Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors
•Extend traditional IG process by incorporating skew-normal random effects.•Derive analytically the lifetime distribution for the proposed EIG process model.•Develop MLEs of the model parameters for perfect and perturbed measurements.•Show the advantages of the proposed model through simulation and...
Uložené v:
| Vydané v: | Reliability engineering & system safety Ročník 189; číslo September; s. 261 - 270 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Barking
Elsevier Ltd
01.09.2019
Elsevier BV Elsevier |
| Predmet: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Extend traditional IG process by incorporating skew-normal random effects.•Derive analytically the lifetime distribution for the proposed EIG process model.•Develop MLEs of the model parameters for perfect and perturbed measurements.•Show the advantages of the proposed model through simulation and case study.
As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To characterize random effects among test samples, the traditional IG process model usually assumes a normal distributed degradation rate. However, the degradation rates in some applications may manifest some asymmetric and non-normal behaviors, such as the GaAs laser degradation data. Therefore, we propose an extended inverse Gaussian (EIG) process model by incorporating skew-normal random effects, and derive its analytical lifetime distribution. Furthermore, considering that available studies about IG process models are limited on the aspect of measurement errors, parameter estimation methods for the proposed degradation model are developed for two scenarios, i.e., the maximum likelihood estimations (MLEs) for perfect measurements, and an extended Monte Carlo (MC) integration algorithm for the MLEs for perturbed measurements. Then a simulation study is adopted to show the effectiveness of the proposed MLEs, and two illustrative examples of GaAs laser degradation and fatigue crack growth are provided to illustrate the advantages of the proposed EIG process model, i.e., the improvement in degradation data fitting performance and lifetime evaluation accuracy by incorporating skew-normal random effects and measurement errors. |
|---|---|
| AbstractList | •Extend traditional IG process by incorporating skew-normal random effects.•Derive analytically the lifetime distribution for the proposed EIG process model.•Develop MLEs of the model parameters for perfect and perturbed measurements.•Show the advantages of the proposed model through simulation and case study.
As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To characterize random effects among test samples, the traditional IG process model usually assumes a normal distributed degradation rate. However, the degradation rates in some applications may manifest some asymmetric and non-normal behaviors, such as the GaAs laser degradation data. Therefore, we propose an extended inverse Gaussian (EIG) process model by incorporating skew-normal random effects, and derive its analytical lifetime distribution. Furthermore, considering that available studies about IG process models are limited on the aspect of measurement errors, parameter estimation methods for the proposed degradation model are developed for two scenarios, i.e., the maximum likelihood estimations (MLEs) for perfect measurements, and an extended Monte Carlo (MC) integration algorithm for the MLEs for perturbed measurements. Then a simulation study is adopted to show the effectiveness of the proposed MLEs, and two illustrative examples of GaAs laser degradation and fatigue crack growth are provided to illustrate the advantages of the proposed EIG process model, i.e., the improvement in degradation data fitting performance and lifetime evaluation accuracy by incorporating skew-normal random effects and measurement errors. As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To characterize random effects among test samples, the traditional IG process model usually assumes a normal distributed degradation rate. However, the degradation rates in some applications may manifest some asymmetric and non-normal behaviors, such as the GaAs laser degradation data. Therefore, we propose an extended inverse Gaussian (EIG) process model by incorporating skew-normal random effects, and derive its analytical lifetime distribution. Furthermore, considering that available studies about IG process models are limited on the aspect of measurement errors, parameter estimation methods for the proposed degradation model are developed for two scenarios, i.e., the maximum likelihood estimations (MLEs) for perfect measurements, and an extended Monte Carlo (MC) integration algorithm for the MLEs for perturbed measurements. Then a simulation study is adopted to show the effectiveness of the proposed MLEs, and two illustrative examples of GaAs laser degradation and fatigue crack growth are provided to illustrate the advantages of the proposed EIG process model, i.e., the improvement in degradation data fitting performance and lifetime evaluation accuracy by incorporating skew-normal random effects and measurement errors. |
| Author | Berenguer, Christophe Hao, Songhua Yang, Jun |
| Author_xml | – sequence: 1 givenname: Songhua surname: Hao fullname: Hao, Songhua organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Jun surname: Yang fullname: Yang, Jun email: tomyj2001@buaa.edu.cn organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Christophe surname: Berenguer fullname: Berenguer, Christophe organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France |
| BackLink | https://hal.science/hal-02121916$$DView record in HAL |
| BookMark | eNp9kT9vFDEQxS0UJC6BL0BliYpiF__Z3bMlmihAgnQSDdTWnD1LfOzawbN3IRVfHV8OGopUoxm_39h-75ydpZyQsddStFLI4d2uLUjUKiFtK7pWaPmMraRZ20YYPZyxlbC9bIxW4gU7J9oJITrbr1fs9wf8XiDAEnPikGB6oEh8C4SBP044_lowhdrGdMBCyK9hTxTryV3Jvt7K5xxw4vdxueX0A--blMsMEy-QQp45jiP6heqqwGcE2hecMS0cS8mFXrLnI0yEr_7WC_bt08evVzfN5sv156vLTeM7MSzN2OtebHUA620YQ9cj2nU3GO3XnVIeEYw2whi7DWrQfhAh9GsNMMJYeRv0BXt72nsLk7srcYby4DJEd3O5cceZUFJJK4eDrNo3J2394M890uJ2eV-qN-SU6rUZein7qjInlS-ZqODofFwefVwKxMlJ4Y7RuJ07RuOO0TjRuRpNRdV_6L8XPQm9P0FYbTpELI58xOQxxFINdiHHp_A_ThasXQ |
| CitedBy_id | crossref_primary_10_1080_16843703_2022_2146904 crossref_primary_10_1109_JSEN_2023_3326487 crossref_primary_10_1016_j_ejor_2021_10_049 crossref_primary_10_3390_app11094133 crossref_primary_10_1109_ACCESS_2024_3441530 crossref_primary_10_1016_j_ress_2020_107343 crossref_primary_10_1016_j_ijpvp_2022_104834 crossref_primary_10_1177_1748006X211067299 crossref_primary_10_1016_j_ress_2019_106631 crossref_primary_10_1016_j_apm_2019_08_024 crossref_primary_10_1016_j_ejor_2024_06_032 crossref_primary_10_1002_qre_3622 crossref_primary_10_1016_j_ress_2024_110651 crossref_primary_10_1016_j_amc_2025_129340 crossref_primary_10_1016_j_ress_2021_108200 crossref_primary_10_1016_j_ress_2022_108746 crossref_primary_10_1016_j_ress_2023_109419 crossref_primary_10_1016_j_ress_2023_109897 crossref_primary_10_1016_j_ress_2021_108084 crossref_primary_10_1177_1748006X241259833 crossref_primary_10_1016_j_ress_2021_108162 crossref_primary_10_1109_ACCESS_2019_2945823 crossref_primary_10_1109_ACCESS_2019_2958570 crossref_primary_10_1175_JAS_D_20_0077_1 crossref_primary_10_1002_asmb_2824 crossref_primary_10_1016_j_ress_2021_107592 crossref_primary_10_1016_j_ress_2021_108087 crossref_primary_10_1016_j_measurement_2023_113156 crossref_primary_10_1016_j_psep_2022_12_041 crossref_primary_10_1016_j_microrel_2022_114609 crossref_primary_10_1016_j_ress_2021_107928 crossref_primary_10_1080_24725854_2025_2476194 crossref_primary_10_1016_j_ress_2022_108815 crossref_primary_10_1109_ACCESS_2020_2987332 crossref_primary_10_1177_1748006X241227300 crossref_primary_10_1080_24725854_2025_2531049 crossref_primary_10_1108_IJQRM_06_2022_0168 crossref_primary_10_1016_j_heliyon_2024_e34625 crossref_primary_10_1080_24725854_2024_2434125 crossref_primary_10_1080_03610918_2020_1740264 crossref_primary_10_1016_j_ress_2021_107445 crossref_primary_10_1016_j_ress_2021_108099 crossref_primary_10_1016_j_ress_2021_107440 crossref_primary_10_1016_j_apm_2021_12_048 crossref_primary_10_1016_j_measurement_2025_117284 crossref_primary_10_1016_j_ress_2020_107361 crossref_primary_10_3390_fractalfract8100556 crossref_primary_10_1002_qre_3646 crossref_primary_10_1016_j_cie_2021_107599 crossref_primary_10_1016_j_psep_2023_08_070 crossref_primary_10_1080_02664763_2022_2036707 crossref_primary_10_1002_qre_3729 crossref_primary_10_1016_j_cie_2020_106539 crossref_primary_10_1016_j_ress_2021_108104 crossref_primary_10_1007_s10479_024_06334_5 crossref_primary_10_1016_j_ress_2020_107038 crossref_primary_10_1109_TIM_2024_3381295 crossref_primary_10_1016_j_ress_2021_108105 crossref_primary_10_1016_j_ress_2025_111349 crossref_primary_10_1016_j_cie_2022_108274 crossref_primary_10_1016_j_microrel_2021_114277 |
| Cites_doi | 10.1016/j.neucom.2015.12.041 10.1016/j.ress.2018.06.019 10.1080/03610918.2014.894057 10.1016/j.ress.2016.03.024 10.1109/TR.2009.2026784 10.1002/qre.2049 10.1016/j.ress.2015.02.005 10.1016/j.apm.2018.04.025 10.1016/j.ress.2018.06.013 10.1016/j.ejor.2018.02.033 10.1016/j.ress.2018.07.003 10.1016/j.ress.2017.11.003 10.1016/S0266-8920(02)00053-X 10.1016/j.ress.2014.06.005 10.1016/j.jmva.2008.12.007 10.1109/TII.2017.2684821 10.1016/j.spl.2018.03.009 10.1002/asmb.2063 10.1016/j.ejor.2014.11.029 10.1016/j.jspi.2011.06.008 10.1198/TECH.2009.08197 10.1016/j.ymssp.2017.02.031 10.1109/TR.2016.2635149 10.1016/j.ymssp.2016.10.027 10.1007/s11709-013-0207-9 10.1109/TR.2013.2257055 10.1016/j.ress.2004.10.004 10.1109/TR.2017.2757768 10.1080/00401706.2013.830074 10.1080/00401706.2013.879077 10.1109/TR.2015.2513038 10.1080/03610918008812164 10.1016/j.corsci.2013.04.020 10.1109/TR.2018.2869572 10.1109/TR.2012.2194351 10.1111/1467-9868.00194 10.1016/j.ress.2017.12.012 10.1093/biomet/83.4.715 10.1109/TR.2014.2315773 10.1016/j.ress.2015.12.016 10.1007/s12206-014-0904-x 10.1109/TR.2018.2885133 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Sep 2019 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI 1XC VOOES |
| DOI | 10.1016/j.ress.2019.04.031 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 1879-0836 |
| EndPage | 270 |
| ExternalDocumentID | oai:HAL:hal-02121916v1 10_1016_j_ress_2019_04_031 S095183201831442X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI 1XC VOOES |
| ID | FETCH-LOGICAL-c406t-f5350b3da9c9dfd45ee974683c7422ceea8380889bd263c60dd573aafaf4069d3 |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474493000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Tue Oct 14 20:53:34 EDT 2025 Wed Aug 13 06:37:20 EDT 2025 Sat Nov 29 01:49:53 EST 2025 Tue Nov 18 21:16:50 EST 2025 Fri Feb 23 02:28:02 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | September |
| Keywords | Measurement errors The MLE method Extended inverse Gaussian process model Skew-normal random effects Extended MC integration algorithm the MLE method |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-f5350b3da9c9dfd45ee974683c7422ceea8380889bd263c60dd573aafaf4069d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4620-4976 0000-0003-3000-5390 |
| OpenAccessLink | https://hal.science/hal-02121916 |
| PQID | 2253865115 |
| PQPubID | 2045406 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02121916v1 proquest_journals_2253865115 crossref_citationtrail_10_1016_j_ress_2019_04_031 crossref_primary_10_1016_j_ress_2019_04_031 elsevier_sciencedirect_doi_10_1016_j_ress_2019_04_031 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | Wang (bib0025) 2010; 101 Zhang, Si, Hu, Lei (bib0033) 2018; 271 Peng, Liu, Li, Zhu, Huang (bib0020) 2014; 28 Pan, Liu, Yang (bib0029) 2018; 138 Azzalini, Valle (bib0031) 1996; 83 Owen (bib0044) 1980; 9 Pan, Wei, Fang, Yang (bib0037) 2018; 320 Chen, Ye, Xiang, Zhang (bib0011) 2015; 243 Lu, Pandey, Xie (bib0039) 2013; 227 Li, Wang, Zhang, Liu, Fu (bib0046) 2018; 173 Peng (bib0027) 2015; 57 Huang, Xu, Ke, Wang, Sun (bib0036) 2017; 87 Li, Wang, Zhang, Fu, Liu, Krishnaswamy (bib0045) 2017; 94 Pan, Liu, Cao (bib0012) 2016; 185 Wang, Li, Ma, Zhang, Fu, Krishnaswamy (bib0047) 2017; 33 Wang, Balakrishnan, Guo (bib0035) 2016; 45 Zhai, Ye (bib0005) 2017; 13 Ye, Chen (bib0009) 2014; 56 Peng, Li, Yang, Huang, Zuo (bib0019) 2014; 130 Wu, Ni (bib0049) 2003; 18 Peng, Tseng (bib0043) 2009; 58 Guo, Wang, Cabrera, Elsayed (bib0017) 2018; 178 Azzalini (bib0030) 1985; 12 Zhang, Si, Hu, Kong (bib0002) 2015; 229 Tsai, Tseng, Balakrishnan (bib0048) 2011; 141 Zhai, Chen, Hong, Shen (bib0028) 2018; 180 Hao, Yang, Berenguer (bib0024) 2017; 172 Tsai, Tseng, Balakrishnan (bib0026) 2012; 61 Ye, Xie (bib0003) 2015; 31 Wang, Xu (bib0008) 2010; 52 Azzalini, Capitanio (bib0032) 1999; 61 Shen, Wang, Zhai, Tang (bib0016) 2018 Peng, Li, Yang, Zhu, Huang (bib0013) 2016; 65 Rodríguez-Picón, Rodríguez-Picón, Alvarado-Iniesta (bib0014) 2018 Meeker, Escobar (bib0001) 1998 Pulcini (bib0040) 2016; 152 Paroissin (bib0007) 2017; 66 Li, Hu, Zio, Kang (bib0022) 2017; 5 He, Wang, Chang (bib0023) 2018; 61 Kallen, van Noortwijk (bib0038) 2005; 90 Peng, Li, Yang, Mi, Huang (bib0021) 2017; 66 Ye, Chen, Tang, Xie (bib0010) 2014; 63 Qin, Zhang, Zhou (bib0041) 2013; 7 Hong, Zhai, Wang, Ye (bib0015) 2018 Peng, Tseng (bib0034) 2013; 62 Ye, Chen, Shen (bib0004) 2015; 139 Liu, Wang, Zhang, Tomovic (bib0018) 2018; 180 Le Son, Fouladirad, Barros (bib0006) 2016; 149 Zhang, Zhou, Qin (bib0042) 2013; 73 Wang (10.1016/j.ress.2019.04.031_bib0035) 2016; 45 Pulcini (10.1016/j.ress.2019.04.031_bib0040) 2016; 152 He (10.1016/j.ress.2019.04.031_bib0023) 2018; 61 Wang (10.1016/j.ress.2019.04.031_bib0008) 2010; 52 Li (10.1016/j.ress.2019.04.031_bib0022) 2017; 5 Lu (10.1016/j.ress.2019.04.031_bib0039) 2013; 227 Wang (10.1016/j.ress.2019.04.031_bib0025) 2010; 101 Zhang (10.1016/j.ress.2019.04.031_bib0033) 2018; 271 Li (10.1016/j.ress.2019.04.031_bib0045) 2017; 94 Chen (10.1016/j.ress.2019.04.031_bib0011) 2015; 243 Pan (10.1016/j.ress.2019.04.031_bib0012) 2016; 185 Peng (10.1016/j.ress.2019.04.031_bib0019) 2014; 130 Li (10.1016/j.ress.2019.04.031_bib0046) 2018; 173 Zhang (10.1016/j.ress.2019.04.031_bib0042) 2013; 73 Ye (10.1016/j.ress.2019.04.031_bib0003) 2015; 31 Tsai (10.1016/j.ress.2019.04.031_bib0048) 2011; 141 Ye (10.1016/j.ress.2019.04.031_bib0009) 2014; 56 Le Son (10.1016/j.ress.2019.04.031_bib0006) 2016; 149 Shen (10.1016/j.ress.2019.04.031_bib0016) 2018 Kallen (10.1016/j.ress.2019.04.031_bib0038) 2005; 90 Zhang (10.1016/j.ress.2019.04.031_bib0002) 2015; 229 Tsai (10.1016/j.ress.2019.04.031_bib0026) 2012; 61 Wang (10.1016/j.ress.2019.04.031_bib0047) 2017; 33 Peng (10.1016/j.ress.2019.04.031_bib0021) 2017; 66 Azzalini (10.1016/j.ress.2019.04.031_bib0030) 1985; 12 Huang (10.1016/j.ress.2019.04.031_bib0036) 2017; 87 Zhai (10.1016/j.ress.2019.04.031_bib0005) 2017; 13 Liu (10.1016/j.ress.2019.04.031_bib0018) 2018; 180 Meeker (10.1016/j.ress.2019.04.031_bib0001) 1998 Azzalini (10.1016/j.ress.2019.04.031_bib0032) 1999; 61 Peng (10.1016/j.ress.2019.04.031_bib0043) 2009; 58 Rodríguez-Picón (10.1016/j.ress.2019.04.031_bib0014) 2018 Owen (10.1016/j.ress.2019.04.031_bib0044) 1980; 9 Hong (10.1016/j.ress.2019.04.031_bib0015) 2018 Ye (10.1016/j.ress.2019.04.031_bib0010) 2014; 63 Guo (10.1016/j.ress.2019.04.031_bib0017) 2018; 178 Pan (10.1016/j.ress.2019.04.031_bib0037) 2018; 320 Zhai (10.1016/j.ress.2019.04.031_bib0028) 2018; 180 Pan (10.1016/j.ress.2019.04.031_bib0029) 2018; 138 Ye (10.1016/j.ress.2019.04.031_bib0004) 2015; 139 Paroissin (10.1016/j.ress.2019.04.031_bib0007) 2017; 66 Peng (10.1016/j.ress.2019.04.031_bib0027) 2015; 57 Peng (10.1016/j.ress.2019.04.031_bib0013) 2016; 65 Hao (10.1016/j.ress.2019.04.031_bib0024) 2017; 172 Peng (10.1016/j.ress.2019.04.031_bib0034) 2013; 62 Wu (10.1016/j.ress.2019.04.031_bib0049) 2003; 18 Peng (10.1016/j.ress.2019.04.031_bib0020) 2014; 28 Azzalini (10.1016/j.ress.2019.04.031_bib0031) 1996; 83 Qin (10.1016/j.ress.2019.04.031_bib0041) 2013; 7 |
| References_xml | – volume: 52 start-page: 188 year: 2010 end-page: 197 ident: bib0008 article-title: An inverse Gaussian process model for degradation data publication-title: Technometrics – volume: 61 start-page: 341 year: 2018 end-page: 350 ident: bib0023 article-title: Objective Bayesian analysis for the accelerated degradation model based on the inverse Gaussian process publication-title: Appl Math Model – volume: 320 start-page: 131 year: 2018 end-page: 141 ident: bib0037 article-title: A reliability estimation approach via Wiener degradation model with measurement errors publication-title: Appl Math Comput – volume: 66 start-page: 84 year: 2017 end-page: 96 ident: bib0021 article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates publication-title: IEEE Trans Reliab – volume: 139 start-page: 58 year: 2015 end-page: 67 ident: bib0004 article-title: A new class of Wiener process models for degradation analysis publication-title: Reliab Eng Syst Saf – volume: 94 start-page: 57 year: 2017 end-page: 72 ident: bib0045 article-title: Degradation data analysis based on a generalized Wiener process subject to measurement error publication-title: Mech Syst Sig Process – year: 2018 ident: bib0015 article-title: System reliability evaluation under dynamic operating conditions publication-title: IEEE Trans Reliab – volume: 178 start-page: 269 year: 2018 end-page: 277 ident: bib0017 article-title: Improved inverse Gaussian process and bootstrap: degradation and reliability metrics publication-title: Reliab Eng Syst Saf – volume: 243 start-page: 190 year: 2015 end-page: 199 ident: bib0011 article-title: Condition-based maintenance using the inverse Gaussian degradation model publication-title: Eur J Oper Res – volume: 83 start-page: 715 year: 1996 end-page: 726 ident: bib0031 article-title: The multivariate skew-normal distribution publication-title: Biometrika – volume: 57 start-page: 100 year: 2015 end-page: 111 ident: bib0027 article-title: Inverse Gaussian processes with random effects and explanatory variables for degradation data publication-title: Technometrics – volume: 101 start-page: 340 year: 2010 end-page: 351 ident: bib0025 article-title: Wiener processes with random effects for degradation data publication-title: J Multivar Anal – volume: 62 start-page: 338 year: 2013 end-page: 350 ident: bib0034 article-title: Statistical lifetime inference with Skew-Wiener linear degradation models publication-title: IEEE Trans Reliab – volume: 58 start-page: 444 year: 2009 end-page: 455 ident: bib0043 article-title: Mis-specification analysis of linear degradation models publication-title: IEEE Trans Reliab – volume: 18 start-page: 107 year: 2003 end-page: 118 ident: bib0049 article-title: A study of stochastic fatigue crack growth modeling through experimental data publication-title: Probab Eng Mech – volume: 152 start-page: 296 year: 2016 end-page: 306 ident: bib0040 article-title: A perturbed gamma process with statistically dependent measurement errors publication-title: Reliab Eng Syst Saf – volume: 130 start-page: 175 year: 2014 end-page: 189 ident: bib0019 article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective publication-title: Reliab Eng Syst Saf – volume: 87 start-page: 294 year: 2017 end-page: 306 ident: bib0036 article-title: Remaining useful life prediction for an adaptive skew-Wiener process model publication-title: Mech Syst Sig Process – volume: 180 start-page: 94 year: 2018 end-page: 103 ident: bib0028 article-title: A random-effects Wiener degradation model based on accelerated failure time publication-title: Reliab Eng Syst Saf – year: 2018 ident: bib0016 article-title: Degradation modeling using stochastic processes with random initial degradation publication-title: IEEE Trans Reliab – volume: 61 start-page: 604 year: 2012 end-page: 613 ident: bib0026 article-title: Optimal design for degradation tests based on Gamma processes with random effects publication-title: IEEE Trans Reliab – volume: 13 start-page: 2911 year: 2017 end-page: 2921 ident: bib0005 article-title: RUL prediction of deteriorating products using an adaptive wiener process model publication-title: IEEE Trans Ind Inf – volume: 172 start-page: 207 year: 2017 end-page: 215 ident: bib0024 article-title: Nonlinear step-stress accelerated degradation modelling considering three sources of variability publication-title: Reliab Eng Syst Saf – volume: 141 start-page: 3725 year: 2011 end-page: 3735 ident: bib0048 article-title: Mis-specification analyses of gamma and Wiener degradation processes publication-title: J Stat Plan Inference – volume: 61 start-page: 579 year: 1999 end-page: 602 ident: bib0032 article-title: Statistical applications of the multivariate skew normal distribution publication-title: J R Stat Soc – volume: 66 start-page: 1361 year: 2017 end-page: 1367 ident: bib0007 article-title: Online estimation methods for the gamma degradation process publication-title: IEEE Trans Reliab – year: 2018 ident: bib0014 article-title: Degradation modeling of 2 fatigue-crack growth characteristics based on inverse Gaussian processes: a case study publication-title: Appl Stoch Models Bus Ind – volume: 229 start-page: 343 year: 2015 end-page: 355 ident: bib0002 article-title: Degradation modeling-based remaining useful life estimation: a review on approaches for systems with heterogeneity publication-title: Proc Inst Mech Eng Part O – volume: 90 start-page: 177 year: 2005 end-page: 185 ident: bib0038 article-title: Optimal maintenance decisions under imperfect inspection publication-title: Reliab Eng Syst Saf – volume: 227 start-page: 425 year: 2013 end-page: 433 ident: bib0039 article-title: An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements publication-title: Proc Inst Mech Eng Part O – volume: 63 start-page: 750 year: 2014 end-page: 763 ident: bib0010 article-title: Accelerated degradation test planning using the inverse Gaussian process publication-title: IEEE Trans Reliab – volume: 149 start-page: 76 year: 2016 end-page: 87 ident: bib0006 article-title: Remaining useful lifetime estimation and noisy gamma deterioration process publication-title: Reliab Eng Syst Saf – volume: 138 start-page: 157 year: 2018 end-page: 164 ident: bib0029 article-title: A new result on lifetime estimation based on skew-Wiener degradation model publication-title: Stat Probab Lett – volume: 271 start-page: 775 year: 2018 end-page: 796 ident: bib0033 article-title: Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods publication-title: Eur J Oper Res – volume: 185 start-page: 64 year: 2016 end-page: 72 ident: bib0012 article-title: Remaining useful life estimation using an inverse Gaussian degradation model publication-title: Neurocomputing – volume: 73 start-page: 309 year: 2013 end-page: 320 ident: bib0042 article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data publication-title: Corros Sci – volume: 5 start-page: 5690 year: 2017 end-page: 5701 ident: bib0022 article-title: A Bayesian optimal design for accelerated degradation testing based on the inverse Gaussian process publication-title: IEEE Access – volume: 12 start-page: 171 year: 1985 end-page: 178 ident: bib0030 article-title: A class of distributions which includes the normal ones publication-title: Scand J Stat – volume: 31 start-page: 16 year: 2015 end-page: 32 ident: bib0003 article-title: Stochastic modelling and analysis of degradation for highly reliable products publication-title: Appl Stoch Models Bus Ind – volume: 33 start-page: 693 year: 2017 end-page: 708 ident: bib0047 article-title: A generalized wiener process degradation model with two transformed time scales publication-title: Qual Reliab Eng Int – volume: 180 start-page: 25 year: 2018 end-page: 38 ident: bib0018 article-title: Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process publication-title: Reliab Eng Syst Saf – volume: 28 start-page: 3937 year: 2014 end-page: 3946 ident: bib0020 article-title: A Bayesian optimal design for degradation tests based on the inverse Gaussian process publication-title: J Mech Sci Technol – volume: 173 start-page: 48 year: 2018 end-page: 57 ident: bib0046 article-title: A nonlinear Wiener process degradation model with autoregressive errors publication-title: Reliab Eng Syst Saf – volume: 65 start-page: 624 year: 2016 end-page: 639 ident: bib0013 article-title: Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas publication-title: IEEE Trans Reliab – year: 1998 ident: bib0001 article-title: Statistical methods for reliability data – volume: 45 start-page: 2158 year: 2016 end-page: 2181 ident: bib0035 article-title: Residual life estimation based on a generalized wiener process with Skew-normal random effects publication-title: Commun Stat Simul Comput – volume: 9 start-page: 389 year: 1980 end-page: 419 ident: bib0044 article-title: A table of normal integrals publication-title: Commun Stat Simul Comput – volume: 56 start-page: 302 year: 2014 end-page: 311 ident: bib0009 article-title: The inverse Gaussian process as a degradation model publication-title: Technometrics – volume: 7 start-page: 276 year: 2013 end-page: 287 ident: bib0041 article-title: Inverse Gaussian process-based corrosion growth modeling and its application in the reliability analysis for energy pipelines publication-title: Front Struct Civ Eng – volume: 185 start-page: 64 year: 2016 ident: 10.1016/j.ress.2019.04.031_bib0012 article-title: Remaining useful life estimation using an inverse Gaussian degradation model publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.041 – volume: 12 start-page: 171 year: 1985 ident: 10.1016/j.ress.2019.04.031_bib0030 article-title: A class of distributions which includes the normal ones publication-title: Scand J Stat – volume: 180 start-page: 25 year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0018 article-title: Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.06.019 – volume: 45 start-page: 2158 year: 2016 ident: 10.1016/j.ress.2019.04.031_bib0035 article-title: Residual life estimation based on a generalized wiener process with Skew-normal random effects publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2014.894057 – volume: 152 start-page: 296 year: 2016 ident: 10.1016/j.ress.2019.04.031_bib0040 article-title: A perturbed gamma process with statistically dependent measurement errors publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.03.024 – volume: 58 start-page: 444 year: 2009 ident: 10.1016/j.ress.2019.04.031_bib0043 article-title: Mis-specification analysis of linear degradation models publication-title: IEEE Trans Reliab doi: 10.1109/TR.2009.2026784 – volume: 320 start-page: 131 year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0037 article-title: A reliability estimation approach via Wiener degradation model with measurement errors publication-title: Appl Math Comput – volume: 33 start-page: 693 year: 2017 ident: 10.1016/j.ress.2019.04.031_bib0047 article-title: A generalized wiener process degradation model with two transformed time scales publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2049 – year: 1998 ident: 10.1016/j.ress.2019.04.031_bib0001 – volume: 139 start-page: 58 year: 2015 ident: 10.1016/j.ress.2019.04.031_bib0004 article-title: A new class of Wiener process models for degradation analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.02.005 – volume: 229 start-page: 343 year: 2015 ident: 10.1016/j.ress.2019.04.031_bib0002 article-title: Degradation modeling-based remaining useful life estimation: a review on approaches for systems with heterogeneity publication-title: Proc Inst Mech Eng Part O – volume: 61 start-page: 341 year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0023 article-title: Objective Bayesian analysis for the accelerated degradation model based on the inverse Gaussian process publication-title: Appl Math Model doi: 10.1016/j.apm.2018.04.025 – volume: 178 start-page: 269 year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0017 article-title: Improved inverse Gaussian process and bootstrap: degradation and reliability metrics publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.06.013 – volume: 271 start-page: 775 year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0033 article-title: Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2018.02.033 – volume: 180 start-page: 94 year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0028 article-title: A random-effects Wiener degradation model based on accelerated failure time publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.07.003 – volume: 173 start-page: 48 year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0046 article-title: A nonlinear Wiener process degradation model with autoregressive errors publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.11.003 – volume: 18 start-page: 107 year: 2003 ident: 10.1016/j.ress.2019.04.031_bib0049 article-title: A study of stochastic fatigue crack growth modeling through experimental data publication-title: Probab Eng Mech doi: 10.1016/S0266-8920(02)00053-X – volume: 130 start-page: 175 year: 2014 ident: 10.1016/j.ress.2019.04.031_bib0019 article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.06.005 – volume: 101 start-page: 340 year: 2010 ident: 10.1016/j.ress.2019.04.031_bib0025 article-title: Wiener processes with random effects for degradation data publication-title: J Multivar Anal doi: 10.1016/j.jmva.2008.12.007 – volume: 13 start-page: 2911 year: 2017 ident: 10.1016/j.ress.2019.04.031_bib0005 article-title: RUL prediction of deteriorating products using an adaptive wiener process model publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2684821 – volume: 138 start-page: 157 year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0029 article-title: A new result on lifetime estimation based on skew-Wiener degradation model publication-title: Stat Probab Lett doi: 10.1016/j.spl.2018.03.009 – volume: 31 start-page: 16 year: 2015 ident: 10.1016/j.ress.2019.04.031_bib0003 article-title: Stochastic modelling and analysis of degradation for highly reliable products publication-title: Appl Stoch Models Bus Ind doi: 10.1002/asmb.2063 – volume: 243 start-page: 190 year: 2015 ident: 10.1016/j.ress.2019.04.031_bib0011 article-title: Condition-based maintenance using the inverse Gaussian degradation model publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2014.11.029 – volume: 141 start-page: 3725 year: 2011 ident: 10.1016/j.ress.2019.04.031_bib0048 article-title: Mis-specification analyses of gamma and Wiener degradation processes publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2011.06.008 – year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0014 article-title: Degradation modeling of 2 fatigue-crack growth characteristics based on inverse Gaussian processes: a case study publication-title: Appl Stoch Models Bus Ind – volume: 52 start-page: 188 year: 2010 ident: 10.1016/j.ress.2019.04.031_bib0008 article-title: An inverse Gaussian process model for degradation data publication-title: Technometrics doi: 10.1198/TECH.2009.08197 – volume: 94 start-page: 57 year: 2017 ident: 10.1016/j.ress.2019.04.031_bib0045 article-title: Degradation data analysis based on a generalized Wiener process subject to measurement error publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2017.02.031 – volume: 66 start-page: 84 year: 2017 ident: 10.1016/j.ress.2019.04.031_bib0021 article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates publication-title: IEEE Trans Reliab doi: 10.1109/TR.2016.2635149 – volume: 87 start-page: 294 year: 2017 ident: 10.1016/j.ress.2019.04.031_bib0036 article-title: Remaining useful life prediction for an adaptive skew-Wiener process model publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2016.10.027 – volume: 7 start-page: 276 year: 2013 ident: 10.1016/j.ress.2019.04.031_bib0041 article-title: Inverse Gaussian process-based corrosion growth modeling and its application in the reliability analysis for energy pipelines publication-title: Front Struct Civ Eng doi: 10.1007/s11709-013-0207-9 – volume: 62 start-page: 338 year: 2013 ident: 10.1016/j.ress.2019.04.031_bib0034 article-title: Statistical lifetime inference with Skew-Wiener linear degradation models publication-title: IEEE Trans Reliab doi: 10.1109/TR.2013.2257055 – volume: 90 start-page: 177 year: 2005 ident: 10.1016/j.ress.2019.04.031_bib0038 article-title: Optimal maintenance decisions under imperfect inspection publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2004.10.004 – volume: 66 start-page: 1361 year: 2017 ident: 10.1016/j.ress.2019.04.031_bib0007 article-title: Online estimation methods for the gamma degradation process publication-title: IEEE Trans Reliab doi: 10.1109/TR.2017.2757768 – volume: 56 start-page: 302 year: 2014 ident: 10.1016/j.ress.2019.04.031_bib0009 article-title: The inverse Gaussian process as a degradation model publication-title: Technometrics doi: 10.1080/00401706.2013.830074 – volume: 57 start-page: 100 year: 2015 ident: 10.1016/j.ress.2019.04.031_bib0027 article-title: Inverse Gaussian processes with random effects and explanatory variables for degradation data publication-title: Technometrics doi: 10.1080/00401706.2013.879077 – volume: 65 start-page: 624 year: 2016 ident: 10.1016/j.ress.2019.04.031_bib0013 article-title: Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas publication-title: IEEE Trans Reliab doi: 10.1109/TR.2015.2513038 – volume: 9 start-page: 389 year: 1980 ident: 10.1016/j.ress.2019.04.031_bib0044 article-title: A table of normal integrals publication-title: Commun Stat Simul Comput doi: 10.1080/03610918008812164 – volume: 73 start-page: 309 year: 2013 ident: 10.1016/j.ress.2019.04.031_bib0042 article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data publication-title: Corros Sci doi: 10.1016/j.corsci.2013.04.020 – year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0015 article-title: System reliability evaluation under dynamic operating conditions publication-title: IEEE Trans Reliab doi: 10.1109/TR.2018.2869572 – volume: 61 start-page: 604 year: 2012 ident: 10.1016/j.ress.2019.04.031_bib0026 article-title: Optimal design for degradation tests based on Gamma processes with random effects publication-title: IEEE Trans Reliab doi: 10.1109/TR.2012.2194351 – volume: 61 start-page: 579 year: 1999 ident: 10.1016/j.ress.2019.04.031_bib0032 article-title: Statistical applications of the multivariate skew normal distribution publication-title: J R Stat Soc doi: 10.1111/1467-9868.00194 – volume: 172 start-page: 207 year: 2017 ident: 10.1016/j.ress.2019.04.031_bib0024 article-title: Nonlinear step-stress accelerated degradation modelling considering three sources of variability publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.12.012 – volume: 83 start-page: 715 year: 1996 ident: 10.1016/j.ress.2019.04.031_bib0031 article-title: The multivariate skew-normal distribution publication-title: Biometrika doi: 10.1093/biomet/83.4.715 – volume: 5 start-page: 5690 year: 2017 ident: 10.1016/j.ress.2019.04.031_bib0022 article-title: A Bayesian optimal design for accelerated degradation testing based on the inverse Gaussian process publication-title: IEEE Access – volume: 63 start-page: 750 year: 2014 ident: 10.1016/j.ress.2019.04.031_bib0010 article-title: Accelerated degradation test planning using the inverse Gaussian process publication-title: IEEE Trans Reliab doi: 10.1109/TR.2014.2315773 – volume: 227 start-page: 425 year: 2013 ident: 10.1016/j.ress.2019.04.031_bib0039 article-title: An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements publication-title: Proc Inst Mech Eng Part O – volume: 149 start-page: 76 year: 2016 ident: 10.1016/j.ress.2019.04.031_bib0006 article-title: Remaining useful lifetime estimation and noisy gamma deterioration process publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.12.016 – volume: 28 start-page: 3937 year: 2014 ident: 10.1016/j.ress.2019.04.031_bib0020 article-title: A Bayesian optimal design for degradation tests based on the inverse Gaussian process publication-title: J Mech Sci Technol doi: 10.1007/s12206-014-0904-x – year: 2018 ident: 10.1016/j.ress.2019.04.031_bib0016 article-title: Degradation modeling using stochastic processes with random initial degradation publication-title: IEEE Trans Reliab doi: 10.1109/TR.2018.2885133 |
| SSID | ssj0004957 |
| Score | 2.5327446 |
| Snippet | •Extend traditional IG process by incorporating skew-normal random effects.•Derive analytically the lifetime distribution for the proposed EIG process... As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 261 |
| SubjectTerms | Algorithms Applications Automatic Computer simulation Crack propagation Degradation Economic models Engineering Sciences Extended inverse Gaussian process model Extended MC integration algorithm Fatigue failure Fracture mechanics Gallium arsenide lasers Gaussian process Immunoglobulins Measurement errors Parameter estimation Reliability engineering Service life assessment Skew-normal random effects Statistics The MLE method |
| Title | Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors |
| URI | https://dx.doi.org/10.1016/j.ress.2019.04.031 https://www.proquest.com/docview/2253865115 https://hal.science/hal-02121916 |
| Volume | 189 |
| WOSCitedRecordID | wos000474493000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLQc4VDxFaUErxM0ycuw49h4DFJUKVUgtUjit1rvrNm3qREkcyok_xI9kZh-2W0QFSFxW1sr7UObL7Ox45htCXqVMRkqzQVhEBZYwgyehtAwBS0WMBFKqFKbYRHZ0lI_H7FOv98PnwqynWVXlV1ds_l9FDX0gbEyd_QtxN5NCBzyD0KEFsUP7R4J_h_QPtlJSIDzlCB5WKjA9gfd7B5MKYzIAJqJemlzKuc0asOVxXPT6hf4aVmjYTgM41tTssgkBQZf7ZetiDPRiMXPfhjzjt55OLA_4t0C3xIcGbpZCOliK0jGRWD1oPLfHs-r0rG4OjC_Op31YN0h-g1mKp7XLYmwIEro-jH4bpOUcaz65po1ksh7KfggKx3620VY_5xkzhNrXFTjrqmBL7u5O89iWJfnloLA-i_PX6NPAAD9mCG_dgXSdgPsYN4L7gAaun_F4g2zFWcpAh26NPuyPD9s8XGaZZf3GXZKWjSe8udLvDKGNM4zIvWEYGGvn5D7ZdtcUOrLwekB6unpI7nXIKx-R7x2gUQ80aoBGTQ_1QKMOaNQDjTqgUQM0ikCjHaBRCzTqgAZTKdoBGrVAe0w-v98_eXsQunIeoQSrcRWWaZJGRaIEk0yVapBqDZfZYZ7IbBDHYKyJPMkx6q5Q8TCRw0ipNEuEKEWJ6dkqeUI2q1mlnxIqJFiVRaSyEpRLDPPBOCmiJC4zNlQ63SF9_9ty6bjuseTKlPugxnOO8uAoDx4NOMhjhwTNmLllern17dSLjDtb1dqgHBB267iXIN9mASR3Pxh95NiHxRb6cFtbw0t7XvzcaRaYJE6xPi_c4J7949q75G7759sjm6tFrZ-TO3K9miwXLxyYfwIPXtWb |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+analysis+based+on+an+extended+inverse+Gaussian+process+model+with+skew-normal+random+effects+and+measurement+errors&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Hao%2C+Songhua&rft.au=Yang%2C+Jun&rft.au=Berenguer%2C+Christophe&rft.date=2019-09-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=189&rft.spage=261&rft.epage=270&rft_id=info:doi/10.1016%2Fj.ress.2019.04.031&rft.externalDocID=S095183201831442X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |