j.aej.2021.05.001_b0095 article-title: Full vehicle CFD investigations on the influence of front-end configuration on radiator performance and cooling drag publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.11.086 – volume: 13 start-page: 42 issue: 01 year: 2014 ident: 10.1016/j.aej.2021.05.001_b0045 article-title: Adiabatic flow simulation in an vehicle passenger compartment publication-title: Int. J. Sim. Model doi: 10.2507/IJSIMM13(1)4.253 – volume: 165 year: 2020 ident: 10.1016/j.aej.2021.05.001_b0020 article-title: Design optimization of bare tube heat exchanger for the application to mobile air conditioning systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114609 – volume: 75 start-page: 45 year: 2015 ident: 10.1016/j.aej.2021.05.001_b0030 article-title: Transient thermal model of a vehicle's cabin validated under variable ambient conditions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.05.074 – volume: 122 start-page: 168 year: 2015 ident: 10.1016/j.aej.2021.05.001_b0135 article-title: Three-dimensional CFD modeling and simulation on the performance of steam ejector heat pump for dryer section of the paper machine publication-title: Vacuum doi: 10.1016/j.vacuum.2015.09.016 – volume: 35 start-page: 72 issue: 5 year: 2018 ident: 10.1016/j.aej.2021.05.001_b0125 article-title: Analysis and Optimization for Defrost Performance of Automobile Air-Condition Based on CFD publication-title: J. Jilin Inst. Chem. Technol. – year: 2005 ident: 10.1016/j.aej.2021.05.001_b0110 article-title: New Generation Integrated Automotive Thermal System publication-title: SAE Technical Paper Series doi: 10.4271/2005-01-3476 – volume: 29 start-page: 2022 year: 2009 ident: 10.1016/j.aej.2021.05.001_b0070 article-title: Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part I: Test/numerical model and validation publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2008.10.005 – volume: 228 start-page: 1468 issue: 12 year: 2014 ident: 10.1016/j.aej.2021.05.001_b0150 article-title: Study of thermal phenomena in the cabin of a passenger vehicle using finite element analysis: human comfort and system performance publication-title: P I Mech. Eng. D-J. Aut. doi: 10.1177/0954407014532805 – year: 2018 ident: 10.1016/j.aej.2021.05.001_b0090 article-title: Passengers, thermal comfort in private car cabin in hot climate – volume: 53 start-page: 255 year: 2009 ident: 10.1016/j.aej.2021.05.001_b0005 article-title: Maximum vehicle cabin temperatures under different meteorological conditions publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-009-0211-x – volume: 9 start-page: 437 issue: 4 year: 2008 ident: 10.1016/j.aej.2021.05.001_b0035 article-title: 3-D numerical and experimental analysisfor airflow within a passenger compartment publication-title: Int J Auto Technol. doi: 10.1007/s12239-008-0053-2 – volume: 133 start-page: 14 year: 2014 ident: 10.1016/j.aej.2021.05.001_b0105 article-title: Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2014.07.089 – volume: 32 issue: 01018 year: 2018 ident: 10.1016/j.aej.2021.05.001_b0080 article-title: CFD simulation of a cabin thermal environment with and without human body-Thermal comfort evaluation publication-title: E3S Web Conferences – volume: 774 start-page: 1092 year: 2019 ident: 10.1016/j.aej.2021.05.001_b0060 article-title: Effective deicing of vehicle windows and thermal response of asymmetric multilayered transparent-film heaters publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2018.09.380 – volume: 137 start-page: 356 year: 2018 ident: 10.1016/j.aej.2021.05.001_b0025 article-title: Experimental and numerical study of air flow and temperature variations in an electric vehicle cabin during cooling and heating publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.03.099 – volume: 46 start-page: 2990 issue: 5 year: 2017 ident: 10.1016/j.aej.2021.05.001_b0065 article-title: Optimization of a Localized Air Conditioning System Using Thermoelectric Coolers for Commercial Vehicles publication-title: J. Electr. Mater. doi: 10.1007/s11664-016-5089-x – ident: 10.1016/j.aej.2021.05.001_b0145 doi: 10.1007/s12274-014-0696-4 – ident: 10.1016/j.aej.2021.05.001_b0085 doi: 10.1177/0954407019827691 – volume: 38 start-page: 33 issue: 6 year: 2020 ident: 10.1016/j.aej.2021.05.001_b0140 article-title: Air Flow Distribution Research on Heat Mode of Automotive HVAC Module publication-title: Light Industry Machinery – volume: 135 start-page: 406 year: 2018 ident: 10.1016/j.aej.2021.05.001_b0100 article-title: 1D/3D Transient HVAC Thermal Modeling of an Off-Highway Machinery Cabin using CFD-ANN Hybrid Method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.02.054 |
| SSID | ssj0000579496 |
| Score | 2.3815482 |
| Snippet | In vehicles, air conditioning tends to offer efficient thermal conditioning and air circulation inside cabin for passenger comfort from different climate... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 315 |
| SubjectTerms | Air-conditioning system Defrosting-demisting mode Face blowing mode Flow field analysis Numerical simulation Optimization |
| Title | Computational fluid dynamics simulation and performance optimization of an electrical vehicle Air-conditioning system |
| URI | https://dx.doi.org/10.1016/j.aej.2021.05.001 https://doaj.org/article/daec59255d934841bd3f903ee8f37db6 |
| Volume | 61 |
| WOSCitedRecordID | wos000709484000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQooACcYrlkgsqpIhk7fVRLghEgRAFoO0i22OLINhFe_D9-MqSBmhoYyeOZib282T8HkJnJdOMAVOFh_O6oFZAIZmWBWhDpZWVZjF18XzH7-_FaCQfOlJfoSYs0QMnw12AsmYgPfAFSaiglQbiZEmsFY5w0JFsu-Sys5lKrN4-zqI4l_-WQ-UVE-0vzVjcpeyr3xv2q8jamQVh2kUpcvd31qbOenOzhTYzUMTD9ILbaMWOd9BGhz5wFy2SJENO52H3tmgAQ5KYn-FZ856lubAaA_74PiGAJ36eeM8HMPHE-Xac5HCCx_CnfQlD4mEzLfxuGZqcs8WJ9XkPPd1cP17dFllGoTB-tZ4XzpHAzmuYJirMKQC8NJXywI5zRwkwpjlXA9DEWUlAaOFRkekbSTnQysOtfbQ6noztAcKVdUoGT4DyTcwIQR2T3IiKDIBJ10Nla8faZI7xIHXxVrfFZK-1N30dTF-Xg1BQ10Pny1s-EsHGb50vg3OWHQM3drzgI6bOEVP_FTE9RFvX1hlmJPjgH9X8PPbhf4x9hNb74fxEzOEco9X5dGFP0Jr5nDez6WmM4S8AmvbX |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+fluid+dynamics+simulation+and+performance+optimization+of+an+electrical+vehicle+Air-conditioning+system&rft.jtitle=Alexandria+engineering+journal&rft.au=Libin+Tan&rft.au=Yuejin+Yuan&rft.date=2022-01-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=61&rft.issue=1&rft.spage=315&rft.epage=328&rft_id=info:doi/10.1016%2Fj.aej.2021.05.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_daec59255d934841bd3f903ee8f37db6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |